-
1
-
-
0031264147
-
Use of the fractal dimension for the analysis of electroencephalographic time series
-
Accardo, A., Affinito, M., Carrozzi, M., & Bouquet, F. (1997). Use of the fractal dimension for the analysis of electroencephalographic time series. Biological Cybernetics, 77, 339–350.
-
(1997)
Biological Cybernetics
, vol.77
, pp. 339-350
-
-
Accardo, A.1
Affinito, M.2
Carrozzi, M.3
Bouquet, F.4
-
2
-
-
84859217391
-
Use of principal component analysis for automatic classification of epileptic EEG activities in wavelet framework
-
Acharya, U. R., Sree, S. V., Alvin, A. P. C, & Suri, J. S. (2012). Use of principal component analysis for automatic classification of epileptic EEG activities in wavelet framework. Expert Systems with Applications, 39(10), 9072–9078.
-
(2012)
Expert Systems with Applications
, vol.39
, Issue.10
, pp. 9072-9078
-
-
Acharya, U.R.1
Sree, S.V.2
Alvin, A.P.C.3
Suri, J.S.4
-
3
-
-
84876285375
-
Automated EEG analysis of epilepsy: A review
-
Acharya, U. R., Sree, S. V., Swapna, G., Martis, R. J., & Suri, J. S. (2013). Automated EEG analysis of epilepsy: A review. Knowledge-Based Systems, 45, 147–165.
-
(2013)
Knowledge-Based Systems
, vol.45
, pp. 147-165
-
-
Acharya, U.R.1
Sree, S.V.2
Swapna, G.3
Martis, R.J.4
Suri, J.S.5
-
4
-
-
33846672121
-
A wavelet-chaos methodology for analysis of EEGs and EEG sub-bands to detect seizure and epilepsy
-
Adeli, H., Ghosh-Dastidar, S., & Dadmehr, N. (2007). A wavelet-chaos methodology for analysis of EEGs and EEG sub-bands to detect seizure and epilepsy. IEEE Transactions on Biomedical Engineering, 54(2), 205–211.
-
(2007)
IEEE Transactions on Biomedical Engineering
, vol.54
, Issue.2
, pp. 205-211
-
-
Adeli, H.1
Ghosh-Dastidar, S.2
Dadmehr, N.3
-
5
-
-
77951208271
-
Epileptic EEG detection using the linear prediction error energy
-
Altunay, S., Telatar, Z., & Erogul, O. (2010). Epileptic EEG detection using the linear prediction error energy. Expert Systems with Applications, 37(8), 5661–5665.
-
(2010)
Expert Systems with Applications
, vol.37
, Issue.8
, pp. 5661-5665
-
-
Altunay, S.1
Telatar, Z.2
Erogul, O.3
-
6
-
-
57649223832
-
-
Amoud, H., Snoussi, H., Hewson, D. J., and Duchêne, J. (2007). Hilbert-Huang transformation: Application to postural stability analysis. In: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 1562–1565), Lyon, France, 29–23 Aug 2007.
-
-
-
-
7
-
-
0035682573
-
Indications of nonlinear deterministics and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state
-
061907
-
Andrzejak, R. G, et al. (2001). Indications of nonlinear deterministics and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Physical Review E, 64(6), 061907.
-
(2001)
Physical Review E
, vol.64
, Issue.6
-
-
Andrzejak, R.G.1
-
8
-
-
1242292270
-
EEG background activity described by a large computerized database
-
Aurlien, H., et al. (2004). EEG background activity described by a large computerized database. Clinical Neurophysiology, 115(3), 665–673.
-
(2004)
Clinical Neurophysiology
, vol.115
, Issue.3
, pp. 665-673
-
-
Aurlien, H.1
-
9
-
-
84900583659
-
Performance analysis of support vector machines classifier in breast cancer mammography recognition
-
Azar, A. T., & El-Said, S. A. (2014). Performance analysis of support vector machines classifier in breast cancer mammography recognition. Neural Computings and Applications. 24(5), 1163–1177. doi:10.1007/S00521-012-1324-4.
