메뉴 건너뛰기




Volumn 17, Issue 8, 2015, Pages 5218-5240

An integrated index for the identification of focal electroencephalogram signals using discrete wavelet transform and entropy measures

Author keywords

Classifier; EEG; Entropy; Epilepsy; Wavelet

Indexed keywords


EID: 84940481172     PISSN: None     EISSN: 10994300     Source Type: Journal    
DOI: 10.3390/e17085218     Document Type: Article
Times cited : (171)

References (70)
  • 3
    • 77954668304 scopus 로고    scopus 로고
    • Pharmacoresistant epilepsy: From pathogenesis to current and emerging therapies
    • Pati, S.; Alexopoulos, A.V. Pharmacoresistant epilepsy: From pathogenesis to current and emerging therapies. Clevel. Clin. J. Med. 2010, 77, 457-467.
    • (2010) Clevel. Clin. J. Med , vol.77 , pp. 457-467
    • Pati, S.1    Alexopoulos, A.V.2
  • 4
    • 38649092014 scopus 로고    scopus 로고
    • Synchronization clusters of interictal activity in the lateral temporal cortex of epileptic patients: Intraoperative electrocorticographic analysis
    • Ortega, G.J.; Menendez de la Prida, L.; Sola, R.G.; Pastor, J. Synchronization clusters of interictal activity in the lateral temporal cortex of epileptic patients: Intraoperative electrocorticographic analysis. Epilepsia 2008, 49, 269-280.
    • (2008) Epilepsia , vol.49 , pp. 269-280
    • Ortega, G.J.1    Menendez de la Prida, L.2    Sola, R.G.3    Pastor, J.4
  • 8
    • 0029123213 scopus 로고
    • Spatio-temporal dynamics of the primary epileptogenic area in temporal lobe epilepsy characterized by neuronal complexity loss
    • Lehnertz, K.; Elger, C. Spatio-temporal dynamics of the primary epileptogenic area in temporal lobe epilepsy characterized by neuronal complexity loss. Electroencephalogr. Clin. Neurophysiol. 1995, 95, 108-117.
    • (1995) Electroencephalogr. Clin. Neurophysiol , vol.95 , pp. 108-117
    • Lehnertz, K.1    Elger, C.2
  • 9
    • 84867500693 scopus 로고    scopus 로고
    • Nonrandomness, nonlinear dependence, and nonstationarity of electroencephalographic recordings from epilepsy patients
    • Andrzejak, R.G.; Schindler, K.; Rummel, C. Nonrandomness, nonlinear dependence, and nonstationarity of electroencephalographic recordings from epilepsy patients. Phys. Rev. E 2012, 86, 046206.
    • (2012) Phys. Rev. E , vol.86
    • Andrzejak, R.G.1    Schindler, K.2    Rummel, C.3
  • 11
    • 84896329075 scopus 로고    scopus 로고
    • Classification of EEG signals for detection of epileptic seizures based on wavelets and statistical pattern recognition
    • Gajic, D.; Djurovic, Z.; Di Gennaro, S.; Gustafsson, F. Classification of EEG signals for detection of epileptic seizures based on wavelets and statistical pattern recognition. Biomed. Eng. Appl. Basis Commun. 2014, 26, 1450021.
    • (2014) Biomed. Eng. Appl. Basis Commun. , vol.26
    • Gajic, D.1    Djurovic, Z.2    Di Gennaro, S.3    Gustafsson, F.4
  • 12
    • 33751396389 scopus 로고    scopus 로고
    • EEG signal classification using wavelet feature extraction and a mixture of expertmodel
    • Subasi, A. EEG signal classification using wavelet feature extraction and a mixture of expertmodel. Expert Syst. Appl. 2007, 32, 1084-1093.
    • (2007) Expert Syst. Appl , vol.32 , pp. 1084-1093
    • Subasi, A.1
  • 16
    • 84926250211 scopus 로고    scopus 로고
    • Computer-aided diagnosis of diabetic subjects by heart rate variability signals using discrete wavelet transform method
    • Acharya, U.R.; Vidya, K.S.; Ghista, D.N.; Lim, W.J.E.; Molinari, F.; Sankaranarayanan, M. Computer-aided diagnosis of diabetic subjects by heart rate variability signals using discrete wavelet transform method. Knowledge-Based Syst. 2015, 81, 56-64.
