메뉴 건너뛰기




Volumn , Issue , 2015, Pages

Analysis of epileptic seizure EEG signals using reconstructed phase space of intrinsic mode functions

Author keywords

Central tendency measure; Empirical mode decomposition; Epilepsy; Reconstructed phase space

Indexed keywords

AMPLITUDE MODULATION; BRAIN; FREQUENCY MODULATION; FUNCTIONS; NEURODEGENERATIVE DISEASES; NEUROPHYSIOLOGY; PHASE SPACE METHODS; SIGNAL RECONSTRUCTION;

EID: 84924275049     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICIINFS.2014.7036624     Document Type: Conference Paper
Times cited : (10)

References (34)
  • 1
    • 16344387731 scopus 로고    scopus 로고
    • Epileptic seizures and epilepsy: Definitions proposed by the international league against epilepsy (ilae) and the international bureau for epilepsy (ibe)
    • R.S. Fisher et al., "Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE).," Epilepsia, vol. 46, no. 4, pp. 470-472, 2005.
    • (2005) Epilepsia , vol.46 , Issue.4 , pp. 470-472
    • Fisher, R.S.1
  • 2
    • 0032006582 scopus 로고    scopus 로고
    • A new interpretation of nonlinear energy operator and its efficacy in spike detection
    • S. Mukhopadhyay and G.C. Ray, "A new interpretation of nonlinear energy operator and its efficacy in spike detection," IEEE Transactions on Biomedical Engineering, vol. 45, no. 2, pp. 180-187, 1998.
    • (1998) IEEE Transactions on Biomedical Engineering , vol.45 , Issue.2 , pp. 180-187
    • Mukhopadhyay, S.1    Ray, G.C.2
  • 3
    • 0038238304 scopus 로고    scopus 로고
    • Adaptive epileptic seizure prediction system
    • L.D. Iasemidis, et al., "Adaptive epileptic seizure prediction system," IEEE Transactions on Biomedical Engineering, vol. 50, no. 5, pp. 616-627, 2003.
    • (2003) IEEE Transactions on Biomedical Engineering , vol.50 , Issue.5 , pp. 616-627
    • Iasemidis, L.D.1
  • 4
    • 84876285375 scopus 로고    scopus 로고
    • Automated EEG analysis of epilepsy: A review
    • U.R. Acharya et al., "Automated EEG analysis of epilepsy: A review," Knowledge-Based Systems, vol. 45, pp. 147-165, 2013.
    • (2013) Knowledge-Based Systems , vol.45 , pp. 147-165
    • Acharya, U.R.1
  • 5
    • 24144470790 scopus 로고    scopus 로고
    • Recurrent neural networks employing Lyapunov exponents for EEG signals classification
    • N.F. Güler, E.D. Übeyli, and I. Güler, "Recurrent neural networks employing Lyapunov exponents for EEG signals classification," Expert Systems with Applications, vol. 29, no. 3, pp. 506-514, 2005.
    • (2005) Expert Systems with Applications , vol.29 , Issue.3 , pp. 506-514
    • Güler, N.F.1    Beyli, E.D.U.2    Güler, I.3
  • 6
    • 0029123213 scopus 로고
    • Spatio-temporal dynamics of the primary epileptogenic area in temporal lobe epilepsy characterized by neuronal complexity loss
    • K. Lehnertz and C.E. Elger, "Spatio-temporal dynamics of the primary epileptogenic area in temporal lobe epilepsy characterized by neuronal complexity loss," Electroencephalography and Clinical Neurophysiology, vol. 95, no. 2, pp. 108-117, 1995.
    • (1995) Electroencephalography and Clinical Neurophysiology , vol.95 , Issue.2 , pp. 108-117
    • Lehnertz, K.1    Elger, C.E.2
  • 7
    • 0031264147 scopus 로고    scopus 로고
    • Use of the fractal dimension for the analysis of electroencephalographic time series
    • A. Accardo et al., "Use of the fractal dimension for the analysis of electroencephalographic time series.," Biological Cybernetics, vol. 77, no. 5, pp. 339-350, 1997.
    • (1997) Biological Cybernetics , vol.77 , Issue.5 , pp. 339-350
    • Accardo, A.1
  • 9
    • 24044474732 scopus 로고    scopus 로고
    • Artificial neural network based epileptic detection using time-domain and frequency-domain features
    • V. Srinivasan, C. Eswaran, and N. Sriraam, "Artificial neural network based epileptic detection using time-domain and frequency-domain features," Journal of Medical Systems, vol. 29, no. 6, pp. 647-660, 2005.
    • (2005) Journal of Medical Systems , vol.29 , Issue.6 , pp. 647-660
    • Srinivasan, V.1    Eswaran, C.2    Sriraam, N.3
  • 10
    • 34247217946 scopus 로고    scopus 로고
    • Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform
    • K. Polat and S. Güneş, "Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform," Applied Mathematics and Computation, vol. 187, no. 2, pp. 1017-1026, 2007.
    • (2007) Applied Mathematics and Computation , vol.187 , Issue.2 , pp. 1017-1026
    • Polat, K.1    Güneş, S.2
  • 11
    • 84886528449 scopus 로고    scopus 로고
    • Classification of ictal and seizure-free EEG signals using fractional linear prediction
    • V. Joshi, R.B. Pachori, and A. Vijesh, "Classification of ictal and seizure-free EEG signals using fractional linear prediction," Biomedical Signal Processing and Control, vol. 9, pp. 1-5, 2014.
    • (2014) Biomedical Signal Processing and Control , vol.9 , pp. 1-5
    • Joshi, V.1    Pachori, R.B.2    Vijesh, A.3
  • 12
    • 35248825924 scopus 로고    scopus 로고
    • EEG signal analysis using fb expansion and second-order linear TVAR process
    • R.B. Pachori and P. Sircar, "EEG signal analysis using FB expansion and second-order linear TVAR process," Signal Processing, vol. 88, no. 2, pp. 415-420, 2008.
    • (2008) Signal Processing , vol.88 , Issue.2 , pp. 415-420
    • Pachori, R.B.1    Sircar, P.2
  • 13
    • 38749083808 scopus 로고    scopus 로고
    • Automatic seizure detection based on time-frequency analysis and artificial neural networks
    • Article ID
    • A.T. Tzallas, M.G. Tsipouras, and D.I. Fotiadis, "Automatic seizure detection based on time-frequency analysis and artificial neural networks," Computational Intelligence and Neuroscience, vol. 2007, Article ID 80510, 13 pages, 2007.
    • (2007) Computational Intelligence and Neuroscience , vol.2007
    • Tzallas, A.T.1    Tsipouras, M.G.2    Fotiadis, D.I.3
  • 15
    • 33846672121 scopus 로고    scopus 로고
    • A wavelet-chaos methodology for analysis of eegs and eeg subbands to detect seizure and epilepsy
    • H. Adeli, S. Ghosh-Dastidar, and N. Dadmehr, "A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy," IEEE Transactions on Biomedical Engineering, vol. 54, no. 2, pp. 205-211, 2007.
    • (2007) IEEE Transactions on Biomedical Engineering , vol.54 , Issue.2 , pp. 205-211
    • Adeli, H.1    Ghosh-Dastidar, S.2    Dadmehr, N.3
  • 16
    • 84901850150 scopus 로고    scopus 로고
    • Classification of normal and epileptic seizure EEG signals using wavelet transform, phase-space reconstruction, and Euclidean distance
    • S.-H. Lee et al. "Classification of normal and epileptic seizure EEG signals using wavelet transform, phase-space reconstruction, and Euclidean distance," Computer Methods and Programs in Biomedicine, vol. 116, no. 1, pp. 10-25, 2014.
    • (2014) Computer Methods and Programs in Biomedicine , vol.116 , Issue.1 , pp. 10-25
    • Lee, S.-H.1
  • 18
    • 78549254986 scopus 로고    scopus 로고
    • Discrimination between ictal and seizure-free EEG signals using empirical mode decomposition
    • Article ID
    • R.B. Pachori, "Discrimination between ictal and seizure-free EEG signals using empirical mode decomposition," Research Letters in Signal Processing, Article ID 293056, 5 pages, 2008.
    • (2008) Research Letters in Signal Processing
    • Pachori, R.B.1
  • 19
    • 79956288045 scopus 로고    scopus 로고
    • Seizure classification in eeg signals utilizing hilbert-huang transform
    • R.J. Oweis and E.W. Abdulhay, "Seizure classification in EEG signals utilizing Hilbert-Huang transform," BioMedical Engineering OnLine, vol. 10, no. 38, 2011.
    • (2011) BioMedical Engineering OnLine , vol.10 , Issue.38
    • Oweis, R.J.1    Abdulhay, E.W.2
  • 20
    • 80655124711 scopus 로고    scopus 로고
    • Analysis of normal and epileptic seizure eeg signals using empirical mode decomposition
    • R.B. Pachori and V. Bajaj, "Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition," Computer Methods and Programs in Biomedicine, vol. 104, no. 3, pp. 373-381, 2011.
    • (2011) Computer Methods and Programs in Biomedicine , vol.104 , Issue.3 , pp. 373-381
    • Pachori, R.B.1    Bajaj, V.2
  • 21
    • 84892783589 scopus 로고    scopus 로고
