메뉴 건너뛰기




Volumn , Issue , 2014, Pages 135-140

Empirical mode decomposition based classification of focal and non-focal seizure EEG signals

Author keywords

[No Author keywords available]

Indexed keywords

ENTROPY; IMAGE SEGMENTATION; RADIAL BASIS FUNCTION NETWORKS; SIGNAL PROCESSING; SUPPORT VECTOR MACHINES;

EID: 84904640580     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICMB.2014.31     Document Type: Conference Paper
Times cited : (94)

References (35)
  • 1
    • 77954668304 scopus 로고    scopus 로고
    • Pharmacoresistant epilepsy: From pathogenesis to current and emerging therapies
    • S. Pati and A.V. Alexopoulos, "Pharmacoresistant epilepsy: From pathogenesis to current and emerging therapies," Cleveland Clinic Journal of Medicine, vol. 77, no. 7, pp. 457-467, 2010.
    • (2010) Cleveland Clinic Journal of Medicine , vol.77 , Issue.7 , pp. 457-467
    • Pati, S.1    Alexopoulos, A.V.2
  • 2
    • 84867500693 scopus 로고    scopus 로고
    • Nonrandomness, nonlinear dependence, and nonstationarity of electroencephalographic recordings from epilepsy patients
    • R.G. Andrzejak, K. Schindler, and C. Rummel, "Nonrandomness, nonlinear dependence, and nonstationarity of electroencephalographic recordings from epilepsy patients," Phys. Rev. E, vol. 86, 046206, 2012.
    • (2012) Phys. Rev. e , vol.86 , pp. 046206
    • Andrzejak, R.G.1    Schindler, K.2    Rummel, C.3
  • 3
    • 0032006582 scopus 로고    scopus 로고
    • A new interpretation of nonlinear energy operator and its efficacy in spike detection
    • S. Mukhopadhyay and G.C. Ray, "A new interpretation of nonlinear energy operator and its efficacy in spike detection," IEEE Transactions on Biomedical Engineering, vol. 45, no. 2, pp. 180-187, 1998.
    • (1998) IEEE Transactions on Biomedical Engineering , vol.45 , Issue.2 , pp. 180-187
    • Mukhopadhyay, S.1    Ray, G.C.2
  • 4
    • 0038238304 scopus 로고    scopus 로고
    • Adaptive epileptic seizure prediction system
    • L.D. Iasemidis, et al., "Adaptive epileptic seizure prediction system," IEEE Transactions on Biomedical Engineering, vol. 50, no. 5, pp. 616-627, 2003.
    • (2003) IEEE Transactions on Biomedical Engineering , vol.50 , Issue.5 , pp. 616-627
    • Iasemidis, L.D.1
  • 5
    • 24044474732 scopus 로고    scopus 로고
    • Artificial neural network based epileptic detection using time-domain and frequency-domain features
    • V. Srinivasan, C. Eswaran, and N. Sriraam, "Artificial neural network based epileptic detection using time-domain and frequency-domain features," Journal of Medical Systems, vol. 29, pp. 647-660, 2005.
    • (2005) Journal of Medical Systems , vol.29 , pp. 647-660
    • Srinivasan, V.1    Eswaran, C.2    Sriraam, N.3
  • 6
    • 34247217946 scopus 로고    scopus 로고
    • Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform
    • K. Polat and S. Gunes, "Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform," Applied Mathematics and Computation, vol. 187, no. 2, pp. 1017-1026, 2007.
    • (2007) Applied Mathematics and Computation , vol.187 , Issue.2 , pp. 1017-1026
    • Polat, K.1    Gunes, S.2
  • 7
    • 77951208271 scopus 로고    scopus 로고
    • Epileptic EEG detection using the linear prediction error energy
    • S. Altunay, Z. Telatar, and O. Erogul, "Epileptic EEG detection using the linear prediction error energy," Expert Systems with Applications, vol. 37, no. 8, pp. 5661-5665, 2010.
    • (2010) Expert Systems with Applications , vol.37 , Issue.8 , pp. 5661-5665