    • (2015) Knowledge-Based Syst , vol.81 , pp. 56-64
    • Acharya, U.R.1    Vidya, K.S.2    Ghista, D.N.3    Lim, W.J.E.4    Molinari, F.5    Sankaranarayanan, M.6
  • 19
    • 84901791518 scopus 로고    scopus 로고
    • Tsallis wavelet entropy and its application in power signal analysis
    • Chen, J.; Li, G. Tsallis wavelet entropy and its application in power signal analysis. Entropy 2014, 16, 3009-3025.
    • (2014) Entropy , vol.16 , pp. 3009-3025
    • Chen, J.1    Li, G.2
  • 20
    • 80955158411 scopus 로고    scopus 로고
    • Wavelet packet energy, Tsallis entropy and statistical parameterization for support vector-based and neural-based classification of mammographic regions
    • Ramirez-Villegas, J.F.; Ramirez-Moreno, D.F. Wavelet packet energy, Tsallis entropy and statistical parameterization for support vector-based and neural-based classification of mammographic regions. Neurocomputing 2012, 77, 82-100.
    • (2012) Neurocomputing , vol.77 , pp. 82-100
    • Ramirez-Villegas, J.F.1    Ramirez-Moreno, D.F.2
  • 21
  • 22
    • 78751614421 scopus 로고    scopus 로고
    • Complexity analysis of the biomedical signal using fuzzy entropy measurement
    • Xie, H.B.; Chen,W.T.; He,W.X.; Liu, H. Complexity analysis of the biomedical signal using fuzzy entropy measurement. Appl. Soft Comput. 2011, 11, 2871-2879.
    • (2011) Appl. Soft Comput , vol.11 , pp. 2871-2879
    • Xie, H.B.1    Chen, W.T.2    He, W.X.3    Liu, H.4
  • 23
    • 81855221797 scopus 로고    scopus 로고
    • Detection of epileptic electroencephalogram based on permutation entropy and support vector machine
    • Nicolaou, N.; Georgiou, J. Detection of epileptic electroencephalogram based on permutation entropy and support vector machine. Expert Syst. Appl. 2012, 39, 202-209.
    • (2012) Expert Syst. Appl , vol.39 , pp. 202-209
    • Nicolaou, N.1    Georgiou, J.2
  • 24
    • 4243997063 scopus 로고    scopus 로고
    • Permutation entropy: A natural complexity measure for time series
    • Bandt, C.; Pompe, B. Permutation entropy: A natural complexity measure for time series. Phys. Rev. Lett. 2002, 88, 174102.
    • (2002) Phys. Rev. Lett. , vol.88
    • Bandt, C.1    Pompe, B.2
  • 25
    • 84879730277 scopus 로고    scopus 로고
    • Practical considerations of permutation entropy
    • Riedl, M.; Müller, A.; Wessel, N. Practical considerations of permutation entropy. Eur. Phys. J. Spec. Top. 2013, 222, 249-262.
    • (2013) Eur. Phys. J. Spec. Top , vol.222 , pp. 249-262
    • Riedl, M.1    Müller, A.2    Wessel, N.3
  • 26
    • 84859351360 scopus 로고    scopus 로고
    • Application of non-linear and wavelet based features for the automated identification of epileptic EEG signals
    • Acharya, U.R.; Sree, S.V.; Ang, P.C.A.; Yanti, R.; Suri, J.S. Application of non-linear and wavelet based features for the automated identification of epileptic EEG signals. Int. J. Neural Syst. 2012, 22, 1250002.
    • (2012) Int. J. Neural Syst. , vol.22
    • Acharya, U.R.1    Sree, S.V.2    Ang, P.C.A.3    Yanti, R.4    Suri, J.S.5
  • 27
  • 28
    • 84923365662 scopus 로고    scopus 로고
    • Application of entropy measures on intrinsic mode functions for the automated identification of focal electroencephalogram signals
    • Sharma, R.; Pachori, R.B.; Acharya, U.R. Application of entropy measures on intrinsic mode functions for the automated identification of focal electroencephalogram signals. Entropy 2015, 17, 669-691.