-
(2014)
Neural Computings and Applications
, pp. 1163-1177
-
-
Azar, A.T.1
El-Said, S.A.2
-
10
-
-
84865980798
-
Classification of seizure and nonseizure EEG signals using empirical mode decomposition
-
Bajaj, V., & Pachori, R. B. (2012). Classification of seizure and nonseizure EEG signals using empirical mode decomposition. IEEE Transactions on Information Technology in Biomedicine, 16(6), 1135–1142.
-
(2012)
IEEE Transactions on Information Technology in Biomedicine
, pp. 1135-1142
-
-
Bajaj, V.1
Pachori, R.B.2
-
11
-
-
84903811417
-
Time–frequency detection of EEG abnormalities
-
B. Boashash (Ed.), Oxford: Elsevier
-
Boashash, B., Mesbah, M., & Colditz, P. (2003). Time–frequency detection of EEG abnormalities. In B. Boashash (Ed.), Time-frequency signal analysis and processing: A comprehensive reference (pp. 663–670). Oxford: Elsevier.
-
(2003)
Time-Frequency Signal Analysis and Processing: A Comprehensive Reference
, pp. 663-670
-
-
Boashash, B.1
Mesbah, M.2
Colditz, P.3
-
12
-
-
18744431041
-
Non-linearity in invasive EEG recordings from patients with temporal lobe epilepsy
-
Casdagli, M. C, et al. (1997). Non-linearity in invasive EEG recordings from patients with temporal lobe epilepsy. Electroencephalography and Clinical Neurophysiology, 102(2), 98–105.
-
(1997)
Electroencephalography and Clinical Neurophysiology
, pp. 98-105
-
-
Casdagli, M.C.1
-
13
-
-
74049101116
-
Study of age-related changes in postural control during quiet standing through linear discriminant analysis
-
Cavalheiro, G. L., Almeida, M. F. S., Pereira, A., & Andrade, A. O. (2009). Study of age-related changes in postural control during quiet standing through linear discriminant analysis. BioMedical Engineering Online, 8(35), 10–1186.
-
(2009)
BioMedical Engineering Online
, pp. 10-1186
-
-
Cavalheiro, G.L.1
Almeida, M.2
Pereira, A.3
Andrade, A.O.4
-
14
-
-
0029744119
-
Applying continuous chaotic modeling to cardic signal analysis
-
Cohen, M. E., Hudson, D. L., & Deedwania, P. C. (1996). Applying continuous chaotic modeling to cardic signal analysis. IEEE Engineering in Medicine and Biology Magazine, 15(5), 97–102.
-
(1996)
IEEE Engineering in Medicine and Biology Magazine
, vol.15
, Issue.5
, pp. 97-102
-
-
Cohen, M.E.1
Hudson, D.L.2
Deedwania, P.C.3
-
15
-
-
34249753618
-
Support-vector networks
-
Cortes, C, & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.
-
(1995)
Machine Learning
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
16
-
-
79960803523
-
Improving the separability of multiple EEG features for a BCI by neural-time-series-prediction-preprocessing
-
Coyle, D., McGinnity, T. M., & Prasad, G. (2010). Improving the separability of multiple EEG features for a BCI by neural-time-series-prediction-preprocessing. Biomedical Signal Processing and Control, 5(3), 196-204.
-
(2007)
Biomedical Signal Processing and Control
, vol.5
, Issue.3
, pp. 196-204
-
-
Coyle, D.1
McGinnity, T.M.2
Prasad, G.3
-
17
-
-
84876280773
-
The role of sprouting and plasticity in epileptogenesis and behavior
-
S. Schachter, G. L. Holmes, & D. G. Trenite (Eds.), New York: Demos Medical Publishing
-
Cross, D. J., & Cavazos, J. E. (2007). The role of sprouting and plasticity in epileptogenesis and behavior. In S. Schachter, G. L. Holmes, & D. G. Trenite (Eds.), Behavioural Aspects of Epilepsy (pp. 51–57). New York: Demos Medical Publishing.
