메뉴 건너뛰기




Volumn 26, Issue 2, 2014, Pages

Classification of EEG signals for detection of epileptic seizures based on wavelets and statistical pattern recognition

Author keywords

Dimension reduction; Epilepsy diagnosis; Quadratic classifiers; Scatter matrices; Seizure detection

Indexed keywords

FEATURE EXTRACTION; MATRIX ALGEBRA; NEUROPHYSIOLOGY; SIGNAL DETECTION; WAVELET TRANSFORMS;

EID: 84896329075     PISSN: 10162372     EISSN: None     Source Type: Journal    
DOI: 10.4015/S1016237214500215     Document Type: Article
Times cited : (143)

References (41)
  • 1
    • 0037562843 scopus 로고    scopus 로고
    • Epileptic seizure prediction and control
    • Iasemidis LD, Epileptic seizure prediction and control, IEEE Trans Biomed Eng 50:549, 2003.
    • (2003) IEEE Trans Biomed Eng , vol.50 , pp. 549
    • Iasemidis, L.D.1
  • 3
    • 0035072959 scopus 로고    scopus 로고
    • Future trends in epileptology
    • Elger CE, Future trends in epileptology, Curr Opin Neurol 14:185, 2001.
    • (2001) Curr Opin Neurol , vol.14 , pp. 185
    • Elger, C.E.1
  • 4
    • 26944458497 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coef- ficients
    • Guler I, Ubeyli ED, Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coef- ficients, J Neurosci Methods 148:113, 2005.
    • (2005) J Neurosci Methods , vol.148 , pp. 113
    • Guler, I.1    Ubeyli, E.D.2
  • 6
    • 0020382517 scopus 로고
    • Automatic recognition of epileptic seizures in the EEG
    • Gotman J, Automatic recognition of epileptic seizures in the EEG, Electroen Clin Neuro 54:530, 1982.
    • (1982) Electroen Clin Neuro , vol.54 , pp. 530
    • Gotman, J.1
  • 7
    • 0031029383 scopus 로고    scopus 로고
    • A patient-specific algorithm for the detection of seizure onset in long-term EEG monitoring: Possible use as a warning device
    • Qu H, Gotman J, A patient-specific algorithm for the detection of seizure onset in long-term EEG monitoring: Possible use as a warning device, IEEE Trans Biomed Eng 44(2):115, 1997.
    • (1997) IEEE Trans Biomed Eng , vol.44 , Issue.2 , pp. 115
    • Qu, H.1    Gotman, J.2
  • 8
    • 7744226705 scopus 로고    scopus 로고
    • Prediction of epileptic seizures using accumulated energy in a multiresolution framework
    • Gigola S, Ortiz F, Attellis CE, Silvaand W, Kochen S, Prediction of epileptic seizures using accumulated energy in a multiresolution framework, J Neurosci Methods 38:107, 2004.
    • (2004) J Neurosci Methods , vol.38 , pp. 107
    • Gigola, S.1    Ortiz, F.2    Attellis, C.E.3    Silvaand, W.4    Kochen, S.5
  • 9
    • 33846672121 scopus 로고    scopus 로고
    • A wavelet-chaos methodology for analysis of EEGs and EEG sub-bands to detect seizure and epilepsy
    • Adeli H, Ghosh-Dastidar S, Dadmehr N, A wavelet-chaos methodology for analysis of EEGs and EEG sub-bands to detect seizure and epilepsy, IEEE Trans Biomed Eng 54(2):205, 2004.
    • (2004) IEEE Trans Biomed Eng , vol.54 , Issue.2 , pp. 205
    • Adeli, H.1    Ghosh-Dastidar, S.2    Dadmehr, N.3
  • 10
    • 24144470790 scopus 로고    scopus 로고
    • Recurrent neural networks employing Lyapunov exponents in EEG recordings
    • Guler I, Ubeyli ED, Guler I, Recurrent neural networks employing Lyapunov exponents in EEG recordings, Expert Syst Appl 29(3):506-514, 2005.