    • (2015) Entropy , vol.17 , pp. 669-691
    • Sharma, R.1    Pachori, R.B.2    Acharya, U.R.3
  • 30
    • 65249157560 scopus 로고
    • The divergence and Bhattacharyya distance measures in signal selection
    • Kailath, T. The divergence and Bhattacharyya distance measures in signal selection. IEEE Trans. Commun. Technol. 1967, 15, 52-60.
    • (1967) IEEE Trans. Commun. Technol , vol.15 , pp. 52-60
    • Kailath, T.1
  • 31
    • 0345166891 scopus 로고    scopus 로고
    • Detection of cancer-specific markers amid massive mass spectral data
    • Zhu, W.;Wang, X.; Ma, Y.; Rao, M.; Glimm, J.; Kovach, J.S. Detection of cancer-specific markers amid massive mass spectral data. Proc. Natl. Acad. Sci. USA 2003, 100, 14666-14671.
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 14666-14671
    • Zhu, W.1    Wang, X.2    Ma, Y.3    Rao, M.4    Glimm, J.5    Kovach, J.S.6
  • 32
    • 77955493236 scopus 로고    scopus 로고
    • Teaching rank-based tests by emphasizing structural similarities to corresponding parametric tests
    • Derryberry, D.R.; Schou, S.B.; Conover, W.J. Teaching rank-based tests by emphasizing structural similarities to corresponding parametric tests. J. Stat. Educ. 2010, 18, 1-19.
    • (2010) J. Stat. Educ , vol.18 , pp. 1-19
    • Derryberry, D.R.1    Schou, S.B.2    Conover, W.J.3
  • 33
    • 84946648610 scopus 로고
    • Historical notes on the Wilcoxon unpaired two-sample test
    • Kruskal, W.H. Historical notes on the Wilcoxon unpaired two-sample test. J. Am. Stat. Assoc. 1957, 52, 356-360.
    • (1957) J. Am. Stat. Assoc , vol.52 , pp. 356-360
    • Kruskal, W.H.1
  • 34
    • 0002322469 scopus 로고
    • On a test of whether one of two random variables is stochastically larger than the other
    • Mann, H.B.; Whitney, D.R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 1947, 18, 50-60.
    • (1947) Ann. Math. Stat , vol.18 , pp. 50-60
    • Mann, H.B.1    Whitney, D.R.2
  • 35
    • 0034406722 scopus 로고    scopus 로고
    • Different outcomes of the Wilcoxon-Mann-Whitney test from different statistics packages
    • Bergmann, R.; Ludbrook, J.; Spooren, W.P.J.M. Different outcomes of the Wilcoxon-Mann-Whitney test from different statistics packages. Am. Stat. 2000, 54, 72-77.
    • (2000) Am. Stat , vol.54 , pp. 72-77
    • Bergmann, R.1    Ludbrook, J.2    Spooren, W.P.J.M.3
  • 36
    • 34548523848 scopus 로고    scopus 로고
    • Feature selection
    • second ed.; Academic Press: San Diego, CA, USA
    • Theodoridis, S.; Koutroumbas, K. Feature selection. In Pattern Recognition, second ed.; Academic Press: San Diego, CA, USA, 2003; pp. 163-205.
    • (2003) Pattern Recognition , pp. 163-205
    • Theodoridis, S.1    Koutroumbas, K.2
  • 37
    • 85164392958 scopus 로고
    • study of cross-validation and bootstrap for accuracy estimation and model selection
    • Montreal, QC, Canada, 20-25 August 1995; Morgan Kaufmann: San Francisco, CA, USA
    • Kohavi, R. A. study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI-95), Montreal, QC, Canada, 20-25 August 1995; Morgan Kaufmann: San Francisco, CA, USA, 1995; pp. 1137-1143.
    • (1995) Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI-95) , pp. 1137-1143
    • Kohavi, R.A.1
  • 38
    • 84878917377 scopus 로고    scopus 로고
    • Automated detection of diabetes using higher order spectral features extracted from heart rate signals
    • Swapna, G.; Acharya, U.R.; Sree, S.V.; Suri, J.S. Automated detection of diabetes using higher order spectral features extracted from heart rate signals. Intell. Data Anal. 2013, 17, 309-326.
