메뉴 건너뛰기




Volumn 24, Issue 5, 2014, Pages 1163-1177

Performance analysis of support vector machines classifiers in breast cancer mammography recognition

Author keywords

Breast cancer diagnosis; Finite Newton method for Lagrangian support vector machine (NSVM); Lagrangian support vector machines (LSVM); Linear programming support vector machines (LPSVM); Proximal support vector machine (PSVM); Smooth support vector machine (SSVM); Soft computing

Indexed keywords

BREAST CANCER DIAGNOSIS; LAGRANGIAN SUPPORT VECTOR MACHINES; PROGRAMMING SUPPORT; PROXIMAL SUPPORT VECTOR MACHINES; SMOOTH SUPPORT VECTOR MACHINE;

EID: 84900583659     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-012-1324-4     Document Type: Article
Times cited : (206)

References (61)
  • 1
    • 0041339769 scopus 로고    scopus 로고
    • Supervised fuzzy clustering for the identification of fuzzy classifiers
    • Abonyi J, Szeifert F (2003) Supervised fuzzy clustering for the identification of fuzzy classifiers. Pattern Recognit Lett 24(14): 2195-2207.
    • (2003) Pattern Recognit Lett , vol.24 , Issue.14 , pp. 2195-2207
    • Abonyi, J.1    Szeifert, F.2
  • 2
    • 56349089940 scopus 로고    scopus 로고
    • Support vector machines combined with feature selection for breast cancer diagnosis
    • Akay MF (2009) Support vector machines combined with feature selection for breast cancer diagnosis. Expert Syst Appl 36(2): 3240-3247.
    • (2009) Expert Syst Appl , vol.36 , Issue.2 , pp. 3240-3247
    • Akay, M.F.1
  • 4
    • 84902205493 scopus 로고    scopus 로고
    • Comparison of view-based object recognition algorithms using realistic 3d models
    • In: von der Malsburg C, von Seelen W, Vorbruggen JC, Sendhoff B (eds), Springer Lecture Notes in Computer Science, Berlin
    • Blanz V, Scholkopf B, Bulthoff H et al (1996) Comparison of view-based object recognition algorithms using realistic 3d models. In: von der Malsburg C, von Seelen W, Vorbruggen JC, Sendhoff B (eds) Artificial Neural Networks-ICANN'96, Springer Lecture Notes in Computer Science, Berlin, vol 1112, pp 251-256.
    • (1996) Artificial Neural Networks-ICANN'96 , vol.1112 , pp. 251-256
    • Blanz, V.1    Scholkopf, B.2    Bulthoff, H.3
  • 5
  • 6
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2(2): 121-167.
    • (1998) Data Min Knowl Discov , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 7
    • 84898957872 scopus 로고    scopus 로고
    • Improving the accuracy and speed of support vector learning machines
    • M. Mozer, M. Jordan, and T. Petsche (Eds.), Cambridge: MIT Press
    • Burges CJC, Scholkopf B (1997) Improving the accuracy and speed of support vector learning machines. In: Mozer M, Jordan M, Petsche T (eds) Advances in neural information processing systems 9. MIT Press, Cambridge, pp 375-381.
    • (1997) Advances in Neural Information Processing Systems 9 , pp. 375-381
    • Burges, C.J.C.1    Scholkopf, B.2
  • 8
    • 79953712588 scopus 로고    scopus 로고
    • WBCD breast cancer database classification applying artificial metaplasticity neural network
    • Cedeño AM, Domíngueza JQ, Andina D (2011) WBCD breast cancer database classification applying artificial metaplasticity neural network. Expert Syst Appl 38(8): 9573-9579.
    • (2011) Expert Syst Appl , vol.38 , Issue.8 , pp. 9573-9579
    • Cedeño, A.M.1    Domíngueza, J.Q.2    Andina, D.3
  • 9
    • 0037306384 scopus 로고    scopus 로고
    • Support vector machines for diagnosis of breast tumors on US images
    • Chang RF, Wu WJ, Moon WK et al (2003) Support vector machines for diagnosis of breast tumors on US images. Acad Radiol 10(2): 189-197.
    • (2003) Acad Radiol , vol.10 , Issue.2 , pp. 189-197
    • Chang, R.F.1    Wu, W.J.2    Moon, W.K.3
  • 10
    • 79952449647 scopus 로고    scopus 로고
    • A support vector machine classifier with rough set based feature selection for breast cancer diagnosis
    • Chen HL, Yanga B, Liua J, Liu DY (2011) A support vector machine classifier with rough set based feature selection for breast cancer diagnosis. Expert Syst Appl 38(7): 9014-9022.