    • Epileptic seizure classification in EEG signals using second-order difference plot of intrinsic mode functions
    • R.B. Pachori and S. Patidar, "Epileptic seizure classification in EEG signals using second-order difference plot of intrinsic mode functions," Computer Methods and Programs in Biomedicine, vol. 113, no. 2, pp. 494-502, 2014.
    • (2014) Computer Methods and Programs in Biomedicine , vol.113 , Issue.2 , pp. 494-502
    • Pachori, R.B.1    Patidar, S.2
  • 22
    • 84908042448 scopus 로고    scopus 로고
    • Classification of epileptic seizures in EEG signals based on phase space representation of intrinsic mode functions
    • R. Sharma and R.B. Pachori, "Classification of epileptic seizures in EEG signals based on phase space representation of intrinsic mode functions," Expert Systems with Applications, vol. 42, no. 3, pp. 1106-1117, 2015.
    • (2015) Expert Systems with Applications , vol.42 , Issue.3 , pp. 1106-1117
    • Sharma, R.1    Pachori, R.B.2
  • 24
    • 84878902261 scopus 로고    scopus 로고
    • Feature extraction and recognition of ictal EEG using EMD and SVM
    • S. Li, et al., "Feature extraction and recognition of ictal EEG using EMD and SVM," Computers in Biology and Medicine, vol. 43, no. 7, pp. 807-816, 2013.
    • (2013) Computers in Biology and Medicine , vol.43 , Issue.7 , pp. 807-816
    • Li, S.1
  • 25
    • 84880995411 scopus 로고    scopus 로고
    • Epileptic seizure detection based on the instantaneous area of analytic intrinsic mode functions of EEG signals
    • V. Bajaj and R.B. Pachori, "Epileptic seizure detection based on the instantaneous area of analytic intrinsic mode functions of EEG signals," Biomedical Engineering Letters, vol. 3, no. 1, pp. 17-21, 2013.
    • (2013) Biomedical Engineering Letters , vol.3 , Issue.1 , pp. 17-21
    • Bajaj, V.1    Pachori, R.B.2
  • 26
    • 84865980798 scopus 로고    scopus 로고
    • Classification of seizure and nonseizure EEG signals using empirical mode decomposition
    • V. Bajaj and R.B. Pachori, "Classification of seizure and nonseizure EEG signals using empirical mode decomposition," IEEE Transactions on Information Technology in Biomedicine, vol. 16, no. 6, pp. 1135-1142, 2012.
    • (2012) IEEE Transactions on Information Technology in Biomedicine , vol.16 , Issue.6 , pp. 1135-1142
    • Bajaj, V.1    Pachori, R.B.2
  • 27
    • 0035682573 scopus 로고    scopus 로고
    • Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state
    • Article ID
    • R.G. Andrzejak, et al., "Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state," Physical Review E, vol. 64, Article ID 061907, 2001.
    • (2001) Physical Review e , vol.64
    • Andrzejak, R.G.1
  • 29
    • 8644225794 scopus 로고    scopus 로고
    • Assessment of chaotic parameters in nonstationary electrocardiograms by use of empirical mode decomposition
    • J.I. Salisbury and Y. Sun, "Assessment of chaotic parameters in nonstationary electrocardiograms by use of empirical mode decomposition," Annals of Biomedical Engineering, vol. 32, no. 10, pp. 1348-1354, 2004.
    • (2004) Annals of Biomedical Engineering , vol.32 , Issue.10 , pp. 1348-1354
    • Salisbury, J.I.1    Sun, Y.2
  • 32
    • 70349459780 scopus 로고    scopus 로고
    • Postural time-series analysis using empirical mode decomposition and second-order difference plots
    • R.B. Pachori et al., "Postural time-series analysis using empirical mode decomposition and second-order difference plots," IEEE International Conference on Acoustics, Speech, and Signal Processing, 2009, pp. 537-540.
    • (2009) IEEE International Conference on Acoustics, Speech, and Signal Processing , pp. 537-540
    • Pachori, R.B.1
  • 33
    • 84905719340 scopus 로고    scopus 로고
    • Gear fault diagnosis based on central tendency measure of intrinsic mode functions
    • A. Parey and R.B. Pachori, "Gear fault diagnosis based on central tendency measure of intrinsic mode functions", Internation Journal of COMADEM, vol. 17, no. 3, pp. 15-22, 2014.
    • (2014) Internation Journal of COMADEM , vol.17 , Issue.3 , pp. 15-22
    • Parey, A.1    Pachori, R.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.