메뉴 건너뛰기




Volumn 319, Issue , 2015, Pages 367-388

Classification of Normal and Epileptic Seizure EEG Signals Based on Empirical Mode Decomposition

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84915745194     PISSN: 14349922     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-3-319-12883-2_13     Document Type: Article
Times cited : (54)

References (61)
  • 1
    • 0031264147 scopus 로고    scopus 로고
    • Use of the fractal dimension for the analysis of electroencephalographic time series
    • Accardo, A., Affinito, M., Carrozzi, M., & Bouquet, F. (1997). Use of the fractal dimension for the analysis of electroencephalographic time series. Biological Cybernetics, 77, 339–350.
    • (1997) Biological Cybernetics , vol.77 , pp. 339-350
    • Accardo, A.1    Affinito, M.2    Carrozzi, M.3    Bouquet, F.4
  • 2
    • 84859217391 scopus 로고    scopus 로고
    • Use of principal component analysis for automatic classification of epileptic EEG activities in wavelet framework
    • Acharya, U. R., Sree, S. V., Alvin, A. P. C, & Suri, J. S. (2012). Use of principal component analysis for automatic classification of epileptic EEG activities in wavelet framework. Expert Systems with Applications, 39(10), 9072–9078.
    • (2012) Expert Systems with Applications , vol.39 , Issue.10 , pp. 9072-9078
    • Acharya, U.R.1    Sree, S.V.2    Alvin, A.P.C.3    Suri, J.S.4
  • 4
    • 33846672121 scopus 로고    scopus 로고
    • A wavelet-chaos methodology for analysis of EEGs and EEG sub-bands to detect seizure and epilepsy
    • Adeli, H., Ghosh-Dastidar, S., & Dadmehr, N. (2007). A wavelet-chaos methodology for analysis of EEGs and EEG sub-bands to detect seizure and epilepsy. IEEE Transactions on Biomedical Engineering, 54(2), 205–211.
    • (2007) IEEE Transactions on Biomedical Engineering , vol.54 , Issue.2 , pp. 205-211
    • Adeli, H.1    Ghosh-Dastidar, S.2    Dadmehr, N.3
  • 5
    • 77951208271 scopus 로고    scopus 로고
    • Epileptic EEG detection using the linear prediction error energy
    • Altunay, S., Telatar, Z., & Erogul, O. (2010). Epileptic EEG detection using the linear prediction error energy. Expert Systems with Applications, 37(8), 5661–5665.
    • (2010) Expert Systems with Applications , vol.37 , Issue.8 , pp. 5661-5665
    • Altunay, S.1    Telatar, Z.2    Erogul, O.3
  • 6
    • 57649223832 scopus 로고    scopus 로고
    • Amoud, H., Snoussi, H., Hewson, D. J., and Duchêne, J. (2007). Hilbert-Huang transformation: Application to postural stability analysis. In: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 1562–1565), Lyon, France, 29–23 Aug 2007.
  • 7
    • 0035682573 scopus 로고    scopus 로고
    • Indications of nonlinear deterministics and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state
    • 061907
    • Andrzejak, R. G, et al. (2001). Indications of nonlinear deterministics and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Physical Review E, 64(6), 061907.
    • (2001) Physical Review E , vol.64 , Issue.6
    • Andrzejak, R.G.1
  • 8
    • 1242292270 scopus 로고    scopus 로고
    • EEG background activity described by a large computerized database
    • Aurlien, H., et al. (2004). EEG background activity described by a large computerized database. Clinical Neurophysiology, 115(3), 665–673.
    • (2004) Clinical Neurophysiology , vol.115 , Issue.3 , pp. 665-673
    • Aurlien, H.1
  • 9
    • 84900583659 scopus 로고    scopus 로고
    • Performance analysis of support vector machines classifier in breast cancer mammography recognition
    • Azar, A. T., & El-Said, S. A. (2014). Performance analysis of support vector machines classifier in breast cancer mammography recognition. Neural Computings and Applications. 24(5), 1163–1177. doi:10.1007/S00521-012-1324-4.