    • (2005) Expert Syst Appl , vol.29 , Issue.3 , pp. 506-514
    • Guler, I.1    Ubeyli, E.D.2    Guler, I.3
  • 11
    • 33746286608 scopus 로고    scopus 로고
    • Analysis of EEG signals using Lyapunov exponents
    • Ubeyli ED, Analysis of EEG signals using Lyapunov exponents, Neural Netw World 16(3):257, 2006.
    • (2006) Neural Netw World , vol.16 , Issue.3 , pp. 257
    • Ubeyli, E.D.1
  • 12
    • 38749083808 scopus 로고    scopus 로고
    • Automatic seizure detection based on time-frequency analysis and artificial neural networks
    • Tzallas AT, Tsipouras MG, Fotiadis DI, Automatic seizure detection based on time-frequency analysis and artificial neural networks, Comput Intell Neurosci: 80510, 2007.
    • (2007) Comput Intell Neurosci , pp. 80510
    • Tzallas, A.T.1    Tsipouras, M.G.2    Fotiadis, D.I.3
  • 13
    • 38349123053 scopus 로고    scopus 로고
    • Principal component analysis enhanced cosine radial basis function neural network for robust epilepsy and seizure detection
    • Ghosh-Dastidar S, Adeli H, Dadmehr N, Principal component analysis enhanced cosine radial basis function neural network for robust epilepsy and seizure detection, IEEE Trans Biomed Eng 55(2):512, 2008.
    • (2008) IEEE Trans Biomed Eng , vol.55 , Issue.2 , pp. 512
    • Ghosh-Dastidar, S.1    Adeli, H.2    Dadmehr, N.3
  • 14
    • 0030273681 scopus 로고    scopus 로고
    • An adaptive structure neural network with application to EEG automatic seizure detection
    • Weng W, Khorasani K, An adaptive structure neural network with application to EEG automatic seizure detection, Neural Netw 9:1223, 1996.
    • (1996) Neural Netw , vol.9 , pp. 1223
    • Weng, W.1    Khorasani, K.2
  • 15
    • 0025915841 scopus 로고
    • State-dependent spike detection: Concepts and preliminary results
    • Gotman J, Wang L, State-dependent spike detection: Concepts and preliminary results, Electroen Clin Neuro 79:11, 1991.
    • (1991) Electroen Clin Neuro , vol.79 , pp. 11
    • Gotman, J.1    Wang, L.2
  • 16
    • 0030219951 scopus 로고    scopus 로고
    • Detection of seizure activity in EEG by an artificial neural network: A preliminary study
    • Pradhan N, Sadasivan PK, Arunodaya GR, Detection of seizure activity in EEG by an artificial neural network: A preliminary study, Comput Biomed Res 29:303, 1996.
    • (1996) Comput Biomed Res , vol.29 , pp. 303
    • Pradhan, N.1    Sadasivan, P.K.2    Arunodaya, G.R.3
  • 17
    • 0842310823 scopus 로고    scopus 로고
    • A neural-network-based detection of epilepsy
    • Nigam VP, Graupe D, A neural-network-based detection of epilepsy, Neurol Res 26:55, 2004.
    • (2004) Neurol Res , vol.26 , pp. 55
    • Nigam, V.P.1    Graupe, D.2
  • 18
    • 6344246400 scopus 로고    scopus 로고
    • Neural networks with periodogram and autoregressive spectral analysis methods in detection of epileptic seizure
    • Kiymik MK, Subasi A, Ozcalik HR, Neural networks with periodogram and autoregressive spectral analysis methods in detection of epileptic seizure, J Med Syst 28:511, 2004.
    • (2004) J Med Syst , vol.28 , pp. 511
    • Kiymik, M.K.1    Subasi, A.2    Ozcalik, H.R.3
  • 19
    • 34547573516 scopus 로고    scopus 로고
    • Mixed waveletchaos- neural network methodology for epilepsy and epileptic seizure detection