-
(2007)
Behavioural Aspects of Epilepsy
, pp. 51-57
-
-
Cross, D.J.1
Cavazos, J.E.2
-
18
-
-
79953108190
-
Improved generalized fractal dimensions in the discrimination between healthy and epileptic EEG signals
-
Easwaramoorthy, D., & Uthayakumar, R. (2011). Improved generalized fractal dimensions in the discrimination between healthy and epileptic EEG signals. Journal of Computational Science, 2(1), 31–38.
-
(2011)
Journal of Computational Science
, vol.2
, Issue.1
, pp. 31-38
-
-
Easwaramoorthy, D.1
Uthayakumar, R.2
-
19
-
-
34547573516
-
Mixed-band wavelet-chaos neural network methodology for epilepsy and epileptic seizure detection
-
Ghosh-Dastidar, S., Adeli, H., & Dadmehr, N. (2007). Mixed-band wavelet-chaos neural network methodology for epilepsy and epileptic seizure detection. IEEE Transactions on Biomedical Engineering, 54(9), 1545–1551.
-
(2007)
IEEE Transactions on Biomedical Engineering
, vol.54
, Issue.9
, pp. 1545-1551
-
-
Ghosh-Dastidar, S.1
Adeli, H.2
Dadmehr, N.3
-
20
-
-
38349123053
-
Principal component analysis enhanced cosine radial basis function neural network for robust epilepsy and seizure detection. IEEE Transactions on Biomedical Engineering
-
Ghosh-Dastidar, S., Adeli, H., & Dadmehr, N. (2008). Principal component analysis enhanced cosine radial basis function neural network for robust epilepsy and seizure detection. IEEE Transactions on Biomedical Engineering, 55(2), 512–518.
-
(2008)
IEEE Transactions on Biomedical Engineering
, pp. 512-518
-
-
Ghosh-Dastidar, S.1
Adeli, H.2
-
21
-
-
24144470790
-
Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert Systems with Applications
-
Güler, N. F., Übeyli, E. D., & Güler, I. (2005). Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert Systems with Applications, 29(3), 506–514.
-
(2005)
Expert Systems with Applications
, vol.29
, Issue.3
, pp. 506-514
-
-
Güler, N.F.1
Übeyli, E.D.2
Güler, I.3
-
22
-
-
77957685691
-
Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks. Journal of Neuroscience Methods
-
Guo, L., Rivero, D., & Pazos, A. (2010). Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks. Journal of Neuroscience Methods, 193(1), 156–163.
-
(2010)
Journal of Neuroscience Methods
, vol.193
, Issue.1
, pp. 156-163
-
-
Guo, L.1
Rivero, D.2
Pazos, A.3
-
23
-
-
33846604242
-
How common are the "common" neurologic disorders? Neurology
-
Hirtz, D., Thurman, D. J., Gwinn-Hardy, K., Mohamed, M., Chaudhuri, A. R., & Zalutsky, R. (2007). How common are the "common" neurologic disorders? Neurology, 68(5), 326–337.
-
(2007)
Neurology
, vol.68
, Issue.5
, pp. 326-337
-
-
Hirtz, D.1
Thurman, D.J.2
Gwinn-Hardy, K.3
Mohamed, M.4
Chaudhuri, A.R.5
Zalutsky, R.6
-
24
-
-
5444236478
-
The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences
-
Huang, N. E., et al. (1998). The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysisProceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 454(1911), 903–995.
-
(1998)
Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences
, vol.454
, Issue.1971
, pp. 903-995
-
-
Huang, N.E.1
-
26
-
-
67650221411
-
Adapting subject specific motor imagery EEG patterns in space–time–frequency for a brain computer interface
-
Ince, N. F., Goksu, F., Tewfik, A. H., & Arica, S. (2009). Adapting subject specific motor imagery EEG patterns in space–time–frequency for a brain computer interface. Biomedical Signal Processing and Control, 4(3), 236–246.