    • (2013) Intell. Data Anal , vol.17 , pp. 309-326
    • Swapna, G.1    Acharya, U.R.2    Sree, S.V.3    Suri, J.S.4
  • 39
    • 0034227864 scopus 로고    scopus 로고
    • Probabilistic neural-network structure determination for pattern classification
    • Mao, K.; Tan, K.C.; Ser, W. Probabilistic neural-network structure determination for pattern classification. IEEE Trans. Neural Netw. 2000, 11, 1009-1016.
    • (2000) IEEE Trans. Neural Netw , vol.11 , pp. 1009-1016
    • Mao, K.1    Tan, K.C.2    Ser, W.3
  • 40
    • 85017299828 scopus 로고    scopus 로고
    • Classification: Advanced methods
    • 3rd ed.; Kamber, J.H., Pei, J., Eds.; TheMorgan Kaufmann Series in DataManagement Systems;Morgan Kaufmann:Boston, MA, USA
    • Han, J.; Kamber, M.; Pei, J. Classification: Advanced methods. In Data Mining, 3rd ed.; Kamber, J.H., Pei, J., Eds.; TheMorgan Kaufmann Series in DataManagement Systems;Morgan Kaufmann:Boston, MA, USA, 2012; pp. 393-442.
    • (2012) Data Mining , pp. 393-442
    • Han, J.1    Kamber, M.2    Pei, J.3
  • 41
    • 0033329971 scopus 로고    scopus 로고
    • Improving the performance of fuzzy classifier systems for pattern classification problems with continuous attributes
    • Ishibuchi, H.; Nakashima, T. Improving the performance of fuzzy classifier systems for pattern classification problems with continuous attributes. IEEE Trans. Ind. Electron. 1999, 46, 1057-1068.
    • (1999) IEEE Trans. Ind. Electron , vol.46 , pp. 1057-1068
    • Ishibuchi, H.1    Nakashima, T.2
  • 42
    • 79960037752 scopus 로고    scopus 로고
    • Application of recurrence quantification analysis for the automated identification of epileptic EEG signals
    • Acharya, U.R.; Sree, S.V.; Chattopadhyay, S.; Yu, W.; Ang, P.C.A. Application of recurrence quantification analysis for the automated identification of epileptic EEG signals. Int. J. Neural Syst. 2011, 21, 199-211.
    • (2011) Int. J. Neural Syst , vol.21 , pp. 199-211
    • Acharya, U.R.1    Sree, S.V.2    Chattopadhyay, S.3    Yu, W.4    Ang, P.C.A.5
  • 43
    • 84859351360 scopus 로고    scopus 로고
    • Application of non-linear and wavelet based features for the automated identification of epileptic EEG signals
    • Acharya, U.R.; Sree, S.V.; Ang, P.C.A.; Yanti, R.; Suri, J.S. Application of non-linear and wavelet based features for the automated identification of epileptic EEG signals. Int. J. Neural Syst. 2012, 22, 1250002.
    • (2012) Int. J. Neural Syst. , vol.22
    • Acharya, U.R.1    Sree, S.V.2    Ang, P.C.A.3    Yanti, R.4    Suri, J.S.5
  • 45
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens, J.A.K.; Vandewalle, J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9, 293-300.
    • (1999) Neural Process. Lett , vol.9 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 46
    • 84915745194 scopus 로고    scopus 로고
    • Classification of normal and epileptic seizure EEG signals based on empirical mode decomposition
    • Zhu, Q., Azar, A.T., Eds.; Springer: Switzerland
    • Pachori, R.B.; Sharma, R.; Patidar, S. Classification of normal and epileptic seizure EEG signals based on empirical mode decomposition. In Complex System Modelling and Control Through Intelligent Soft Computations; Zhu, Q., Azar, A.T., Eds.; Springer: Switzerland, 2015; Volume 319, pp. 367-388.
    • (2015) Complex System Modelling and Control Through Intelligent Soft Computations , vol.319 , pp. 367-388
    • Pachori, R.B.1    Sharma, R.2    Patidar, S.3
  • 47
    • 84886528449 scopus 로고    scopus 로고
    • Classification of ictal and seizure-free EEG signals using fractional linear prediction
    • Joshi, V.; Pachori, R.B.; Vijesh, A. Classification of ictal and seizure-free EEG signals using fractional linear prediction. Biomed. Signal Process. Control 2014, 9, 1-5.
