메뉴 건너뛰기




Volumn 45, Issue , 2013, Pages 147-165

Automated EEG analysis of epilepsy: A review

Author keywords

Classification; EEG; Epilepsy; Fractal dimension; Higher order spectra; Ictal; Interictal; Nonlinear; Recurrence plot

Indexed keywords

EPILEPSY; HIGHER ORDER SPECTRUM; ICTAL; INTERICTAL; NONLINEAR; RECURRENCE PLOT;

EID: 84876285375     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2013.02.014     Document Type: Article
Times cited : (703)

References (141)
  • 2
    • 76449108621 scopus 로고    scopus 로고
    • Automatic identification of epileptic EEG signals using nonlinear parameters
    • U.R. Acharya, K.C. Chua, T.C. Lim, Dorithy, and J.S. Suri Automatic identification of epileptic EEG signals using nonlinear parameters J. Mech. Med. Biol. 9 4 2009 539 553
    • (2009) J. Mech. Med. Biol. , vol.9 , Issue.4 , pp. 539-553
    • Acharya, U.R.1    Chua, K.C.2    Lim, T.C.3    Dorithy4    Suri, J.S.5
  • 3
    • 80053348045 scopus 로고    scopus 로고
    • Automatic detection of epileptic EEG signals using higher order cumulant features
    • U.R. Acharya, S. Vinitha Sree, and J.S. Suri Automatic detection of epileptic EEG signals using higher order cumulant features Int. J. Neural Syst. 21 5 2011 1 12
    • (2011) Int. J. Neural Syst. , vol.21 , Issue.5 , pp. 1-12
    • Acharya, U.R.1    Vinitha Sree, S.2    Suri, J.S.3
  • 4
    • 79960037752 scopus 로고    scopus 로고
    • Application of recurrence quantification analysis for the automated identification of epileptic EEG signals
    • U.R. Acharya, S. Vinitha Sree, S. Chattopadhyay, Y.U. Wenwei, and A.P.C. Alvin Application of recurrence quantification analysis for the automated identification of epileptic EEG signals Int. J. Neural Syst. 21 3 2011 199 211
    • (2011) Int. J. Neural Syst. , vol.21 , Issue.3 , pp. 199-211
    • Acharya, U.R.1    Vinitha Sree, S.2    Chattopadhyay, S.3    Wenwei, Y.U.4    Alvin, A.P.C.5
  • 5
    • 84859351360 scopus 로고    scopus 로고
    • Application of non-linear and wavelet based features for the automated identification of epileptic EEG signals
    • 1250002-1-14
    • U.R. Acharya, S. VinithaSree, A.P.C. Alvin, and J.S. Suri Application of non-linear and wavelet based features for the automated identification of epileptic EEG signals Int. J. Neural Syst. 22 2 2012 1250002-1-14
    • (2012) Int. J. Neural Syst. , vol.22 , Issue.2
    • Acharya, U.R.1    Vinithasree, S.2    Alvin, A.P.C.3    Suri, J.S.4
  • 7
    • 84859217391 scopus 로고    scopus 로고
    • Use of principal component analysis for automatic detection of epileptic EEG activities
    • U.R. Acharya, S. Vinitha Sree, and J.S. Suri Use of principal component analysis for automatic detection of epileptic EEG activities Expert Syst. Appl. 39 10 2012 9072 9078
    • (2012) Expert Syst. Appl. , vol.39 , Issue.10 , pp. 9072-9078
    • Acharya, U.R.1    Vinitha Sree, S.2    Suri, J.S.3
  • 8
    • 84877839633 scopus 로고    scopus 로고
    • Automated diagnosis of epileptic electroencephalogram using independent component analysis and discrete wavelet transform for different electroencephalogram durations
    • U.R. Acharya, R. Yanti, G. Swapna, V.S. Sree, R.J. Martis, J.S. Suri, Automated diagnosis of epileptic electroencephalogram using independent component analysis and discrete wavelet transform for different electroencephalogram durations, Proc. Inst. Mech. Eng., Part H, J. Eng. Med. (2012), http://dx.doi.org/10.1177/0954411912467883.
    • (2012) Proc. Inst. Mech. Eng., Part H, J. Eng. Med.
    • Acharya, U.R.1    Yanti, R.2    Swapna, G.3    Sree, V.S.4    Martis, R.J.5    Suri, J.S.6
  • 9
    • 77951208271 scopus 로고    scopus 로고
    • Epileptic EEG detection using the linear prediction error energy
    • S. Altunay, Z. Telatar, and O. Erogul Epileptic EEG detection using the linear prediction error energy Expert Syst. Appl. 37 8 2010 5661 5665
    • (2010) Expert Syst. Appl. , vol.37 , Issue.8 , pp. 5661-5665
    • Altunay, S.1    Telatar, Z.2    Erogul, O.3
  • 10
    • 0035023402 scopus 로고    scopus 로고
    • The epileptic process as nonlinear deterministic dynamics in a stochastic environment: An evaluation on mesial temporal lobe epilepsy
    • R.G. Andrzejak, G. Widman, K. Lehnertz, C. Rieke, P. David, and C.E. Elger The epileptic process as nonlinear deterministic dynamics in a stochastic environment: an evaluation on mesial temporal lobe epilepsy Epilepsy Res. 44 2 2001 129 140
    • (2001) Epilepsy Res. , vol.44 , Issue.2 , pp. 129-140
    • Andrzejak, R.G.1    Widman, G.2    Lehnertz, K.3    Rieke, C.4    David, P.5    Elger, C.E.6
  • 11
    • 0346401452 scopus 로고    scopus 로고
    • A robust method for detecting interdependences: Application to intracranially recorded EEG
    • J. Arnhold, K. Lehnertz, P. Grassberger, and C.E. Elger A robust method for detecting interdependences: application to intracranially recorded EEG Physica D 134 4 1999 419 430
    • (1999) Physica D , vol.134 , Issue.4 , pp. 419-430
    • Arnhold, J.1    Lehnertz, K.2    Grassberger, P.3    Elger, C.E.4
  • 13
    • 51349117677 scopus 로고    scopus 로고
    • A radial basis function neural network model for classification of epilepsy using EEG signals
    • K. Aslan, H. Bozdemir, C. Sahin, S.N. Ogulata, and R. Ero A radial basis function neural network model for classification of epilepsy using EEG signals J. Med. Syst. 32 5 2008 403 408
    • (2008) J. Med. Syst. , vol.32 , Issue.5 , pp. 403-408
    • Aslan, K.1    Bozdemir, H.2    Sahin, C.3    Ogulata, S.N.4    Ero, R.5
  • 14
    • 0000451936 scopus 로고
    • Evidence of chaotic dynamics of brain activity during the sleep cycle
    • A. Babloyantz, C. Nicolis, and J.M. Salazar Evidence of chaotic dynamics of brain activity during the sleep cycle Phys. Lett. 111A 1985 152 157