-
(2009)
Biomedical Signal Processing and Control
, pp. 236-246
-
-
Ince, N.1
Goksu, F.F.2
Tewfik, A.H.3
Arica, S.4
-
27
-
-
84886528449
-
Classification of ictal and seizure-free EEG signals using fractional linear prediction
-
Joshi, V., Pachori, R. B., & Vijesh, A. (2014). Classification of ictal and seizure-free EEG signals using fractional linear prediction. Biomedical Signal Processing and Control, 9, 1–5.
-
(2014)
Biomedical Signal Processing and Control
, vol.9
, pp. 1-5
-
-
Joshi, V.1
Pachori, R.B.2
Vijesh, A.3
-
28
-
-
27744537035
-
Entropies for detection of epilepsy in EEG
-
Kannathal, N., Choo, M. L., Acharya, U. R., & Sadasivan, P. K. (2005). Entropies for detection of epilepsy in EEG. Computer Methods and Programs in Biomedicine, 80(3), 187–194.
-
(2005)
Computer Methods and Programs in Biomedicine
, vol.80
, Issue.3
, pp. 187-194
-
-
Kannathal, N.1
Choo, M.L.2
Acharya, U.R.3
Sadasivan, P.K.4
-
29
-
-
37249031426
-
Wavelet-based feature extraction for support vector machines for screening balance impairments in the elderly
-
Khandoker, A. H., Lai, D. T. H., Begg, R. K., & Palaniswami, M. (2007). Wavelet-based feature extraction for support vector machines for screening balance impairments in the elderly. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 15(4), 587–597.
-
(2007)
IEEE Transactions on Neural Systems and Rehabilitation Engineering
, vol.15
, Issue.4
, pp. 587-597
-
-
Kannathal, N.1
Choo, M.L.2
Acharya, U.R.3
Sadasivan, P.K.4
-
31
-
-
84878902261
-
Feature extraction & recognition of ictal EEG using EMD and SVM
-
Li, S., Zhou, W., Yuan, Q., Geng, S., & Cai, D. (2013). Feature extraction & recognition of ictal EEG using EMD and SVM. Computers in Biology and Medicine, 43(7), 807–816.
-
(2013)
Computers in Biology and Medicine
, vol.43
, Issue.7
, pp. 807-816
-
-
Li, S.1
Zhou, W.2
Yuan, Q.3
Geng, S.4
Cai, D.5
-
32
-
-
0032006582
-
A new interpretation of nonlinear energy operator and its efficacy in spike detection
-
Mukhopadhyay, S., & Ray, G. C. (1998). A new interpretation of nonlinear energy operator and its efficacy in spike detection. IEEE Transactions on Biomedical Engineering, 45(2), 180–187.
-
(1998)
IEEE Transactions on Biomedical Engineering
, pp. 180-187
-
-
Mukhopadhyay, S.1
Ray, G.C.2
-
33
-
-
77951590218
-
Estimation of the burden of active and life-time epilepsy: A meta-analytic approach
-
Ngugi, A. K., Bottomley, C, Kleinschmidt, I., Sander, J. W., & Newton, C. R. (2010). Estimation of the burden of active and life-time epilepsy: A meta-analytic approach. Epilepsia, 51, 883–890.
-
(2010)
Epilepsia
, vol.51
, pp. 883-890
-
-
Ngugi, A.K.1
Bottomley, C.2
Kleinschmidt, I.3
Sander, J.W.4
Newton, C.R.5
-
34
-
-
0842310823
-
A neural-network-based detection of epilepsy
-
Nigam, V. P., & Graupe, D. (2004). A neural-network-based detection of epilepsy. Neurological Research, 26, 55–60.
-
(2004)
Neurological Research
, vol.26
, pp. 55-60
-
-
Nigam, V.P.1
Graupe, D.2
-
35
-
-
56349101801
-
Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy
-
Ocak, H. (2009). Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Systems with Applications, 36(2), 2017–2036.