    • (2011) Expert Syst Appl , vol.38 , Issue.7 , pp. 9014-9022
    • Chen, H.L.1    Yanga, B.2    Liua, J.3    Liu, D.Y.4
  • 11
    • 84866075139 scopus 로고    scopus 로고
    • Support vector machine based diagnostic system for breast cancer using swarm intelligence
    • doi:10.1007/s10916-011-9723-0
    • Chen HL, Yang B, Wang G et al (2011) Support vector machine based diagnostic system for breast cancer using swarm intelligence. J Med Syst. doi: 10. 1007/s10916-011-9723-0.
    • (2011) J Med Syst
    • Chen, H.L.1    Yang, B.2    Wang, G.3
  • 12
    • 34249753618 scopus 로고
    • Support vector network
    • Cortes C, Vapnik V (1995) Support vector network. Mach Learn 20: 273-297.
    • (1995) Mach Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 14
    • 0002439508 scopus 로고    scopus 로고
    • Regularization networks and support vector machines
    • P. Bartlett, B. Scholkopf, D. Schuurmans, and A. J. Smola (Eds.), Cambridge: MIT Press
    • Evgeniou T, Pontil M, Poggio T (2000) Regularization networks and support vector machines. In: Bartlett P, Scholkopf B, Schuurmans D, Smola AJ (eds) Advances in large margin classifiers. MIT Press, Cambridge, pp 171-203.
    • (2000) Advances in Large Margin Classifiers , pp. 171-203
    • Evgeniou, T.1    Pontil, M.2    Poggio, T.3
  • 15
    • 77957898242 scopus 로고    scopus 로고
    • A hybrid model combining case-based reasoning and fuzzy decision tree for medical data classification
    • Fan CY, Changb PC, Linb JJ, Hsieh JC (2011) A hybrid model combining case-based reasoning and fuzzy decision tree for medical data classification. Appl Soft Comput 11(1): 632-644.
    • (2011) Appl Soft Comput , vol.11 , Issue.1 , pp. 632-644
    • Fan, C.Y.1    Changb, P.C.2    Linb, J.J.3    Hsieh, J.C.4
  • 16
    • 33847674996 scopus 로고    scopus 로고
    • Resampling methods for parameter-free and robust feature selection with mutual information
    • Francois D, Rossi F, Wertz V, Verleysen M (2007) Resampling methods for parameter-free and robust feature selection with mutual information. Neurocomputing 70: 1276-1288.
    • (2007) Neurocomputing , vol.70 , pp. 1276-1288
    • Francois, D.1    Rossi, F.2    Wertz, V.3    Verleysen, M.4
  • 17
    • 3543109140 scopus 로고    scopus 로고
    • A feature selection Newton method for support vector machine classification
    • Fung G, Mangasarian OL (2004) A feature selection Newton method for support vector machine classification. Comput Optim Appl 28(2): 185-202.
    • (2004) Comput Optim Appl , vol.28 , Issue.2 , pp. 185-202
    • Fung, G.1    Mangasarian, O.L.2
  • 18
    • 0242288821 scopus 로고    scopus 로고
    • Finite {N}ewton method for {L}agrangian support vector machine classification
    • Fung G, Mangasarian OL (2003) Finite {N}ewton method for {L}agrangian support vector machine classification. Neurocomputing 55(1-2): 39-55.
    • (2003) Neurocomputing , vol.55 , Issue.1-2 , pp. 39-55
    • Fung, G.1    Mangasarian, O.L.2
  • 20
    • 0037004445 scopus 로고    scopus 로고
    • Artificial immune system classification of multiple-class problems
    • In: Dagli CH, Buczak AL, Ghosh J, Ersoy O, Kercel SW (eds)
    • Goodman D, Boggess L, Watkins A (2002) Artificial immune system classification of multiple-class problems. In: Dagli CH, Buczak AL, Ghosh J, Ersoy O, Kercel SW (eds) Intell Eng Syst Artif Neural Net, vol 12, pp 179-184.
    • (2002) Intell Eng Syst Artif Neural Net , vol.12 , pp. 179-184
    • Goodman, D.1    Boggess, L.2    Watkins, A.3
  • 24
    • 77957593466 scopus 로고    scopus 로고
    • Neural network classifier with entropy based feature selection on breast cancer diagnosis
    • Huang ML, Hung YH, Chen WY (2010) Neural network classifier with entropy based feature selection on breast cancer diagnosis. J Med Syst 34(5): 865-873.
    • (2010) J Med Syst , vol.34 , Issue.5 , pp. 865-873
    • Huang, M.L.1    Hung, Y.H.2    Chen, W.Y.3
  • 27
    • 56349123043 scopus 로고    scopus 로고
    • An expert system for detection of breast cancer based on association rules and neural network