    • (1985) Phys. Lett. , vol.111 A , pp. 152-157
    • Babloyantz, A.1    Nicolis, C.2    Salazar, J.M.3
  • 15
    • 66149083263 scopus 로고    scopus 로고
    • The sample entropy and its application in EEG based epilepsy detection
    • D. Bai, T. Qiu, and Li The sample entropy and its application in EEG based epilepsy detection J. Biomed. Eng. 24 1 2007 200 205
    • (2007) J. Biomed. Eng. , vol.24 , Issue.1 , pp. 200-205
    • Bai, D.1    Qiu, T.2    Li3
  • 17
  • 20
    • 0030938880 scopus 로고    scopus 로고
    • Patients' experiences of injury as a result of epilepsy
    • D. Buck, G.A. Baker, A. Jacoby, D.F. Smith, and D.W. Chadwick Patients' experiences of injury as a result of epilepsy Epilepsia 38 4 1997 439 444
    • (1997) Epilepsia , vol.38 , Issue.4 , pp. 439-444
    • Buck, D.1    Baker, G.A.2    Jacoby, A.3    Smith, D.F.4    Chadwick, D.W.5
  • 21
    • 0016039779 scopus 로고
    • Coupling between cortical potentials from different areas
    • E. Callaway, and P.R. Harris Coupling between cortical potentials from different areas Science 183 4127 1974 873 875
    • (1974) Science , vol.183 , Issue.4127 , pp. 873-875
    • Callaway, E.1    Harris, P.R.2
  • 22
    • 67449161052 scopus 로고    scopus 로고
    • Automatic identification of epileptic EEG signals using higher order spectra
    • K.C. Chua, V. Chandran, U.R. Acharya, and C.M. Lim Automatic identification of epileptic EEG signals using higher order spectra J. Eng. Med. 223 4 2009 485 495
    • (2009) J. Eng. Med. , vol.223 , Issue.4 , pp. 485-495
    • Chua, K.C.1    Chandran, V.2    Acharya, U.R.3    Lim, C.M.4
  • 23
    • 84856227784 scopus 로고    scopus 로고
    • Application of higher order spectra to identify epileptic EEG
    • K.C. Chua, V. Chandran, U.R. Acharya, and C.M. Lim Application of higher order spectra to identify epileptic EEG J. Med. Syst. 35 6 2011 1563 1571
    • (2011) J. Med. Syst. , vol.35 , Issue.6 , pp. 1563-1571
    • Chua, K.C.1    Chandran, V.2    Acharya, U.R.3    Lim, C.M.4
  • 24
    • 84876280773 scopus 로고    scopus 로고
    • The role of sprouting and plasticity in epileptogenesis and behavior
    • S. Schachter, G.L. Holmes, D.G. Trenite, Demos Medical Publishing
    • D.J. Cross, and J.E. Cavazos The role of sprouting and plasticity in epileptogenesis and behavior S. Schachter, G.L. Holmes, D.G. Trenite, Behavioural Aspects of Epilepsy 2007 Demos Medical Publishing 51 57
    • (2007) Behavioural Aspects of Epilepsy , pp. 51-57
    • Cross, D.J.1    Cavazos, J.E.2
  • 29
    • 77951577412 scopus 로고    scopus 로고
    • Automatic identification of epileptic and background EEG signals using frequency domain parameters
    • O. Faust, U.R. Acharya, L.C. Min, and B.H. Sputh Automatic identification of epileptic and background EEG signals using frequency domain parameters Int. J. Neural Syst. 20 2 2010 159 176
    • (2010) Int. J. Neural Syst. , vol.20 , Issue.2 , pp. 159-176
    • Faust, O.1    Acharya, U.R.2    Min, L.C.3    Sputh, B.H.4
  • 30
    • 0003586464 scopus 로고
    • Plenum Press New York
    • J. Feder Fractals 1988 Plenum Press New York
    • (1988) Fractals
    • Feder, J.1
  • 31
    • 0342398227 scopus 로고    scopus 로고
    • Discrimination of sleep stages: A comparison between spectral and nonlinear EEG measures
    • J. Fell, J. Röschke, K. Mann, and C. Schäffner Discrimination of sleep stages: a comparison between spectral and nonlinear EEG measures Electroen. Clin Neurophys. 98 5 1996 401 410
    • (1996) Electroen. Clin Neurophys. , vol.98 , Issue.5 , pp. 401-410
    • Fell, J.1    Röschke, J.2    Mann, K.3    Schäffner, C.4
  • 32
    • 0033967084 scopus 로고    scopus 로고
    • A proposed name for aperiodic brain activity: Stochastic chaos
    • W.J. Freeman A proposed name for aperiodic brain activity: stochastic chaos Neural Netw. 13 1 2000 11 13
    • (2000) Neural Netw. , vol.13 , Issue.1 , pp. 11-13
    • Freeman, W.J.1
  • 33
    • 34547597104 scopus 로고    scopus 로고
    • Improved spiking neural networks for EEG classification and epilepsy and seizure detection
    • S. Ghosh-Dastidar, and H. Adeli Improved spiking neural networks for EEG classification and epilepsy and seizure detection Integr. Comput.-Aided Eng. 14 3 2007 187 212
    • (2007) Integr. Comput.-Aided Eng. , vol.14 , Issue.3 , pp. 187-212
    • Ghosh-Dastidar, S.1    Adeli, H.2
  • 34
    • 34547573516 scopus 로고    scopus 로고
    • Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection
    • S. Ghosh-Dastidar, H. Adeli, and N. Dadmehr Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection IEEE Trans. Biomed. Eng. 54 9 2007 1545 1551
    • (2007) IEEE Trans. Biomed. Eng. , vol.54 , Issue.9 , pp. 1545-1551
    • Ghosh-Dastidar, S.1    Adeli, H.2    Dadmehr, N.3
  • 35
    • 38349123053 scopus 로고    scopus 로고
    • Principal component analysis-enhanced cosine radial basis function neural network for robust epilepsy and seizure detection
    • S. Ghosh-Dastidar, H. Adeli, and N. Dadmehr Principal component analysis-enhanced cosine radial basis function neural network for robust epilepsy and seizure detection IEEE Trans. Biomed. Eng. 55 2 2008 512 518
    • (2008) IEEE Trans. Biomed. Eng. , vol.55 , Issue.2 , pp. 512-518
    • Ghosh-Dastidar, S.1    Adeli, H.2    Dadmehr, N.3
  • 36
    • 71049128082 scopus 로고    scopus 로고
    • A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection
    • S. Ghosh-Dastidar, and H. Adeli A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection Neural netw. 22 10 2009 1419 1431
    • (2009) Neural Netw. , vol.22 , Issue.10 , pp. 1419-1431
    • Ghosh-Dastidar, S.1    Adeli, H.2
  • 38
    • 40749093037 scopus 로고
    • Measuring the strangeness of strange attractors
    • P. Grassberger, and I. Procassia Measuring the strangeness of strange attractors Physica D 9 1-2 1983 189 208