-
(2009)
Expert Systems with Applications
, pp. 2017-2036
-
-
Ocak, H.1
-
36
-
-
79956288045
-
Seizure classification in EEG signals utilizing Hilbert-Huang transform
-
Oweis, R. J., & Abdulhay, E. W. (2011). Seizure classification in EEG signals utilizing Hilbert-Huang transform. BioMedical Engineering Online, 10, 38.
-
(2011)
Biomedical Engineering Online
, vol.10
, pp. 38
-
-
Oweis, R.J.1
Abdulhay, E.W.2
-
37
-
-
78549254986
-
Discrimination between ictal and seizure-free EEG signals using empirical mode decomposition
-
293056
-
Pachori, R. B. (2008). Discrimination between ictal and seizure-free EEG signals using empirical mode decomposition. Research Letters in Signal Processing, 293056, 5 p.
-
(2008)
Research Letters in Signal Processing
, pp. 5
-
-
Pachori, R.B.1
-
38
-
-
80655124711
-
Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition
-
Pachori, R. B., & Bajaj, V. (2011). Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition. Computer Methods and Programs in Biomedicine, 104(3), 373–381.
-
(2011)
Computer Methods and Programs in Biomedicine
, pp. 373-381
-
-
Pachori, R.B.1
Bajaj, V.2
-
39
-
-
70349459780
-
-
Pachori, R. B., Hewson, D., Snoussi, H., & Duchêne, J. (2009). Postural time-series analysis using empirical mode decomposition and second-order difference plots. In IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 537–540), Taipei, Taiwan, 19–24 Apr 2009.
-
-
-
-
40
-
-
84892783589
-
Epileptic seizure classification in EEG signals using second-order difference plot of intrinsic mode functions
-
Pachori, R. B., & Patidar, S. (2014). Epileptic seizure classification in EEG signals using second-order difference plot of intrinsic mode functions. Computer Methods and Programs in Biomedicine, 113(2), 494–502.
-
(2014)
Computer Methods and Programs in Biomedicine
, vol.113
, Issue.2
, pp. 494-502
-
-
Pachori, R.B.1
Patidar, S.2
-
41
-
-
35248825924
-
EEG signal analysis using FB expansion and second-order linear TVAR process
-
Pachori, R. B., & Sircar, P. (2008). EEG signal analysis using FB expansion and second-order linear TVAR process. Signal Processing, 88(2), 415–420.
-
(2008)
Signal Processing
, pp. 415-420
-
-
Pachori, R.B.1
Sircar, P.2
-
42
-
-
34247217946
-
Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform
-
Polat, K., & Güneş, S. (2007). Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform. Applied Mathematics and Computation, 187 (2), 1017–1026.
-
(2007)
Applied Mathematics and Computation
, vol.187
, Issue.2
, pp. 1017-1026
-
-
Polat, K.1
Güneş, S.2
-
43
-
-
0030249034
-
Measures of postural steadiness: Differences between healthy young and elderly adults
-
Prieto, T. E., Myklebust, J. B., Hoffmann, R. G., Lovett, E. G., & Mykelbust, B. M. (1996). Measures of postural steadiness: Differences between healthy young and elderly adults. IEEE Transactions on Biomedical Engineering, 43(9), 956–966.
-
(1996)
IEEE Transactions on Biomedical Engineering
, vol.43
, Issue.9
, pp. 956-966
-
-
Prieto, T.E.1
Myklebust, J.B.2
Hoffmann, R.G.3
Lovett, E.G.4
Mykelbust, B.M.5
-
44
-
-
1542346294
-
Special Considerations in Treating the Elderly Patient with Epilepsy
-
Ramsay, R. E., Rowan, A. J., & Pryor, F. M. (2004). Special considerations in treating the elderly patient with epilepsy. Neurology, 62(5 suppl 2), S24–S29.