    • Karabatak M, Ince MC (2009) An expert system for detection of breast cancer based on association rules and neural network. Exp Syst Appl 36(2, Part 2): 3465-3469.
    • (2009) Exp Syst Appl , vol.36 , Issue.2 PART 2 , pp. 3465-3469
    • Karabatak, M.1    Ince, M.C.2
  • 28
    • 60849106189 scopus 로고    scopus 로고
    • Receiver operating characteristic curve confidence intervals and regions
    • Kerekes J (2008) Receiver operating characteristic curve confidence intervals and regions. IEEE Geosci Remote Sens Lett 5(2): 251-255.
    • (2008) IEEE Geosci Remote Sens Lett , vol.5 , Issue.2 , pp. 251-255
    • Kerekes, J.1
  • 29
    • 0035479871 scopus 로고    scopus 로고
    • {SSVM}: a smooth support vector machine
    • Lee YJ, Mangasarian OL (2001) {SSVM}: a smooth support vector machine. Comput Optim Appl 20: 5-22.
    • (2001) Comput Optim Appl , vol.20 , pp. 5-22
    • Lee, Y.J.1    Mangasarian, O.L.2
  • 30
    • 0038512079 scopus 로고    scopus 로고
    • Diagnosing breast cancer based on support vector machines
    • Liu HX, Zhang RS, Luan F et al (2003) Diagnosing breast cancer based on support vector machines. J Chem Inf Comput Sci 43(3): 900-907.
    • (2003) J Chem Inf Comput Sci , vol.43 , Issue.3 , pp. 900-907
    • Liu, H.X.1    Zhang, R.S.2    Luan, F.3
  • 33
  • 34
    • 0001777975 scopus 로고    scopus 로고
    • Generalized support vector machines
    • A. Smola, P. Bartlett, B. Scholkopf, and D. Schuurmans (Eds.), Cambridge: MIT Press
    • Mangasarian OL (2000) Generalized support vector machines. In: Smola A, Bartlett P, Scholkopf B, Schuurmans D (eds) Advances in large margin classifiers. MIT Press, Cambridge, pp 135-146.
    • (2000) Advances in Large Margin Classifiers , pp. 135-146
    • Mangasarian, O.L.1
  • 35
    • 77951208428 scopus 로고    scopus 로고
    • Breast cancer in women under 40 years of age: a series of 57 cases from Northern Ireland
    • McAree B, O'Donnell ME, Spence A et al (2010) Breast cancer in women under 40 years of age: a series of 57 cases from Northern Ireland. Breast 19(2): 97-104.
    • (2010) Breast , vol.19 , Issue.2 , pp. 97-104
    • McAree, B.1    O'Donnell, M.E.2    Spence, A.3
  • 36
    • 0004255908 scopus 로고    scopus 로고
    • New York: The McGraw-Hill Companies, Inc
    • Mitchell T (1997) Machine learning. The McGraw-Hill Companies, Inc., New York.
    • (1997) Machine Learning
    • Mitchell, T.1
  • 37
    • 0032960792 scopus 로고    scopus 로고
    • Obtaining interpretable fuzzy classification rules from medical data
    • Nauck D, Kruse R (1999) Obtaining interpretable fuzzy classification rules from medical data. Artif Intell Med 16(2): 149-169.
    • (1999) Artif Intell Med , vol.16 , Issue.2 , pp. 149-169
    • Nauck, D.1    Kruse, R.2
  • 40
    • 2342446592 scopus 로고    scopus 로고
    • Receiver operating characteristic (ROC) curve: practical review for radiologists
    • Park SH, Goo JM, Jo CH (2004) Receiver operating characteristic (ROC) curve: practical review for radiologists. Korean J Radiol 5(1): 11-18.
    • (2004) Korean J Radiol , vol.5 , Issue.1 , pp. 11-18
    • Park, S.H.1    Goo, J.M.2    Jo, C.H.3
  • 41
    • 0344466786 scopus 로고    scopus 로고
    • A fuzzy-genetic approach to breast cancer diagnosis
    • Pena-Reyes CA, Sipper M (1999) A fuzzy-genetic approach to breast cancer diagnosis. Artif Intell Med 17(2): 131-155.
    • (1999) Artif Intell Med , vol.17 , Issue.2 , pp. 131-155
    • Pena-Reyes, C.A.1    Sipper, M.2
  • 42
    • 34249317613 scopus 로고    scopus 로고
    • Breast cancer diagnosis using least square support vector machine
    • Polat K, Gunes S (2007) Breast cancer diagnosis using least square support vector machine. Digit Signal Process 17(4): 694-701.
    • (2007) Digit Signal Process , vol.17 , Issue.4 , pp. 694-701
    • Polat, K.1    Gunes, S.2
  • 44
    • 0029678894 scopus 로고    scopus 로고
    • Improved use of continuous attributes in C4. 5
    • Quinlan J (1996) Improved use of continuous attributes in C4. 5. J Artif Intell Res 4: 77-90.
    • (1996) J Artif Intell Res , vol.4 , pp. 77-90
    • Quinlan, J.1
  • 45
    • 33846014233 scopus 로고    scopus 로고