    • (2014) Biomed. Signal Process. Control , vol.9 , pp. 1-5
    • Joshi, V.1    Pachori, R.B.2    Vijesh, A.3
  • 48
    • 84908042448 scopus 로고    scopus 로고
    • Classification of epileptic seizures in EEG signals based on phase space representation of intrinsic mode functions
    • Sharma, R.; Pachori, R.B. Classification of epileptic seizures in EEG signals based on phase space representation of intrinsic mode functions. Expert Syst. Appl. 2015, 42, 1106-1117.
    • (2015) Expert Syst. Appl , vol.42 , pp. 1106-1117
    • Sharma, R.1    Pachori, R.B.2
  • 49
    • 65249183622 scopus 로고    scopus 로고
    • Physiological systems' numbers in medical diagnosis and hospital cost-effective operation
    • Ghista, D.N. Physiological systems' numbers in medical diagnosis and hospital cost-effective operation. J. Mech. Med. Biol. 2004, 4, 401-418.
    • (2004) J. Mech. Med. Biol , vol.4 , pp. 401-418
    • Ghista, D.N.1
  • 51
    • 84885423072 scopus 로고    scopus 로고
    • Automated classification of patients with coronary artery disease using grayscale features from left ventricle echocardiographic images
    • Acharya, U.R.; Sree, S.V.; Krishnan, M.M.R.; Krishnananda, N.; Ranjan, S.; Umesh, P.; Suri, J.S. Automated classification of patients with coronary artery disease using grayscale features from left ventricle echocardiographic images. Comput. Methods Programs Biomed. 2013, 112, 624-632.
    • (2013) Comput. Methods Programs Biomed , vol.112 , pp. 624-632
    • Acharya, U.R.1    Sree, S.V.2    Krishnan, M.M.R.3    Krishnananda, N.4    Ranjan, S.5    Umesh, P.6    Suri, J.S.7
  • 52
    • 80053236542 scopus 로고    scopus 로고
    • Cost-effective and non-invasive automated benign & malignant thyroid lesion classification in 3D contrast-enhanced ultrasound using combination of wavelets and textures: A class of ThyroScanTM algorithms
    • Acharya, U.R.; Faust, O.; Sree, S.V.; Molinari, F.; Garberoglio, R.; Suri, J.S. Cost-effective and non-invasive automated benign & malignant thyroid lesion classification in 3D contrast-enhanced ultrasound using combination of wavelets and textures: A class of ThyroScanTM algorithms. Technol. Cancer Res. Treat. 2011, 10, 371-380.
    • (2011) Technol. Cancer Res. Treat , vol.10 , pp. 371-380
    • Acharya, U.R.1    Faust, O.2    Sree, S.V.3    Molinari, F.4    Garberoglio, R.5    Suri, J.S.6
  • 53
    • 84928086715 scopus 로고    scopus 로고
    • Automated diagnosis of coronary artery disease using tunable-Q wavelet transform applied on heart rate signals
    • Patidar, S.; Pachori, R.B.; Acharya, U.R. Automated diagnosis of coronary artery disease using tunable-Q wavelet transform applied on heart rate signals. Knowledge-Based Syst. 2015, 82, 1-10.
    • (2015) Knowledge-Based Syst , vol.82 , pp. 1-10
    • Patidar, S.1    Pachori, R.B.2    Acharya, U.R.3
  • 54
    • 84864039609 scopus 로고    scopus 로고
    • An integrated index for the identification of diabetic retinopathy stages using texture parameters
    • Acharya, U.R.; Ng, E.Y.K.; Tan, J.H.; Sree, S.V.; Ng, K.H. An integrated index for the identification of diabetic retinopathy stages using texture parameters. J. Med. Syst. 2012, 36, 2011-2020.
    • (2012) J. Med. Syst , vol.36 , pp. 2011-2020
    • Acharya, U.R.1    Ng, E.Y.K.2    Tan, J.H.3    Sree, S.V.4    Ng, K.H.5
  • 55
    • 41249099701 scopus 로고    scopus 로고
    • Optimal classification of epileptic seizures in EEG using wavelet analysis and genetic algorithm
    • Ocak, H. Optimal classification of epileptic seizures in EEG using wavelet analysis and genetic algorithm. Signal Process. 2008, 88, 1858-1867.