-
(2004)
Neurology
, vol.5
, pp. S24-S29
-
-
Ramsay, R.E.1
Rowan, A.J.2
Pryor, F.M.3
-
45
-
-
0028494938
-
An algorithm to separate nonstationary part of a signal using mid-prediction filter
-
Ray, G. C. (1994). An algorithm to separate nonstationary part of a signal using mid-prediction filter. IEEE Transactions on Signal Processing, 42(9), 2276–2279.
-
(1994)
IEEE Transactions on Signal Processing
, vol.42
, Issue.9
, pp. 2276-2279
-
-
Ray, G.C.1
-
46
-
-
84921827718
-
-
Schomer, D. L., & da Silva, F. L. (Eds.) (2005). Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Philadelphia: Lippincot Williams & Wilkins.
-
-
-
-
47
-
-
67249160590
-
Removal of artifacts from EEG signals using adaptive filter through wavelet transform
-
Senthil, P. K., Arumuganathan, R., Sivakumar, K., & Vimal, C. (2008). Removal of artifacts from EEG signals using adaptive filter through wavelet transform. In 9th IEEE International Conference on Signal Processing, 2008 (pp. 2138–2141).
-
(2008)
9Th IEEE International Conference on Signal Processing
, vol.2008
, pp. 2138-2141
-
-
Senthil, P.K.1
Arumuganathan, R.2
Sivakumar, K.3
Vimal, C.4
-
48
-
-
84904640580
-
Empirical mode decomposition based classification of focal and non-focal EEG signals
-
Sharma, R., Pachori, R. B., & Gautam, S. (2014). Empirical mode decomposition based classification of focal and non-focal EEG signals. In IEEE International Conference on Medical Biometrics (pp. 135–140), Shenzhen, China, 30 May–01 June 2014.
-
(2014)
IEEE International Conference on Medical Biometrics
, pp. 135-140
-
-
Sharma, R.1
Pachori, R.B.2
Gautam, S.3
-
49
-
-
24044474732
-
Artificial neural network based epileptic detection using time–domain and frequency–domain features
-
Srinivasan, V., Eswaran, C, & Sriraam, N. (2005). Artificial neural network based epileptic detection using time–domain and frequency–domain features. Journal of Medical Systems, 29 (6), 647–660.
-
(2005)
Journal of Medical Systems
, vol.29
, Issue.6
, pp. 647-660
-
-
Srinivasan, V.1
Eswaran, C.2
Sriraam, N.3
-
50
-
-
34248567678
-
Approximate entropy-based epileptic EEG detection using artificial neural networks
-
Srinivasan, V., Eswaran, C, & Sriraam, N. (2007). Approximate entropy-based epileptic EEG detection using artificial neural networks. IEEE Transactions on Information Technology in Biomedicine, 11(3), 288–295.
-
(2007)
IEEE Transactions on Information Technology in Biomedicine
, vol.11
, Issue.3
, pp. 288-295
-
-
Srinivasan, V.1
Eswaran, C.2
Sriraam, N.3
-
51
-
-
33751396389
-
EEG signal classification using wavelet feature extraction and a mixture of expert model
-
Subasi, A. (2007). EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Systems with Applications, 32(4), 1084—1093.
-
(2007)
Expert Systems with Applications
, vol.32
, Issue.4
, pp. 1084-1093
-
-
Subasi, A.1
-
52
-
-
77957830692
-
EEG signal classification using PCA, ICA, LDA and support vector machine. Expert Systems with Applications
-
Subasi, A., & Gursoy, M. I. (2010). EEG signal classification using PCA, ICA, LDA and support vector machine. Expert Systems with Applications, 37(12), 8659–8666.
-
(2010)
Expert Systems with Applications
, vol.37
, Issue.12
, pp. 8659-8666
-
-
Subasi, A.1
Gursoy, M.I.2
-
53
-
-
0032638628
-
Least squares support vector machine classifiers
-
Suykens, J. A. K., & Vandewalle, J. (1999). Least squares support vector machine classifiers. Neural Processing Letters, 9(3), 293–300.