    • (2014) Neural Computings and Applications , pp. 1163-1177
    • Azar, A.T.1    El-Said, S.A.2
  • 10
    • 84865980798 scopus 로고    scopus 로고
    • Classification of seizure and nonseizure EEG signals using empirical mode decomposition
    • Bajaj, V., & Pachori, R. B. (2012). Classification of seizure and nonseizure EEG signals using empirical mode decomposition. IEEE Transactions on Information Technology in Biomedicine, 16(6), 1135–1142.
    • (2012) IEEE Transactions on Information Technology in Biomedicine , pp. 1135-1142
    • Bajaj, V.1    Pachori, R.B.2
  • 12
    • 18744431041 scopus 로고    scopus 로고
    • Non-linearity in invasive EEG recordings from patients with temporal lobe epilepsy
    • Casdagli, M. C, et al. (1997). Non-linearity in invasive EEG recordings from patients with temporal lobe epilepsy. Electroencephalography and Clinical Neurophysiology, 102(2), 98–105.
    • (1997) Electroencephalography and Clinical Neurophysiology , pp. 98-105
    • Casdagli, M.C.1
  • 13
    • 74049101116 scopus 로고    scopus 로고
    • Study of age-related changes in postural control during quiet standing through linear discriminant analysis
    • Cavalheiro, G. L., Almeida, M. F. S., Pereira, A., & Andrade, A. O. (2009). Study of age-related changes in postural control during quiet standing through linear discriminant analysis. BioMedical Engineering Online, 8(35), 10–1186.
    • (2009) BioMedical Engineering Online , pp. 10-1186
    • Cavalheiro, G.L.1    Almeida, M.2    Pereira, A.3    Andrade, A.O.4
  • 15
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C, & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 16
    • 79960803523 scopus 로고    scopus 로고
    • Improving the separability of multiple EEG features for a BCI by neural-time-series-prediction-preprocessing
    • Coyle, D., McGinnity, T. M., & Prasad, G. (2010). Improving the separability of multiple EEG features for a BCI by neural-time-series-prediction-preprocessing. Biomedical Signal Processing and Control, 5(3), 196-204.
    • (2007) Biomedical Signal Processing and Control , vol.5 , Issue.3 , pp. 196-204
    • Coyle, D.1    McGinnity, T.M.2    Prasad, G.3
  • 17
    • 84876280773 scopus 로고    scopus 로고
    • The role of sprouting and plasticity in epileptogenesis and behavior
    • S. Schachter, G. L. Holmes, & D. G. Trenite (Eds.), New York: Demos Medical Publishing
    • Cross, D. J., & Cavazos, J. E. (2007). The role of sprouting and plasticity in epileptogenesis and behavior. In S. Schachter, G. L. Holmes, & D. G. Trenite (Eds.), Behavioural Aspects of Epilepsy (pp. 51–57). New York: Demos Medical Publishing.
    • (2007) Behavioural Aspects of Epilepsy , pp. 51-57
    • Cross, D.J.1    Cavazos, J.E.2
  • 18
    • 79953108190 scopus 로고    scopus 로고
    • Improved generalized fractal dimensions in the discrimination between healthy and epileptic EEG signals
    • Easwaramoorthy, D., & Uthayakumar, R. (2011). Improved generalized fractal dimensions in the discrimination between healthy and epileptic EEG signals. Journal of Computational Science, 2(1), 31–38.
    • (2011) Journal of Computational Science , vol.2 , Issue.1 , pp. 31-38
    • Easwaramoorthy, D.1    Uthayakumar, R.2
  • 19
    • 34547573516 scopus 로고    scopus 로고
    • Mixed-band wavelet-chaos neural network methodology for epilepsy and epileptic seizure detection
    • Ghosh-Dastidar, S., Adeli, H., & Dadmehr, N. (2007). Mixed-band wavelet-chaos neural network methodology for epilepsy and epileptic seizure detection. IEEE Transactions on Biomedical Engineering, 54(9), 1545–1551.