    • A new hybrid method based on fuzzy-artificial immune system and k-nn algorithm for breast cancer diagnosis
    • Sahan S, Polat K, Kodaz H, Günes S (2007) A new hybrid method based on fuzzy-artificial immune system and k-nn algorithm for breast cancer diagnosis. Comput Biol Med 37(3): 415-423.
    • (2007) Comput Biol Med , vol.37 , Issue.3 , pp. 415-423
    • Sahan, S.1    Polat, K.2    Kodaz, H.3    Günes, S.4
  • 48
    • 84902142380 scopus 로고    scopus 로고
    • Incorporating invariances in support vector learning machines
    • C. Malsburgvon der, W. Seelenvon, J. C. Vorbruggen, and B. Sendhoff (Eds.), Berlin: Springer Lecture Notes in Computer Science
    • Scholkopf B, Burges C, Vapnik V (1996) Incorporating invariances in support vector learning machines. In: von der Malsburg C, von Seelen W, Vorbruggen JC, Sendhoff B (eds) Artificial neural networks- ICANN'96, vol 1112. Springer Lecture Notes in Computer Science, Berlin, pp 47-52.
    • (1996) Artificial Neural Networks- ICANN'96 , vol.1112 , pp. 47-52
    • Scholkopf, B.1    Burges, C.2    Vapnik, V.3
  • 49
    • 0034159928 scopus 로고    scopus 로고
    • Generating concise and accurate classification rules for breast cancer diagnosis
    • Setiono R (2000) Generating concise and accurate classification rules for breast cancer diagnosis. Artif Intell Med 18(3): 205-219.
    • (2000) Artif Intell Med , vol.18 , Issue.3 , pp. 205-219
    • Setiono, R.1
  • 53
    • 23944521875 scopus 로고    scopus 로고
    • A mixture of experts network structure for breast cancer diagnosis
    • Übeyli ED (2005) A mixture of experts network structure for breast cancer diagnosis. J Med Syst 29(5): 569-579.
    • (2005) J Med Syst , vol.29 , Issue.5 , pp. 569-579
    • Übeyli, E.D.1
  • 54
    • 70449673352 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference systems for automatic detection of breast cancer
    • Übeyli ED (2009) Adaptive neuro-fuzzy inference systems for automatic detection of breast cancer. J Med Syst 33(5): 353-358.
    • (2009) J Med Syst , vol.33 , Issue.5 , pp. 353-358
    • Übeyli, E.D.1
  • 55
    • 33947653184 scopus 로고    scopus 로고
    • Implementing automated diagnostic systems for breast cancer detection
    • Ubeyli ED (2007) Implementing automated diagnostic systems for breast cancer detection. Expert Syst Appl 33(4): 1054-1062.
    • (2007) Expert Syst Appl , vol.33 , Issue.4 , pp. 1054-1062
    • Ubeyli, E.D.1
  • 56
    • 34250666040 scopus 로고    scopus 로고
    • UCI Accessed on 10 Aug 2012
    • UCI (2012) Machine learning repository. http://archive. ics. uci. edu/ml/index. html. Accessed on 10 Aug 2012.
    • (2012) Machine learning repository
  • 59
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation, and signal processing
    • M. Mozer, M. Jordan, and T. Petsche (Eds.), MIT Press: Cambridge
    • Vapnik V, Golowich S, Smola A (1997) Support vector method for function approximation, regression estimation, and signal processing. In: Mozer M, Jordan M, Petsche T (eds) Advances in neural information processing systems 9. Cambridge, MIT Press, pp 281-287.
    • (1997) Advances in Neural Information Processing Systems 9 , pp. 281-287
    • Vapnik, V.1    Golowich, S.2    Smola, A.3
  • 60
    • 0025651706 scopus 로고
    • Multisurface method of pattern separation for medical diagnosis applied to breast cytology
    • Wolberg WH, Mangasarian OL (1990) Multisurface method of pattern separation for medical diagnosis applied to breast cytology. Proc Natl Acad Sci 87: 9193-9196.
    • (1990) Proc Natl Acad Sci , vol.87 , pp. 9193-9196
    • Wolberg, W.H.1    Mangasarian, O.L.2
  • 61
    • 84908049235 scopus 로고    scopus 로고
    • Diagnosis of breast tumours and evaluation of prognostic risk by using machine learning approaches
    • Yuan Q, Cai C, Xiao H et al (2007) Diagnosis of breast tumours and evaluation of prognostic risk by using machine learning approaches. Commun Comput Inform Sci 2: 1250-1260.
    • (2007) Commun Comput Inform Sci , vol.2 , pp. 1250-1260
    • Yuan, Q.1    Cai, C.2    Xiao, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.