    • Altunay, S.1    Telatar, Z.2    Erogul, O.3
  • 8
    • 84886528449 scopus 로고    scopus 로고
    • Classification of ictal and seizurefree EEG signals using fractional linear prediction
    • V. Joshi, R.B. Pachori, and A. Vijesh, "Classification of ictal and seizurefree EEG signals using fractional linear prediction," Biomedical Signal Processing and Control, vol. 9, pp. 1-5, 2014.
    • (2014) Biomedical Signal Processing and Control , vol.9 , pp. 1-5
    • Joshi, V.1    Pachori, R.B.2    Vijesh, A.3
  • 9
    • 38749083808 scopus 로고    scopus 로고
    • Automatic seizure detection based on time-frequency analysis and artificial neural networks
    • 2007, article ID 80510, 18 pages
    • A.T. Tzallas, M.G. Tsipouras, and D.I. Fotiadis, "Automatic seizure detection based on time-frequency analysis and artificial neural networks," Computational Intelligence and Neuroscience, vol. 2007, article ID 80510, 18 pages, 2007.
    • (2007) Computational Intelligence and Neuroscience
    • Tzallas, A.T.1    Tsipouras, M.G.2    Fotiadis, D.I.3
  • 11
    • 0037441741 scopus 로고    scopus 로고
    • Analysis of EEG records in an epileptic patient using wavelet transform
    • H. Adeli, Z. Zhou, and N. Dadmehr, "Analysis of EEG records in an epileptic patient using wavelet transform," Journal of Neuroscience Methods, vol. 123, no. 1, pp. 69-87, 2003.
    • (2003) Journal of Neuroscience Methods , vol.123 , Issue.1 , pp. 69-87
    • Adeli, H.1    Zhou, Z.2    Dadmehr, N.3
  • 12
    • 0038398958 scopus 로고    scopus 로고
    • Wavelet based automatic seizure detection in intracerebral electroencephalogram
    • Y.U. Khan and J. Gotman, "Wavelet based automatic seizure detection in intracerebral electroencephalogram," Clinical Neurophysiology, vol. 114, no. 5, pp. 898-908, 2003.
    • (2003) Clinical Neurophysiology , vol.114 , Issue.5 , pp. 898-908
    • Khan, Y.U.1    Gotman, J.2
  • 13
    • 34547573516 scopus 로고    scopus 로고
    • Mixed-band wavelet-chaosneural network methodology for epilepsy and epileptic seizure detection
    • S.G. Dastidar, H. Adeli, and N. Dadmehr, "Mixed-band wavelet-chaosneural network methodology for epilepsy and epileptic seizure detection," IEEE Transactions on Biomedical Engineering, vol. 54, no. 9, pp. 1545-1551, 2007.
    • (2007) IEEE Transactions on Biomedical Engineering , vol.54 , Issue.9 , pp. 1545-1551
    • Dastidar, S.G.1    Adeli, H.2    Dadmehr, N.3
  • 14
    • 56349101801 scopus 로고    scopus 로고
    • Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy
    • H. Ocak, "Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy," Expert Systems with Applications, vol. 36, no. 2, pp. 2027-2036, 2009
    • (2009) Expert Systems with Applications , vol.36 , Issue.2 , pp. 2027-2036
    • Ocak, H.1
  • 15
    • 33846672121 scopus 로고    scopus 로고
    • A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy
    • H. Adeli, S.G. Dastidar, and N. Dadmehr, "A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy," IEEE Transactions on Biomedical Engineering, vol. 54, no. 2, pp. 205-211, 2007.
    • (2007) IEEE Transactions on Biomedical Engineering , vol.54 , Issue.2 , pp. 205-211
    • Adeli, H.1    Dastidar, S.G.2    Dadmehr, N.3
  • 16
    • 33751396389 scopus 로고    scopus 로고
    • EEG signal classification using wavelet feature extraction and a mixture of expert model
    • A. Subasi, "EEG signal classification using wavelet feature extraction and a mixture of expert model," Expert Systems with Applications, vol. 32, no. 4, pp. 1084-1093, 2007.