    • (1983) Physica D , vol.9 , Issue.12 , pp. 189-208
    • Grassberger, P.1    Procassia, I.2
  • 39
    • 24144470790 scopus 로고    scopus 로고
    • Recurrent neural network employing Lyapunov exponents for EEG signals classification
    • N.F. Guler, E.D. Ubey, and I. Guler Recurrent neural network employing Lyapunov exponents for EEG signals classification Expert Syst. Appl. 29 3 2005 506 514
    • (2005) Expert Syst. Appl. , vol.29 , Issue.3 , pp. 506-514
    • Guler, N.F.1    Ubey, E.D.2    Guler, I.3
  • 41
    • 77957685691 scopus 로고    scopus 로고
    • Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks
    • L. Guo, D. Rivero, and A. Pazos Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks J. Neurosci. Methods 193 1 2010 156 163
    • (2010) J. Neurosci. Methods , vol.193 , Issue.1 , pp. 156-163
    • Guo, L.1    Rivero, D.2    Pazos, A.3
  • 42
    • 77955054723 scopus 로고    scopus 로고
    • Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks
    • L. Guo, D. Rivero, J. Dorado, J.R. Rabunal, and A. Pazos Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks J. Neurosci. Methods 191 1 2010 101 109
    • (2010) J. Neurosci. Methods , vol.191 , Issue.1 , pp. 101-109
    • Guo, L.1    Rivero, D.2    Dorado, J.3    Rabunal, J.R.4    Pazos, A.5
  • 43
    • 79953693243 scopus 로고    scopus 로고
    • Automatic feature extraction using genetic programming: An application to epileptic EEG classification
    • L. Guo, D. Rivero, J. Dorado, C.R. Munteanu, and A. Pazos Automatic feature extraction using genetic programming: an application to epileptic EEG classification Expert Syst. Appl. 38 8 2011 10425 10436
    • (2011) Expert Syst. Appl. , vol.38 , Issue.8 , pp. 10425-10436
    • Guo, L.1    Rivero, D.2    Dorado, J.3    Munteanu, C.R.4    Pazos, A.5
  • 44
    • 45549113571 scopus 로고
    • Approach to an irregular time series on the basis of the fractal theory
    • T. Higuchi Approach to an irregular time series on the basis of the fractal theory Physics D 31 2 1988 277 283
    • (1988) Physics D , vol.31 , Issue.2 , pp. 277-283
    • Higuchi, T.1
  • 48
    • 0000759022 scopus 로고
    • Long-term storage of reservoirs: An experimental study
    • H.E. Hurst Long-term storage of reservoirs: an experimental study Trans. Am. Soc. Civ. Eng. 116 1951 770 799
    • (1951) Trans. Am. Soc. Civ. Eng. , vol.116 , pp. 770-799
    • Hurst, H.E.1
  • 50
    • 0002285568 scopus 로고    scopus 로고
    • Quadratic binary programming and dynamical system approach to determine the predictability of epileptic seizures
    • L.D. Iasemidis, P. Pardalos, J.C. Sackellares, and D. Shiau Quadratic binary programming and dynamical system approach to determine the predictability of epileptic seizures J. Comb. Optim. 5 1 2001 9 26
    • (2001) J. Comb. Optim. , vol.5 , Issue.1 , pp. 9-26
    • Iasemidis, L.D.1    Pardalos, P.2    Sackellares, J.C.3    Shiau, D.4
  • 51
    • 1242343781 scopus 로고    scopus 로고
    • Dynamical resetting of the human brain at epileptic seizures: Application of nonlinear dynamics and global optimization techniques
    • L.D. Iasemidis, D.S. Shiau, J.C. Sackellares, P.M. Pardalos, and A. Prasad Dynamical resetting of the human brain at epileptic seizures: application of nonlinear dynamics and global optimization techniques IEEE Trans. Biomed. Eng. 51 3 2004 493 506
    • (2004) IEEE Trans. Biomed. Eng. , vol.51 , Issue.3 , pp. 493-506
    • Iasemidis, L.D.1    Shiau, D.S.2    Sackellares, J.C.3    Pardalos, P.M.4    Prasad, A.5
  • 53
    • 79953729618 scopus 로고    scopus 로고
    • Classification of electroencephalogram signals with combined time and frequency features
    • Z. Iscan, Z. Dokur, and D. Tamer Classification of electroencephalogram signals with combined time and frequency features Expert Syst. Appl. 38 8 2011 10499 10505
    • (2011) Expert Syst. Appl. , vol.38 , Issue.8 , pp. 10499-10505
    • Iscan, Z.1    Dokur, Z.2    Tamer, D.3
  • 55
    • 0035078731 scopus 로고    scopus 로고
    • Nonlinear dynamical analysis of the EEG in patients with Alzheimer's disease and vacular dementia
    • J. Jeong, J.H. Chae, S.Y. Kim, and S.H. Han Nonlinear dynamical analysis of the EEG in patients with Alzheimer's disease and vacular dementia J. Clin. Neurophysiol. 18 1 2001 58 67
    • (2001) J. Clin. Neurophysiol. , vol.18 , Issue.1 , pp. 58-67
    • Jeong, J.1    Chae, J.H.2    Kim, S.Y.3    Han, S.H.4
  • 56
    • 0034329802 scopus 로고    scopus 로고
    • Topographic analysis of dimension estimates of EEG and filtered rhythms in epileptic patients with complex partial seizures
    • H. Jing, and M. Takigawa Topographic analysis of dimension estimates of EEG and filtered rhythms in epileptic patients with complex partial seizures Biol. Cybern. 83 5 2000 391 397
    • (2000) Biol. Cybern. , vol.83 , Issue.5 , pp. 391-397
    • Jing, H.1    Takigawa, M.2
  • 58
    • 0036036352 scopus 로고    scopus 로고
    • Accuracy of fractal dimension estimates for small samples of ecological distributions
    • A.S. Kallimanis, S.P. Sgardelis, and J.M. Halley Accuracy of fractal dimension estimates for small samples of ecological distributions Landscape Ecol. 17 3 2002 281 297
    • (2002) Landscape Ecol. , vol.17 , Issue.3 , pp. 281-297
    • Kallimanis, A.S.1    Sgardelis, S.P.2    Halley, J.M.3
  • 61
    • 33846936582 scopus 로고    scopus 로고
    • Segmental structure of EEG more likely reveals the dynamic multistability of the brain tissue than the continual plasticity one
    • A.Y. Kaplan, Segmental structure of EEG more likely reveals the dynamic multistability of the brain tissue than the continual plasticity one, in: Proceedings of the Sixth International Conference on Neural information processing, vol. 2, 1999, pp. 633-638.