    • (2008) Signal Process , vol.88 , pp. 1858-1867
    • Ocak, H.1
  • 56
    • 67349219650 scopus 로고    scopus 로고
    • A genetic algorithm that adaptively mutates and never revisits
    • Yuen, S.Y.; Chow, C.K. A genetic algorithm that adaptively mutates and never revisits. IEEE Trans. Evol. Comput. 2009, 13, 454-472.
    • (2009) IEEE Trans. Evol. Comput , vol.13 , pp. 454-472
    • Yuen, S.Y.1    Chow, C.K.2
  • 58
    • 78549254986 scopus 로고    scopus 로고
    • Discrimination between ictal and seizure-free EEG signals using empirical mode decomposition
    • Pachori, R.B. Discrimination between ictal and seizure-free EEG signals using empirical mode decomposition. Res. Lett. Signal Process. 2008, 2008, 293056.
    • (2008) Res. Lett. Signal Process. , vol.2008
    • Pachori, R.B.1
  • 59
    • 80655124711 scopus 로고    scopus 로고
    • Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition
    • Pachori, R.B.; Bajaj, V. Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition. Comput. Methods Programs Biomed. 2011, 104, 373-381.
    • (2011) Comput. Methods Programs Biomed , vol.104 , pp. 373-381
    • Pachori, R.B.1    Bajaj, V.2
  • 61
    • 84923337303 scopus 로고    scopus 로고
    • Application of empirical mode decomposition for analysis of normal and diabetic RR-interval signals
    • Pachori, R.B.; Avinash, P.; Shashank, K.; Sharma, R.; Acharya, U.R. Application of empirical mode decomposition for analysis of normal and diabetic RR-interval signals. Expert Syst. Appl. 2015, 42, 4567-4581.
    • (2015) Expert Syst. Appl , vol.42 , pp. 4567-4581
    • Pachori, R.B.1    Avinash, P.2    Shashank, K.3    Sharma, R.4    Acharya, U.R.5
  • 62
    • 84900583659 scopus 로고    scopus 로고
    • Performance analysis of support vector machines classifiers in breast cancer mammography recognition
    • Azar, A.T.; El-Said, S.A. Performance analysis of support vector machines classifiers in breast cancer mammography recognition. Neural Comput. Appl. 2014, 24, 1163-1177.
    • (2014) Neural Comput. Appl , vol.24 , pp. 1163-1177
    • Azar, A.T.1    El-Said, S.A.2
  • 63
    • 84907266489 scopus 로고    scopus 로고
    • Detecting determinism with improved sensitivity in time series: Rank-based nonlinear predictability score
    • Naro, D.; Rummel, C.; Schindler, K.; Andrzejak, R.G. Detecting determinism with improved sensitivity in time series: Rank-based nonlinear predictability score. Phys. Rev. E 2014, 90, 032913.
    • (2014) Phys. Rev. E , vol.90
    • Naro, D.1    Rummel, C.2    Schindler, K.3    Andrzejak, R.G.4
  • 64
    • 84924359654 scopus 로고    scopus 로고
    • Dynamics of intracranial electroencephalographic recordings from epilepsy patients using univariate and bivariate recurrence networks
    • Subramaniyam, N.P.; Hyttinen, J. Dynamics of intracranial electroencephalographic recordings from epilepsy patients using univariate and bivariate recurrence networks. Phys. Rev. E 2015, 91, 022927.
    • (2015) Phys. Rev. E , vol.91
    • Subramaniyam, N.P.1    Hyttinen, J.2
  • 68
    • 78650910997 scopus 로고    scopus 로고
    • Synchrony in normal and focal epileptic brain: The seizure onset zone is functionally disconnected
    • Warren, C.P.; Hu, S.; Stead, M.; Brinkmann, B.H.; Bower, M.R.; Worrell, G.A. Synchrony in normal and focal epileptic brain: The seizure onset zone is functionally disconnected. J. Neurophysiol. 2010, 104, 3530-3539.
    • (2010) J. Neurophysiol , vol.104 , pp. 3530-3539
    • Warren, C.P.1    Hu, S.2    Stead, M.3    Brinkmann, B.H.4    Bower, M.R.5    Worrell, G.A.6
  • 70


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.