    • (2007) Expert Systems with Applications , vol.32 , Issue.4 , pp. 1084-1093
    • Subasi, A.1
  • 17
    • 84878512713 scopus 로고    scopus 로고
    • Epileptic seizure detection in EEG signals using multifractal analysis and wavelet transform
    • R. Uthayakumar and D. Easwaramoorthy, "Epileptic seizure detection in EEG signals using multifractal analysis and wavelet transform," Fractals, vol. 21, no. 2, 2013.
    • (2013) Fractals , vol.21 , Issue.2
    • Uthayakumar, R.1    Easwaramoorthy, D.2
  • 18
    • 77957685691 scopus 로고    scopus 로고
    • Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks
    • L. Guo, D. Rivero, and A. Pazos, "Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks," Journal of Neuroscience Methods, vol. 193, no. 1, pp. 156-163, 2010.
    • (2010) Journal of Neuroscience Methods , vol.193 , Issue.1 , pp. 156-163
    • Guo, L.1    Rivero, D.2    Pazos, A.3
  • 20
    • 78549254986 scopus 로고    scopus 로고
    • Discrimination between ictal and seizure-free EEG signals using empirical mode decomposition
    • 2008, article ID 293056, 5 pages
    • R.B. Pachori, "Discrimination between ictal and seizure-free EEG signals using empirical mode decomposition," Research Letters in Signal Processing, vol. 2008, article ID 293056, 5 pages, 2008.
    • (2008) Research Letters in Signal Processing
    • Pachori, R.B.1
  • 21
    • 79956288045 scopus 로고    scopus 로고
    • Seizure classification in EEG signals utilizing HilbertHuang transform
    • R.J. Oweis and E.W. Abdulhay, "Seizure classification in EEG signals utilizing HilbertHuang transform," BioMedical Engineering OnLine, vol. 10, no. 38, 2011.
    • (2011) BioMedical Engineering OnLine , vol.10 , Issue.38
    • Oweis, R.J.1    Abdulhay, E.W.2
  • 22
    • 80655124711 scopus 로고    scopus 로고
    • Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition
    • R.B. Pachori and V. Bajaj, "Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition," Computer Methods and Programs in Biomedicine, vol. 104, no. 3, pp. 373-381, 2011.
    • (2011) Computer Methods and Programs in Biomedicine , vol.104 , Issue.3 , pp. 373-381
    • Pachori, R.B.1    Bajaj, V.2
  • 23
    • 84861210590 scopus 로고    scopus 로고
    • EEG signal classification using empirical mode decomposition and support vector machine
    • 20-22 December 2011, Roorkee, India
    • V. Bajaj and R.B. Pachori, "EEG signal classification using empirical mode decomposition and support vector machine," in: Proceedings International Conference on Soft Computing for Problem Solving, 20-22 December, 2011, Roorkee, India, 2011, pp. 623-635.
    • (2011) Proceedings International Conference on Soft Computing for Problem Solving , pp. 623-635
    • Bajaj, V.1    Pachori, R.B.2
  • 24
    • 84878902261 scopus 로고    scopus 로고
    • Feature extraction and recognition of ictal EEG using EMD and SVM
    • S. Li et al., "Feature extraction and recognition of ictal EEG using EMD and SVM," Computers in Biology and Medicine, vol. 43, no. 7, pp. 807-816, 2013.
    • (2013) Computers in Biology and Medicine , vol.43 , Issue.7 , pp. 807-816
    • Li, S.1
  • 25
    • 84880995411 scopus 로고    scopus 로고
    • Epileptic seizure detection based on the instantaneous area of analytic intrinsic mode functions of EEG signals
    • V. Bajaj and R.B. Pachori, "Epileptic seizure detection based on the instantaneous area of analytic intrinsic mode functions of EEG signals," Biomedical Engineering Letters, vol. 3, no. 1, pp 17-21, 2013.