    • Ghosh-Dastidar S, Adeli H, Dadmehr N, Mixed waveletchaos- neural network methodology for epilepsy and epileptic seizure detection, IEEE Trans Biomed Eng 54 (9):1545, 2006.
    • (2006) IEEE Trans Biomed Eng , vol.54 , Issue.9 , pp. 1545
    • Ghosh-Dastidar, S.1    Adeli, H.2    Dadmehr, N.3
  • 20
    • 34248567678 scopus 로고    scopus 로고
    • Approximate entropy-based epileptic EEG detection using artificial neural networks
    • Srinivasan V, Eswaranand C, Sriraam N, Approximate entropy-based epileptic EEG detection using artificial neural networks, IEEE Trans Inf Technol Biomed 11:288, 2007.
    • (2007) IEEE Trans Inf Technol Biomed , vol.11 , pp. 288
    • Srinivasan, V.1    Eswaranand, C.2    Sriraam, N.3
  • 21
    • 33751396389 scopus 로고    scopus 로고
    • EEG signal classification using wavelet feature extraction and a mixture of expert model
    • Subasi A, EEG signal classification using wavelet feature extraction and a mixture of expert model, Expert Syst Appl 32:1084, 2007.
    • (2007) Expert Syst Appl , vol.32 , pp. 1084
    • Subasi, A.1
  • 22
    • 0037562843 scopus 로고    scopus 로고
    • Epileptic seizure prediction and control
    • Iasemidis LD, Epileptic seizure prediction and control, IEEE Trans Biomed Eng 50:549, 2003.
    • (2003) IEEE Trans Biomed Eng , vol.50 , pp. 549
    • Iasemidis, L.D.1
  • 23
    • 0035682573 scopus 로고    scopus 로고
    • Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state
    • 061907
    • Andrzejak RG, Lehnertz K, Mormann F, Rieke C, David P, Elger CE, Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state, Phys Rev E 64(061907):1, 2001.
    • (2001) Phys Rev E , vol.64 , pp. 1
    • Andrzejak, R.G.1    Lehnertz, K.2    Mormann, F.3    Rieke, C.4    David, P.5    Elger, C.E.6
  • 25
    • 0031141135 scopus 로고    scopus 로고
    • Classification of EEG signals using the wavelet transform
    • Hazarika N, Chen JZ, Tsoi AC, Sergejew A, Classification of EEG signals using the wavelet transform, Signal Process 59(1):61, 1997.
    • (1997) Signal Process , vol.59 , Issue.1 , pp. 61
    • Hazarika, N.1    Chen, J.Z.2    Tsoi, A.C.3    Sergejew, A.4
  • 26
    • 4444331199 scopus 로고    scopus 로고
    • Analysis of wavelet-filtered tonic-clonic electroencephalogram recordings
    • Rosso OA, Figliola A, Cresoand J, Serrano E, Analysis of wavelet-filtered tonic-clonic electroencephalogram recordings, Med Biol Eng Comput 42(40):516, 2004.
    • (2004) Med Biol Eng Comput , vol.42 , Issue.40 , pp. 516
    • Rosso, O.A.1    Figliola, A.2    Cresoand, J.3    Serrano, E.4
  • 27
    • 0024661616 scopus 로고
    • Contextbased automated detection of epileptogenic sharp transients in the EEG: Elimination of false positives
    • Glover JR, Raghaven N, Ktonas PY, Frost JD, Contextbased automated detection of epileptogenic sharp transients in the EEG: Elimination of false positives, IEEE Trans Biomed Eng 36(5):519, 1989.
    • (1989) IEEE Trans Biomed Eng , vol.36 , Issue.5 , pp. 519
    • Glover, J.R.1    Raghaven, N.2    Ktonas, P.Y.3    Frost, J.D.4
  • 29
    • 37349024109 scopus 로고    scopus 로고
    • Wavelet/mixture of experts network structure for EEG classification
    • Ubeyli ED, Wavelet/mixture of experts network structure for EEG classification, Expert Syst Appl 37:1954, 2008.