    • (1999) Proceedings of the Sixth International Conference on Neural Information Processing , vol.2 , pp. 633-638
    • Kaplan, A.Y.1
  • 63
    • 0029123213 scopus 로고
    • Spatio-temporal dynamics of the primary epileptogenic area in temporal lobe epilepsy characterized by neuronal complexity loss
    • K. Lehnertz, and C.E. Elger Spatio-temporal dynamics of the primary epileptogenic area in temporal lobe epilepsy characterized by neuronal complexity loss Electroencephalogr. Clin. Neurophysiol. 95 2 1995 108 117
    • (1995) Electroencephalogr. Clin. Neurophysiol. , vol.95 , Issue.2 , pp. 108-117
    • Lehnertz, K.1    Elger, C.E.2
  • 64
    • 0001649501 scopus 로고    scopus 로고
    • Can epileptic seizures be predicted? Evidence from nonlinear time series analyses of brain electrical activity
    • K. Lehnertz, and C.E. Elger Can epileptic seizures be predicted? Evidence from nonlinear time series analyses of brain electrical activity Phys. Rev. Lett. 80 22 1998 5019 5022
    • (1998) Phys. Rev. Lett. , vol.80 , Issue.22 , pp. 5019-5022
    • Lehnertz, K.1    Elger, C.E.2
  • 65
    • 77955580523 scopus 로고    scopus 로고
    • Tackling EEG signal classification with least squares support vector machines: A sensitivity analysis study
    • C.A. Lima, A.L. Coelho, and M. Eisencraft Tackling EEG signal classification with least squares support vector machines: a sensitivity analysis study Comput. Biol. Med. 40 8 2010 705 714
    • (2010) Comput. Biol. Med. , vol.40 , Issue.8 , pp. 705-714
    • Lima, C.A.1    Coelho, A.L.2    Eisencraft, M.3
  • 69
    • 33646980132 scopus 로고    scopus 로고
    • Recurrence plot based measures of complexity and its application to heart rate variability data
    • N. Marwan, N. Wessel, U. Meyerfeldt, A. Schirdewan, and J. Kurths Recurrence plot based measures of complexity and its application to heart rate variability data Phys. Rev. E 66 2 2002 026702
    • (2002) Phys. Rev. e , vol.66 , Issue.2 , pp. 026702
    • Marwan, N.1    Wessel, N.2    Meyerfeldt, U.3    Schirdewan, A.4    Kurths, J.5
  • 71
    • 0842310823 scopus 로고    scopus 로고
    • A neural-network-based detection of epilepsy
    • V.P. Nigam, and D. Graupe A neural-network-based detection of epilepsy Neurol. Res. 26 1 2004 55 60
    • (2004) Neurol. Res. , vol.26 , Issue.1 , pp. 55-60
    • Nigam, V.P.1    Graupe, D.2
  • 72
    • 24644442354 scopus 로고    scopus 로고
    • Detection of seizure precursors in the EEG with cellular neural networks
    • C. Niederhoefer, F. Gollas, A. Chernihovskyi, K. Lehnertz, and R. Tetzlaff Detection of seizure precursors in the EEG with cellular neural networks Epilepsia 45 Suppl. 7 2004 245
    • (2004) Epilepsia , vol.45 , Issue.SUPPL. 7 , pp. 245
    • Niederhoefer, C.1    Gollas, F.2    Chernihovskyi, A.3    Lehnertz, K.4    Tetzlaff, R.5
  • 74
    • 56349101801 scopus 로고    scopus 로고
    • Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy
    • H. Ocak Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy Expert Syst. Appl. 36 2 2009 2027 2036
    • (2009) Expert Syst. Appl. , vol.36 , Issue.2 , pp. 2027-2036
    • Ocak, H.1
  • 75
    • 79957981604 scopus 로고    scopus 로고
    • EEG signals classification using the K-means clustering and a multilayer perceptron neural network model
    • U. Orhan, M. Hekim, and M. Ozer EEG signals classification using the K-means clustering and a multilayer perceptron neural network model Expert Syst. Appl. 38 10 2011 13475 13481
    • (2011) Expert Syst. Appl. , vol.38 , Issue.10 , pp. 13475-13481
    • Orhan, U.1    Hekim, M.2    Ozer, M.3
  • 76
    • 0031748494 scopus 로고    scopus 로고
    • Real-time automated detection and quantitative analysis of seizures and short-term prediction of clinical onset
    • I. Osorio, M.G. Frei, and S.B. Wilkinson Real-time automated detection and quantitative analysis of seizures and short-term prediction of clinical onset Epilepsia 39 6 1998 615 627
    • (1998) Epilepsia , vol.39 , Issue.6 , pp. 615-627
    • Osorio, I.1    Frei, M.G.2    Wilkinson, S.B.3
  • 77
    • 0035664172 scopus 로고    scopus 로고
    • An introduction to contingent (closed-loop) brain electrical stimulation for seizure blockage, to ultra-short-term clinical trials, and to multidimensional statistical analysis of therapeutic efficacy
    • I. Osorio, M.G. Frei, B.F. Manly, S. Sunderam, N.C. Bhavaraju, and S.B. Wilkinson An introduction to contingent (closed-loop) brain electrical stimulation for seizure blockage, to ultra-short-term clinical trials, and to multidimensional statistical analysis of therapeutic efficacy J. Clin. Neurophys. 18 6 2001 533 544
    • (2001) J. Clin. Neurophys. , vol.18 , Issue.6 , pp. 533-544
    • Osorio, I.1    Frei, M.G.2    Manly, B.F.3    Sunderam, S.4    Bhavaraju, N.C.5    Wilkinson, S.B.6
  • 78
    • 79956288045 scopus 로고    scopus 로고
    • Seizure classification in EEG signals utilizing Hilbert-Huang transform
    • R.J. Oweis, and E.W. Abdulhay Seizure classification in EEG signals utilizing Hilbert-Huang transform Biomed. Eng. 10 2011 38
    • (2011) Biomed. Eng. , vol.10 , pp. 38
    • Oweis, R.J.1    Abdulhay, E.W.2
  • 80
    • 33747866964 scopus 로고    scopus 로고
    • Seizure anticipation: Are neurophenomenological approaches able to detect pre-ictal symptoms?