-
(1999)
Neural Processing Letters
, vol.9
, Issue.3
, pp. 293-300
-
-
Suykens, J.1
Vandewalle, J.2
-
54
-
-
36749100099
-
Analysis of eyes open, eye closed EEG signals using second-order difference plot
-
Thuraisingham, R. A., Tran, Y., Boord, P., & Craig, A. (2007). Analysis of eyes open, eye closed EEG signals using second-order difference plot. Medical & Biological Engineering & Computing, 45(12), 1243–1249.
-
(2007)
Medical &Amp; Biological Engineering &Amp; Computing
, vol.45
, Issue.12
, pp. 1243-1249
-
-
Thuraisingham, R.A.1
Tran, Y.2
Boord, P.3
Craig, A.4
-
55
-
-
80052525221
-
Standards for epidemiologic studies and surveillance of epilepsy
-
Thurman, D. J., et al. (2011). Standards for epidemiologic studies and surveillance of epilepsy. Epilepsia, 52(s7), 2–26.
-
(2011)
Epilepsia
, vol.52
, Issue.7
, pp. 2-26
-
-
Thurman, D.J.1
-
56
-
-
57649143421
-
The use of time–frequency distributions for epileptic seizure detection in EEG recordings
-
Tzallas, A. T., Tsipouras, M. G., & Fotiadis, D. I. (2007). The use of time–frequency distributions for epileptic seizure detection in EEG recordings. In Proceedings of 29th Annual International Conference of the IEEE on Engineering in Medicine and Biology Society (pp. 3–6), August 2007.
-
(2007)
Proceedings of 29Th Annual International Conference of the IEEE on Engineering in Medicine and Biology Society
, pp. 3-6
-
-
Tzallas, A.T.1
Tsipouras, M.G.2
Fotiadis, D.I.3
-
57
-
-
70349410385
-
Epileptic seizure detection in EEGs using time–frequency analysis. IEEE Transactions on Information Technology in Biomedicine
-
Tzallas, A. T., Tsipouras, M. G., & Fotiadis, D. I. (2009). Epileptic seizure detection in EEGs using time–frequency analysis. IEEE Transactions on Information Technology in Biomedicine, 13(5), 703–710.
-
(2009)
IEEE Transactions on Information Technology in Biomedicine
, vol.13
, Issue.5
, pp. 703-710
-
-
Tzallas, A.T.1
Tsipouras, M.G.2
Fotiadis, D.I.3
-
58
-
-
71749109171
-
Lyapunov exponents/probabilistic neural networks for analysis of EEG signals
-
Übeyli, E. D. (2010). Lyapunov exponents/probabilistic neural networks for analysis of EEG signals. Expert Systems with Applications, 37(2), 985–992.
-
(2010)
Expert Systems with Applications
, vol.37
, Issue.2
, pp. 985-992
-
-
Übeyli, E.D.1
-
59
-
-
84878512713
-
Epileptic seizure detection in EEG signals using multifractal analysis and wavelet transform
-
Uthayakumar, R. & Easwaramoorthy, D. (2013). Epileptic seizure detection in EEG signals using multifractal analysis and wavelet transform. Fractals, 21(2).
-
(2013)
Fractals
, vol.21
, Issue.2
-
-
Uthayakumar, R.1
Easwaramoorthy, D.2
-
60
-
-
84921888468
-
-
World Health Organization. (2014). Neurological disorders, including epilepsy. Retrieved from http://www.who.int/mental_health/management/neurological/en/. Accessed 8 Apr 2014.
-
-
-
-
61
-
-
84908049235
-
Diagnosis of breast tumours and evaluation of prognostic risk by using machine learning approaches
-
Yuan, Q., Cai, C, Xiao, H., Liu, X., & Wen, Y. (2007). Diagnosis of breast tumours and evaluation of prognostic risk by using machine learning approaches. Communications in Computer and Information Science, 2, 1250–1260.
-
(2007)
Communications in Computer and Information Science
, vol.2
, pp. 1250-1260
-
-
Yuan, Q.1
Cai, C.2
Xiao, H.3
Liu, X.4
Wen, Y.5
|