    • (2008) Expert Syst Appl , vol.37 , pp. 1954
    • Ubeyli, E.D.1
  • 30
    • 79957981604 scopus 로고    scopus 로고
    • EEG signals classification using the K-means clustering and a multilayer perceptron neural network model
    • Orhan U, Hekim M, Ozer M, EEG signals classification using the K-means clustering and a multilayer perceptron neural network model, Expert Syst Appl 38:13475, 2011.
    • (2011) Expert Syst Appl , vol.38 , pp. 13475
    • Orhan, U.1    Hekim, M.2    Ozer, M.3
  • 32
    • 0038398958 scopus 로고    scopus 로고
    • Wavelet based automatic seizure detection in intracerebral electroencephalogram
    • Khan YU, Gotman J, Wavelet based automatic seizure detection in intracerebral electroencephalogram, Clin Neurophysiol 114:898, 2003.
    • (2003) Clin Neurophysiol , vol.114 , pp. 898
    • Khan, Y.U.1    Gotman, J.2
  • 33
    • 12344300348 scopus 로고    scopus 로고
    • A system to detect the onset of epileptic seizures in scalp EEG
    • Saab ME, Gotman J, A system to detect the onset of epileptic seizures in scalp EEG, Clin Neurophysiol 116:427, 2005.
    • (2005) Clin Neurophysiol , vol.116 , pp. 427
    • Saab, M.E.1    Gotman, J.2
  • 34
    • 33646109802 scopus 로고    scopus 로고
    • Quantitative evaluation of a wavelet based method in ventricular late potential detection
    • Zandi AS, Moradi MH, Quantitative evaluation of a wavelet based method in ventricular late potential detection, Pattern Recogn 39:1369, 2006.
    • (2006) Pattern Recogn , vol.39 , pp. 1369
    • Zandi, A.S.1    Moradi, M.H.2
  • 36
    • 0032388955 scopus 로고    scopus 로고
    • The lifting scheme: A construction of second generation waveletst
    • Sweldens W, The lifting scheme: A construction of second generation wavelets, SIAM J Math Anal 29:511, 1998.
    • (1998) SIAM J Math Anal , vol.29 , pp. 511
    • Sweldens, W.1
  • 37
    • 79951817095 scopus 로고    scopus 로고
    • Drought classification in northern Serbia based on SPI and statistical pattern recognition
    • Stricevic R, Djurovic N, Djurovic Z, Drought classification in northern Serbia based on SPI and statistical pattern recognition, Meteorol Appl 18:60, 2010.
    • (2010) Meteorol Appl , vol.18 , pp. 60
    • Stricevic, R.1    Djurovic, N.2    Djurovic, Z.3
  • 40
    • 61849108243 scopus 로고    scopus 로고
    • Automatic identification of epilepsy by HOS and power spectrum parameters using EEG signals: A comparative study
    • Chua KC, Chandran V, Acharya R, Lim CM, Automatic identification of epilepsy by HOS and power spectrum parameters using EEG signals: A comparative study, Proc. IEEE Eng Med Biol Soc, pp. 3824-3827, 2008.
    • (2008) Proc. IEEE Eng Med Biol Soc , pp. 3824-3827
    • Chua, K.C.1    Chandran, V.2    Acharya, R.3    Lim, C.M.4
  • 41
    • 79953693243 scopus 로고    scopus 로고
    • Automatic feature extraction using genetic programming: An application to epileptic EEG classification
    • Guo L, Rivero D, Dorado J, Munteanu CR, Pazos A, Automatic feature extraction using genetic programming: An application to epileptic EEG classification, Expert Syst Appl 38:1042, 2011.
    • (2011) Expert Syst Appl , vol.38 , pp. 1042
    • Guo, L.1    Rivero, D.2    Dorado, J.3    Munteanu, C.R.4    Pazos, A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.