    • (2007) IEEE Transactions on Biomedical Engineering , vol.54 , Issue.9 , pp. 1545-1551
    • Ghosh-Dastidar, S.1    Adeli, H.2    Dadmehr, N.3
  • 20
    • 38349123053 scopus 로고    scopus 로고
    • Principal component analysis enhanced cosine radial basis function neural network for robust epilepsy and seizure detection. IEEE Transactions on Biomedical Engineering
    • Ghosh-Dastidar, S., Adeli, H., & Dadmehr, N. (2008). Principal component analysis enhanced cosine radial basis function neural network for robust epilepsy and seizure detection. IEEE Transactions on Biomedical Engineering, 55(2), 512–518.
    • (2008) IEEE Transactions on Biomedical Engineering , pp. 512-518
    • Ghosh-Dastidar, S.1    Adeli, H.2
  • 21
    • 24144470790 scopus 로고    scopus 로고
    • Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert Systems with Applications
    • Güler, N. F., Übeyli, E. D., & Güler, I. (2005). Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert Systems with Applications, 29(3), 506–514.
    • (2005) Expert Systems with Applications , vol.29 , Issue.3 , pp. 506-514
    • Güler, N.F.1    Übeyli, E.D.2    Güler, I.3
  • 22
    • 77957685691 scopus 로고    scopus 로고
    • Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks. Journal of Neuroscience Methods
    • Guo, L., Rivero, D., & Pazos, A. (2010). Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks. Journal of Neuroscience Methods, 193(1), 156–163.
    • (2010) Journal of Neuroscience Methods , vol.193 , Issue.1 , pp. 156-163
    • Guo, L.1    Rivero, D.2    Pazos, A.3
  • 24
    • 5444236478 scopus 로고    scopus 로고
    • The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences
    • Huang, N. E., et al. (1998). The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysisProceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 454(1911), 903–995.
    • (1998) Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences , vol.454 , Issue.1971 , pp. 903-995
    • Huang, N.E.1
  • 26
    • 67650221411 scopus 로고    scopus 로고
    • Adapting subject specific motor imagery EEG patterns in space–time–frequency for a brain computer interface
    • Ince, N. F., Goksu, F., Tewfik, A. H., & Arica, S. (2009). Adapting subject specific motor imagery EEG patterns in space–time–frequency for a brain computer interface. Biomedical Signal Processing and Control, 4(3), 236–246.
    • (2009) Biomedical Signal Processing and Control , pp. 236-246
    • Ince, N.1    Goksu, F.F.2    Tewfik, A.H.3    Arica, S.4
  • 27
    • 84886528449 scopus 로고    scopus 로고
    • Classification of ictal and seizure-free EEG signals using fractional linear prediction
    • Joshi, V., Pachori, R. B., & Vijesh, A. (2014). Classification of ictal and seizure-free EEG signals using fractional linear prediction. Biomedical Signal Processing and Control, 9, 1–5.
    • (2014) Biomedical Signal Processing and Control , vol.9 , pp. 1-5
    • Joshi, V.1    Pachori, R.B.2    Vijesh, A.3
  • 31
    • 84878902261 scopus 로고    scopus 로고
    • Feature extraction & recognition of ictal EEG using EMD and SVM
    • Li, S., Zhou, W., Yuan, Q., Geng, S., & Cai, D. (2013). Feature extraction & recognition of ictal EEG using EMD and SVM. Computers in Biology and Medicine, 43(7), 807–816.