    • C. Petitmengin, M. Baulac, and V. Navarro Seizure anticipation: Are neurophenomenological approaches able to detect pre-ictal symptoms? Epilepsy Behav. 9 2 2006 298 306
    • (2006) Epilepsy Behav. , vol.9 , Issue.2 , pp. 298-306
    • Petitmengin, C.1    Baulac, M.2    Navarro, V.3
  • 81
    • 0034852405 scopus 로고    scopus 로고
    • Is there chaos in the brain? Concepts of nonlinear dynamics and methods of investigation
    • F. Philippe, and K. Henri Is there chaos in the brain? Concepts of nonlinear dynamics and methods of investigation Life Sci. 324 2001 773 793
    • (2001) Life Sci. , vol.324 , pp. 773-793
    • Philippe, F.1    Henri, K.2
  • 84
    • 0026015905 scopus 로고
    • Approximate entropy as a measure of system complexity
    • S.M. Pincus Approximate entropy as a measure of system complexity Proc Nat Acad Sci, USA 88 1991 2297 2301
    • (1991) Proc Nat Acad Sci, USA , vol.88 , pp. 2297-2301
    • Pincus, S.M.1
  • 85
    • 0035679921 scopus 로고    scopus 로고
    • Assessing serial irregularity and its implications for health
    • S.M. Pincus Assessing serial irregularity and its implications for health Ann. N.Y. Acad. Sci. 954 2001 245 267
    • (2001) Ann. N.Y. Acad. Sci. , vol.954 , pp. 245-267
    • Pincus, S.M.1
  • 86
    • 34247217946 scopus 로고    scopus 로고
    • Classification of epileptiform EEG using a hybrid systems based on decision tree classifier and fast Fourier transform
    • K. Polat, and S. Gunes Classification of epileptiform EEG using a hybrid systems based on decision tree classifier and fast Fourier transform Appl. Math. Comput. 187 2 2007 1017 1026
    • (2007) Appl. Math. Comput. , vol.187 , Issue.2 , pp. 1017-1026
    • Polat, K.1    Gunes, S.2
  • 87
    • 37349026733 scopus 로고    scopus 로고
    • Artificial immune recognition system with fuzzy resource allocation mechanism classifier, principal component analysis and FFT method based new hybrid automated identification system for classification of EEG signals
    • K. Polat, and S. Gunes Artificial immune recognition system with fuzzy resource allocation mechanism classifier, principal component analysis and FFT method based new hybrid automated identification system for classification of EEG signals Expert Syst. Appl. 34 3 2008 2039 2048
    • (2008) Expert Syst. Appl. , vol.34 , Issue.3 , pp. 2039-2048
    • Polat, K.1    Gunes, S.2
  • 88
    • 43049169874 scopus 로고    scopus 로고
    • A novel data reduction method: Distance based data reduction and its application to classification of epileptiform EEG signals
    • K. Polat, and S. Gunes A novel data reduction method: distance based data reduction and its application to classification of epileptiform EEG signals Appl. Math. Comput. 200 1 2008 10 27
    • (2008) Appl. Math. Comput. , vol.200 , Issue.1 , pp. 10-27
    • Polat, K.1    Gunes, S.2
  • 89
    • 0028414110 scopus 로고
    • Data compression by linear prediction for storage and transmission of EEG signals
    • N. Pradhan, and D.N. Dutt Data compression by linear prediction for storage and transmission of EEG signals Int. J. Biomed. Comput. 35 3 1994 207 217
    • (1994) Int. J. Biomed. Comput. , vol.35 , Issue.3 , pp. 207-217
    • Pradhan, N.1    Dutt, D.N.2
  • 90
    • 0026950248 scopus 로고
    • Measuring chaos in the brain: A tutorial review of nonlinear dynamical EEG analysis
    • W.S. Pritchard, and D.W. Duke Measuring chaos in the brain: a tutorial review of nonlinear dynamical EEG analysis Int. J. Neurosci. 67 1-4 1992 31 40
    • (1992) Int. J. Neurosci. , vol.67 , Issue.14 , pp. 31-40
    • Pritchard, W.S.1    Duke, D.W.2
  • 92
    • 1542346294 scopus 로고    scopus 로고
    • Special considerations in treating the elderly patient with epilepsy
    • R.E. Ramsay, A.J. Rowan, and A.M. Pryor Special considerations in treating the elderly patient with epilepsy Neurology 62 Suppl. 2 2004 S24 S29
    • (2004) Neurology , vol.62 , Issue.SUPPL. 2
    • Ramsay, R.E.1    Rowan, A.J.2    Pryor, A.M.3
  • 94
    • 0002958385 scopus 로고
    • Chaos in the neurosciences: Cautionary tales from the frontier
    • P.E. Rapp Chaos in the neurosciences: cautionary tales from the frontier Biologist 40 1993 89 94
    • (1993) Biologist , vol.40 , pp. 89-94
    • Rapp, P.E.1
  • 95
    • 0031460356 scopus 로고    scopus 로고
    • Contribution of non-linear mathematics (chaos theory) to EEG analysis
    • M. Rey, and P. Guillemant Contribution of non-linear mathematics (chaos theory) to EEG analysis Neurophysiol. Clin. 27 5 1997 406 428
    • (1997) Neurophysiol. Clin. , vol.27 , Issue.5 , pp. 406-428
    • Rey, M.1    Guillemant, P.2
  • 96
    • 0033949457 scopus 로고    scopus 로고
    • Physiological time-series analysis using approximate entropy and sample entropy
    • J.S. Richman, and M.J. Randall Physiological time-series analysis using approximate entropy and sample entropy Am. J. Physiol. Heart Circ. Physiol. 278 2000 H2039 H2049
    • (2000) Am. J. Physiol. Heart Circ. Physiol. , vol.278
    • Richman, J.S.1    Randall, M.J.2
  • 97
    • 0000556190 scopus 로고
    • Investigation of nonlinear structure in multichannel EEG
    • S.A.R.B. Rombouts, R.W.M. Keunen, and C.J. Stam Investigation of nonlinear structure in multichannel EEG Phys. Lett. A 202 5-6 1995 352 358