    • (2013) Biomedical Engineering Letters , vol.3 , Issue.1 , pp. 17-21
    • Bajaj, V.1    Pachori, R.B.2
  • 26
    • 84865980798 scopus 로고    scopus 로고
    • Classification of seizure and nonseizure EEG signals using empirical mode decomposition
    • V. Bajaj and R.B. Pachori, "Classification of seizure and nonseizure EEG signals using empirical mode decomposition," IEEE transactions on Information Technology in Biomedicine, vol. 16, no. 6, pp. 1135-1142, 2012.
    • (2012) IEEE Transactions on Information Technology in Biomedicine , vol.16 , Issue.6 , pp. 1135-1142
    • Bajaj, V.1    Pachori, R.B.2
  • 27
    • 78650841059 scopus 로고    scopus 로고
    • Application of multivaritate empirical mode decomposition for seizure detection in EEG signals
    • August 31, 2010-September 04 2010, Buenos Aires, Argentina
    • Y. Xia, and D.P. Mandic, "Application of multivaritate empirical mode decomposition for seizure detection in EEG signals," in: Proceedings Annual International Conference of IEEE Engineering in Medicine and Biology Society, August 31, 2010-September 04, 2010, Buenos Aires, Argentina, 2010, pp. 1650-1653.
    • (2010) Proceedings Annual International Conference of IEEE Engineering in Medicine and Biology Society , pp. 1650-1653
    • Xia, Y.1    Mandic, D.P.2
  • 28
    • 84892783589 scopus 로고    scopus 로고
    • Epileptic seizure classification in EEG signal using second-order difference plot of intrinsic mode function
    • R.B. Pachori and S. Patidar, "Epileptic seizure classification in EEG signal using second-order difference plot of intrinsic mode function," Computer Methods and programs in Biomedicine, vol. 113, issue 2, pp. 494-502, 2014.
    • (2014) Computer Methods and Programs in Biomedicine , vol.113 , Issue.2 , pp. 494-502
    • Pachori, R.B.1    Patidar, S.2
  • 30
    • 78651302006 scopus 로고    scopus 로고
    • A new approach for epileptic seizure detection: Sample entropy based feature extraction and extreme learning machine
    • Y. Song and P. Lio, "A new approach for epileptic seizure detection: Sample entropy based feature extraction and extreme learning machine," Journal of Biomedical Science and Engineering, vol. 3, no. 5, pp. 556-567, 2010.
    • (2010) Journal of Biomedical Science and Engineering , vol.3 , Issue.5 , pp. 556-567
    • Song, Y.1    Lio, P.2
  • 31
    • 84872198822 scopus 로고    scopus 로고
    • Application of the sample entropy for discrimination between seizure and seizure-free EEG Signals
    • V. Bajaj and R.B. Pachori, "Application of the sample entropy for discrimination between seizure and seizure-free EEG Signals," in: Indian International Conference on Artificial Intelligence, 2011, pp. 1232-1247.
    • (2011) Indian International Conference on Artificial Intelligence , pp. 1232-1247
    • Bajaj, V.1    Pachori, R.B.2
  • 32
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes and V. Vapnik, "Support-vector networks," Machine learning, vol. 20, no. 3, 1995, pp. 273-297.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 33
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • J.A.K. Sukens and J. Vandewalle, "Least squares support vector machine classifiers," Neural Process. Lett., vol. 9, no. 3, pp. 293-300, 1999.
    • (1999) Neural Process. Lett. , vol.9 , Issue.3 , pp. 293-300
    • Sukens, J.A.K.1    Vandewalle, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.