    • (2013) Computers in Biology and Medicine , vol.43 , Issue.7 , pp. 807-816
    • Li, S.1    Zhou, W.2    Yuan, Q.3    Geng, S.4    Cai, D.5
  • 32
    • 0032006582 scopus 로고    scopus 로고
    • A new interpretation of nonlinear energy operator and its efficacy in spike detection
    • Mukhopadhyay, S., & Ray, G. C. (1998). A new interpretation of nonlinear energy operator and its efficacy in spike detection. IEEE Transactions on Biomedical Engineering, 45(2), 180–187.
    • (1998) IEEE Transactions on Biomedical Engineering , pp. 180-187
    • Mukhopadhyay, S.1    Ray, G.C.2
  • 33
    • 77951590218 scopus 로고    scopus 로고
    • Estimation of the burden of active and life-time epilepsy: A meta-analytic approach
    • Ngugi, A. K., Bottomley, C, Kleinschmidt, I., Sander, J. W., & Newton, C. R. (2010). Estimation of the burden of active and life-time epilepsy: A meta-analytic approach. Epilepsia, 51, 883–890.
    • (2010) Epilepsia , vol.51 , pp. 883-890
    • Ngugi, A.K.1    Bottomley, C.2    Kleinschmidt, I.3    Sander, J.W.4    Newton, C.R.5
  • 34
    • 0842310823 scopus 로고    scopus 로고
    • A neural-network-based detection of epilepsy
    • Nigam, V. P., & Graupe, D. (2004). A neural-network-based detection of epilepsy. Neurological Research, 26, 55–60.
    • (2004) Neurological Research , vol.26 , pp. 55-60
    • Nigam, V.P.1    Graupe, D.2
  • 35
    • 56349101801 scopus 로고    scopus 로고
    • Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy
    • Ocak, H. (2009). Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Systems with Applications, 36(2), 2017–2036.
    • (2009) Expert Systems with Applications , pp. 2017-2036
    • Ocak, H.1
  • 36
    • 79956288045 scopus 로고    scopus 로고
    • Seizure classification in EEG signals utilizing Hilbert-Huang transform
    • Oweis, R. J., & Abdulhay, E. W. (2011). Seizure classification in EEG signals utilizing Hilbert-Huang transform. BioMedical Engineering Online, 10, 38.
    • (2011) Biomedical Engineering Online , vol.10 , pp. 38
    • Oweis, R.J.1    Abdulhay, E.W.2
  • 37
    • 78549254986 scopus 로고    scopus 로고
    • Discrimination between ictal and seizure-free EEG signals using empirical mode decomposition
    • 293056
    • Pachori, R. B. (2008). Discrimination between ictal and seizure-free EEG signals using empirical mode decomposition. Research Letters in Signal Processing, 293056, 5 p.
    • (2008) Research Letters in Signal Processing , pp. 5
    • Pachori, R.B.1
  • 38
    • 80655124711 scopus 로고    scopus 로고
    • Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition
    • Pachori, R. B., & Bajaj, V. (2011). Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition. Computer Methods and Programs in Biomedicine, 104(3), 373–381.
    • (2011) Computer Methods and Programs in Biomedicine , pp. 373-381
    • Pachori, R.B.1    Bajaj, V.2
  • 39
    • 70349459780 scopus 로고    scopus 로고
    • Pachori, R. B., Hewson, D., Snoussi, H., & Duchêne, J. (2009). Postural time-series analysis using empirical mode decomposition and second-order difference plots. In IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 537–540), Taipei, Taiwan, 19–24 Apr 2009.
  • 40
    • 84892783589 scopus 로고    scopus 로고
    • Epileptic seizure classification in EEG signals using second-order difference plot of intrinsic mode functions
    • Pachori, R. B., & Patidar, S. (2014). Epileptic seizure classification in EEG signals using second-order difference plot of intrinsic mode functions. Computer Methods and Programs in Biomedicine, 113(2), 494–502.