    • (1995) Phys. Lett. A , vol.202 , Issue.56 , pp. 352-358
    • Rombouts, S.A.R.B.1    Keunen, R.W.M.2    Stam, C.J.3
  • 98
    • 43949166788 scopus 로고
    • A practical method for calculating largest Lyapunov exponent from small data sets
    • M. Rosenstein, J.J. Colins, and C.J. De Luca A practical method for calculating largest Lyapunov exponent from small data sets Physica D 65 1993 117 134
    • (1993) Physica D , vol.65 , pp. 117-134
    • Rosenstein, M.1    Colins, J.J.2    De Luca, C.J.3
  • 100
    • 0032714280 scopus 로고    scopus 로고
    • The performance of electroencephalogram bispectral index and auditory evoked potential index to predict loss of consciousness during propofol infusion
    • S. Schraag, U. Bothner, R. Gajraj, G.N. Kenny, and M. Georgieff The performance of electroencephalogram bispectral index and auditory evoked potential index to predict loss of consciousness during propofol infusion Anesth. Analg. 89 5 1999 1311 1315
    • (1999) Anesth. Analg. , vol.89 , Issue.5 , pp. 1311-1315
    • Schraag, S.1    Bothner, U.2    Gajraj, R.3    Kenny, G.N.4    Georgieff, M.5
  • 101
    • 0034313785 scopus 로고    scopus 로고
    • Parametric bispectral estimation of EEG signals in different functional states of the brain
    • M. Shen, F.H.Y. Chan, L. Sun, and B. Beadle Parametric bispectral estimation of EEG signals in different functional states of the brain IEE Proc.: Sci. Meas. Technol. 147 6 2000 374 377
    • (2000) IEE Proc.: Sci. Meas. Technol. , vol.147 , Issue.6 , pp. 374-377
    • Shen, M.1    Chan, F.H.Y.2    Sun, L.3    Beadle, B.4
  • 103
    • 24044474732 scopus 로고    scopus 로고
    • Artificial neural network based epileptic detection using time-domain and frequency domain features
    • V. Srinivasan, C. Eswaran, and N. Sriraam Artificial neural network based epileptic detection using time-domain and frequency domain features J. Med. Syst. 29 6 2005 647 660
    • (2005) J. Med. Syst. , vol.29 , Issue.6 , pp. 647-660
    • Srinivasan, V.1    Eswaran, C.2    Sriraam, N.3
  • 104
    • 34248567678 scopus 로고    scopus 로고
    • Approximate entropy-based epileptic EEG detection using artificial neural networks
    • V. Srinivasan, C. Eswaran, and N. Sriraam Approximate entropy-based epileptic EEG detection using artificial neural networks IEEE Trans. Inform. Technol. Biomed. 11 3 2007 288 295
    • (2007) IEEE Trans. Inform. Technol. Biomed. , vol.11 , Issue.3 , pp. 288-295
    • Srinivasan, V.1    Eswaran, C.2    Sriraam, N.3
  • 105
    • 0031252861 scopus 로고    scopus 로고
    • Non-linear analysis of the electroencephalogram in Creutzfeldt-Jakob disease
    • C.J. Stam, T.C. Van Woerkom, and R.W.M. Keunen Non-linear analysis of the electroencephalogram in Creutzfeldt-Jakob disease Biol. Cybern. 77 4 1997 247 256
    • (1997) Biol. Cybern. , vol.77 , Issue.4 , pp. 247-256
    • Stam, C.J.1    Van Woerkom, T.C.2    Keunen, R.W.M.3
  • 107
    • 0032885966 scopus 로고    scopus 로고
    • Lopez da Silva FH. Dynamics of the human alpha rhythm: Evidence for nonlinearity?
    • C.J. Stam, J.P. Pijn, and P. Suffczynski Lopez da Silva FH. Dynamics of the human alpha rhythm: evidence for nonlinearity? Clin. Neurophysiol. 110 10 1999 1801 1803
    • (1999) Clin. Neurophysiol. , vol.110 , Issue.10 , pp. 1801-1803
    • Stam, C.J.1    Pijn, J.P.2    Suffczynski, P.3
  • 109
    • 33751396389 scopus 로고    scopus 로고
    • EEG Signal classification using wavelet feature extraction and a mixture of expert model
    • A. Subasi EEG Signal classification using wavelet feature extraction and a mixture of expert model Expert Syst. Appl. 32 4 2007 1084 1093
    • (2007) Expert Syst. Appl. , vol.32 , Issue.4 , pp. 1084-1093
    • Subasi, A.1
  • 110
    • 77957830692 scopus 로고    scopus 로고
    • EEG Signal classification using PCA, ICA, LDA and support vector machine
    • A. Subasi, and M.I. Gursoy EEG Signal classification using PCA, ICA, LDA and support vector machine Expert Syst. Appl. 37 12 2010 8659 8686
    • (2010) Expert Syst. Appl. , vol.37 , Issue.12 , pp. 8659-8686
    • Subasi, A.1    Gursoy, M.I.2
  • 112
    • 0001413326 scopus 로고
    • Spurious dimension from correlation algorithms applied to limited time-series data
    • J. Theiler Spurious dimension from correlation algorithms applied to limited time-series data Phys. Rev. A 34 3 1986 2427 2432
    • (1986) Phys. Rev. A , vol.34 , Issue.3 , pp. 2427-2432
    • Theiler, J.1
  • 113
    • 44049111332 scopus 로고
    • Testing for nonlinearity in time series: The method of surrogate data
    • J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J.D. Farmer Testing for nonlinearity in time series: the method of surrogate data Physica D 58 1-4 1992 77 94
    • (1992) Physica D , vol.58 , Issue.14 , pp. 77-94
    • Theiler, J.1    Eubank, S.2    Longtin, A.3    Galdrikian, B.4    Farmer, J.D.5
  • 114
    • 38749083808 scopus 로고    scopus 로고
    • Automatic seizure detection based on time-frequency analysis and artificial neural networks
    • http://dx.doi.org/10.1155/2007/80510
    • A.T. Tzallas, M.G. Tsipouras, and D.I. Fotiadis Automatic seizure detection based on time-frequency analysis and artificial neural networks Comput. Intell. Neurosci. 2007 http://dx.doi.org/10.1155/2007/80510
    • (2007) Comput. Intell. Neurosci.
    • Tzallas, A.T.1    Tsipouras, M.G.2    Fotiadis, D.I.3
  • 115
    • 5444221443 scopus 로고    scopus 로고
    • Spectral analysis of internal carotid arterial Doppler signals using FFT, AR, MA, and ARMA methods
    • E.D. Ubeyli, and I. Güler Spectral analysis of internal carotid arterial Doppler signals using FFT, AR, MA, and ARMA methods Comput. Biol. Med. 34 4 2004 293 306
    • (2004) Comput. Biol. Med. , vol.34 , Issue.4 , pp. 293-306
    • Ubeyli, E.D.1    Güler, I.2
  • 116
    • 70349472753 scopus 로고    scopus 로고
    • Least squares support vector machine employing model-based methods coefficients for analysis of EEG signals
    • E.D. Ubeyli Least squares support vector machine employing model-based methods coefficients for analysis of EEG signals Expert Syst. Appl. 37 1 2010 233 239
    • (2010) Expert Syst. Appl. , vol.37 , Issue.1 , pp. 233-239
    • Ubeyli, E.D.1
  • 117
    • 77952542989 scopus 로고    scopus 로고
    • Cross-frequency coupling in mesiotemporal EEG recordings of epileptic patients
    • A.E. Villa, and I.V. Tetko Cross-frequency coupling in mesiotemporal EEG recordings of epileptic patients J. Physiol. 104 3-4 2010 197 202
    • (2010) J. Physiol. , vol.104 , Issue.34 , pp. 197-202
    • Villa, A.E.1    Tetko, I.V.2
  • 118
    • 0026922952 scopus 로고
    • Wavelet and filter banks: Theory and design
    • M. Vitterli Wavelet and filter banks: theory and design IEEE Trans. Signal Process. 40 9 1992 2207 2232
    • (1992) IEEE Trans. Signal Process. , vol.40 , Issue.9 , pp. 2207-2232
    • Vitterli, M.1
  • 119
    • 0029868488 scopus 로고    scopus 로고
    • Beyond mapping: Estimating complexity of multi-channel EEG recordings
    • J. Wackermann Beyond mapping: estimating complexity of multi-channel EEG recordings Acta Neurobiol. Exp. 56 1 1996 197 208
    • (1996) Acta Neurobiol. Exp. , vol.56 , Issue.1 , pp. 197-208
    • Wackermann, J.1
  • 120
    • 79959978998 scopus 로고    scopus 로고
    • Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection
    • D. Wang, D. Miao, and C. Xie Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection Expert Syst. Appl. 38 11 2011 14314 14320
    • (2011) Expert Syst. Appl. , vol.38 , Issue.11 , pp. 14314-14320
    • Wang, D.1    Miao, D.2    Xie, C.3
  • 121
    • 0028354598 scopus 로고
    • Dynamical assessment of physiological systems and states using recurrence plot strategies
    • C.L. Webber Jr., and J.P. Zbilut Dynamical assessment of physiological systems and states using recurrence plot strategies J. Appl. Physiol. 76 2 1994 965 973
    • (1994) J. Appl. Physiol. , vol.76 , Issue.2 , pp. 965-973
    • Webber, Jr.C.L.1    Zbilut, J.P.2
  • 122
    • 84908144695 scopus 로고
    • The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms
    • P.D. Welch The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms IEEE Trans. Audio Electroacoust. AU-15 1967 70 73
    • (1967) IEEE Trans. Audio Electroacoust. , vol.15 AU- , pp. 70-73
    • Welch, P.D.1
  • 123
    • 0008494528 scopus 로고
    • Determining Lyapunov exponents from a time series
    • A. Wolf, J.B. Swift, H.L. Swinney, and J.A. Vastano Determining Lyapunov exponents from a time series Physica D 16 1985 285 317
    • (1985) Physica D , vol.16 , pp. 285-317
    • Wolf, A.1    Swift, J.B.2    Swinney, H.L.3    Vastano, J.A.4
  • 124
    • 84873522113 scopus 로고    scopus 로고
    • World Health Organization (last accessed 28.11.12)
    • World Health Organization, Epilepsy. < http://www.who.int/mental- health/neurology/epilepsy/en/index.html > (last accessed 28.11.12).
    • Epilepsy
  • 125
    • 0029831991 scopus 로고    scopus 로고
    • Dynamics of the brain at global and microscopic scales. Neural networks and the EEG
    • J.J. Wright, and D.T.J. Liley Dynamics of the brain at global and microscopic scales. Neural networks and the EEG Behav. Brain Sci. 19 1996 285 320
    • (1996) Behav. Brain Sci. , vol.19 , pp. 285-320
    • Wright, J.J.1    Liley, D.T.J.2
  • 126
    • 0038750647 scopus 로고    scopus 로고
    • Electroencephalography inverse problem by subspace decomposition of the fourth-order cumulant matrix
    • D. Yao Electroencephalography inverse problem by subspace decomposition of the fourth-order cumulant matrix J. Biomed. Eng. 17 2 2000 174 178
    • (2000) J. Biomed. Eng. , vol.17 , Issue.2 , pp. 174-178
    • Yao, D.1
  • 127
    • 0000688735 scopus 로고
    • Embeddings and delays as derived from quantification of recurrence plots
    • J.P. Zbilut, and C.L. Webber Jr. Embeddings and delays as derived from quantification of recurrence plots Phys. Lett. A 171 3-4 1992 199 203
    • (1992) Phys. Lett. A , vol.171 , Issue.34 , pp. 199-203
    • Zbilut, J.P.1    Webber, Jr.C.L.2
  • 128
    • 38349077304 scopus 로고    scopus 로고
    • Classifying mental tasks based on features of higher-order statistics from EEG signals in brain- computer interface
    • S.M. Zhuo, J.Q. Gan, and F. Sepulveda Classifying mental tasks based on features of higher-order statistics from EEG signals in brain- computer interface Inf Sci 178 6 2008 1629 1640
    • (2008) Inf Sci , vol.178 , Issue.6 , pp. 1629-1640
    • Zhuo, S.M.1    Gan, J.Q.2    Sepulveda, F.3
  • 129
    • 0037441741 scopus 로고    scopus 로고
    • Analysis of EEG records in an epileptic patient using wavelet transform
    • H. Adeli, Z. Zhou, and N. Dadmehr Analysis of EEG records in an epileptic patient using wavelet transform J. Neurosci. Methods 123 1 2003 69 87
    • (2003) J. Neurosci. Methods , vol.123 , Issue.1 , pp. 69-87
    • Adeli, H.1    Zhou, Z.2    Dadmehr, N.3
  • 130
    • 84876285339 scopus 로고    scopus 로고
    • Automated EEG-based Diagnosis of Neurological Disorders - Inventing the Future of Neurology CRC Press Taylor & Francis, Boca Raton, Florida
    • H. Adeli, and S. Ghosh-Dastidar (in corroboration with Nahid Dadmehr) Automated EEG-based Diagnosis of Neurological Disorders - Inventing the Future of Neurology 2010 CRC Press Taylor & Francis, Boca Raton, Florida
    • (2010) (In Corroboration with Nahid Dadmehr)
    • Adeli, H.1    Ghosh-Dastidar, S.2
  • 131
    • 77749242546 scopus 로고    scopus 로고
    • Wavelet synchronization methodology: A new approach for EEG-based diagnosis of ADHD
    • M. Ahmadlou, and H. Adeli Wavelet synchronization methodology: A new approach for EEG-based diagnosis of ADHD Clin. EEG Neurosci. 41 1 2010 1 10
    • (2010) Clin. EEG Neurosci. , vol.41 , Issue.1 , pp. 1-10
    • Ahmadlou, M.1    Adeli, H.2
  • 132
    • 78651087475 scopus 로고    scopus 로고
    • Fuzzy synchronization likelihood with application to attention deficit hyperactivity disorder
    • M. Ahmadlou, and H. Adeli Fuzzy synchronization likelihood with application to attention deficit hyperactivity disorder Clin. EEG Neurosci. 42 1 2011 6 13
    • (2011) Clin. EEG Neurosci. , vol.42 , Issue.1 , pp. 6-13
    • Ahmadlou, M.1    Adeli, H.2
  • 133
    • 84859370936 scopus 로고    scopus 로고
    • Graph theoretical analysis of organization of functional brain networks in ADHD
    • M. Ahmadlou, and H. Adeli Graph theoretical analysis of organization of functional brain networks in ADHD Clin. EEG Neurosci. 43 1 2012 5 13
    • (2012) Clin. EEG Neurosci. , vol.43 , Issue.1 , pp. 5-13
    • Ahmadlou, M.1    Adeli, H.2
  • 134
    • 84863434872 scopus 로고    scopus 로고
    • Improved visibility graph fractality with application for diagnosis of Autism Spectrum Disorder
    • M. Ahmadlou, H. Adeli, and A. Adeli Improved visibility graph fractality with application for diagnosis of Autism Spectrum Disorder Phys. Stat. Mech. Appl. 391 20 2012 4720 4726
    • (2012) Phys. Stat. Mech. Appl. , vol.391 , Issue.20 , pp. 4720-4726
    • Ahmadlou, M.1    Adeli, H.2    Adeli, A.3
  • 135
    • 84867341025 scopus 로고    scopus 로고
    • Fuzzy synchronization likelihood-wavelet methodology for diagnosis of Autism Spectrum Disorder
    • M. Ahmadlou, H. Adeli, and A. Adeli Fuzzy synchronization likelihood-wavelet methodology for diagnosis of Autism Spectrum Disorder J. Neurosci. Methods 211 2 2012 203 209
    • (2012) J. Neurosci. Methods , vol.211 , Issue.2 , pp. 203-209
    • Ahmadlou, M.1    Adeli, H.2    Adeli, A.3
  • 136
    • 79952194903 scopus 로고    scopus 로고
    • Fractality and a Wavelet-Chao Methodology for EEG-based diagnosis of Alzheimer's Disease
    • M. Ahmadlou, H. Adeli, and A. Adeli Fractality and a Wavelet-Chao Methodology for EEG-based diagnosis of Alzheimer's Disease Alzheimer Dis. Assoc. Disord. 25 1 2011 85 92
    • (2011) Alzheimer Dis. Assoc. Disord. , vol.25 , Issue.1 , pp. 85-92
    • Ahmadlou, M.1    Adeli, H.2    Adeli, A.3
  • 137
    • 79953032936 scopus 로고    scopus 로고
    • Probabilistic neural networks for EEG-based diagnosis of Alzheimer's disease using conventional and wavelet coherence
    • Z. Sankari, and H. Adeli Probabilistic neural networks for EEG-based diagnosis of Alzheimer's disease using conventional and wavelet coherence J. Neurosci. Methods 197 1 2011 165 170
    • (2011) J. Neurosci. Methods , vol.197 , Issue.1 , pp. 165-170
    • Sankari, Z.1    Adeli, H.2
  • 138
    • 78651088422 scopus 로고    scopus 로고
    • Intrahemispheric interhemispheric and distal EEG coherence in Alzheimer's disease
    • Z. Sankari, H. Adeli, A. Adeli, and Intrahemispheric interhemispheric and distal EEG coherence in Alzheimer's disease Clin. Neurophysiol. 122 5 2011 897 906
    • (2011) Clin. Neurophysiol. , vol.122 , Issue.5 , pp. 897-906
    • Sankari, Z.1    Adeli, H.2    Adeli, A.3
  • 139
    • 84870532507 scopus 로고    scopus 로고
    • Wavelet Coherence Model for Diagnosis of Alzheimer's Disease
    • Z. Sankari, H. Adeli, and A. Adeli Wavelet Coherence Model for Diagnosis of Alzheimer's Disease Clin. EEG Neurosci. 43 3 2012 268 278
    • (2012) Clin. EEG Neurosci. , vol.43 , Issue.3 , pp. 268-278
    • Sankari, Z.1    Adeli, H.2    Adeli, A.3
  • 140
    • 84865375785 scopus 로고    scopus 로고
    • Fractality analysis of frontal brain in Major Depressive Disorder
    • M. Ahmadlou, H. Adeli, and A. Adeli Fractality analysis of frontal brain in Major Depressive Disorder Int. J. Psychophysiol. 85 2 2012 206 211
    • (2012) Int. J. Psychophysiol. , vol.85 , Issue.2 , pp. 206-211
    • Ahmadlou, M.1    Adeli, H.2    Adeli, A.3
  • 141
    • 84876294279 scopus 로고    scopus 로고
    • Spatio-Temporal Analysis of Relative Convergence (STARC) of EEGs reveals differences between brain dynamics of depressive women and men
    • M. Ahmadlou, H. Adeli, and A. Adeli Spatio-Temporal Analysis of Relative Convergence (STARC) of EEGs reveals differences between brain dynamics of depressive women and men Clin. EEG Neurosci. 44 2013
    • (2013) Clin. EEG Neurosci. , vol.44
    • Ahmadlou, M.1    Adeli, H.2    Adeli, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.