    • (2014) Computer Methods and Programs in Biomedicine , vol.113 , Issue.2 , pp. 494-502
    • Pachori, R.B.1    Patidar, S.2
  • 41
    • 35248825924 scopus 로고    scopus 로고
    • EEG signal analysis using FB expansion and second-order linear TVAR process
    • Pachori, R. B., & Sircar, P. (2008). EEG signal analysis using FB expansion and second-order linear TVAR process. Signal Processing, 88(2), 415–420.
    • (2008) Signal Processing , pp. 415-420
    • Pachori, R.B.1    Sircar, P.2
  • 42
    • 34247217946 scopus 로고    scopus 로고
    • Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform
    • Polat, K., & Güneş, S. (2007). Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform. Applied Mathematics and Computation, 187 (2), 1017–1026.
    • (2007) Applied Mathematics and Computation , vol.187 , Issue.2 , pp. 1017-1026
    • Polat, K.1    Güneş, S.2
  • 44
    • 1542346294 scopus 로고    scopus 로고
    • Special Considerations in Treating the Elderly Patient with Epilepsy
    • Ramsay, R. E., Rowan, A. J., & Pryor, F. M. (2004). Special considerations in treating the elderly patient with epilepsy. Neurology, 62(5 suppl 2), S24–S29.
    • (2004) Neurology , vol.5 , pp. S24-S29
    • Ramsay, R.E.1    Rowan, A.J.2    Pryor, F.M.3
  • 45
    • 0028494938 scopus 로고
    • An algorithm to separate nonstationary part of a signal using mid-prediction filter
    • Ray, G. C. (1994). An algorithm to separate nonstationary part of a signal using mid-prediction filter. IEEE Transactions on Signal Processing, 42(9), 2276–2279.
    • (1994) IEEE Transactions on Signal Processing , vol.42 , Issue.9 , pp. 2276-2279
    • Ray, G.C.1
  • 46
    • 84921827718 scopus 로고    scopus 로고
    • Schomer, D. L., & da Silva, F. L. (Eds.) (2005). Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Philadelphia: Lippincot Williams & Wilkins.
  • 48
    • 84904640580 scopus 로고    scopus 로고
    • Empirical mode decomposition based classification of focal and non-focal EEG signals
    • Sharma, R., Pachori, R. B., & Gautam, S. (2014). Empirical mode decomposition based classification of focal and non-focal EEG signals. In IEEE International Conference on Medical Biometrics (pp. 135–140), Shenzhen, China, 30 May–01 June 2014.
    • (2014) IEEE International Conference on Medical Biometrics , pp. 135-140
    • Sharma, R.1    Pachori, R.B.2    Gautam, S.3
  • 49
    • 24044474732 scopus 로고    scopus 로고
    • Artificial neural network based epileptic detection using time–domain and frequency–domain features
    • Srinivasan, V., Eswaran, C, & Sriraam, N. (2005). Artificial neural network based epileptic detection using time–domain and frequency–domain features. Journal of Medical Systems, 29 (6), 647–660.
    • (2005) Journal of Medical Systems , vol.29 , Issue.6 , pp. 647-660
    • Srinivasan, V.1    Eswaran, C.2    Sriraam, N.3
  • 51
    • 33751396389 scopus 로고    scopus 로고
    • EEG signal classification using wavelet feature extraction and a mixture of expert model
    • Subasi, A. (2007). EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Systems with Applications, 32(4), 1084—1093.
    • (2007) Expert Systems with Applications , vol.32 , Issue.4 , pp. 1084-1093
    • Subasi, A.1
  • 52
    • 77957830692 scopus 로고    scopus 로고
    • EEG signal classification using PCA, ICA, LDA and support vector machine. Expert Systems with Applications
    • Subasi, A., & Gursoy, M. I. (2010). EEG signal classification using PCA, ICA, LDA and support vector machine. Expert Systems with Applications, 37(12), 8659–8666.
    • (2010) Expert Systems with Applications , vol.37 , Issue.12 , pp. 8659-8666
    • Subasi, A.1    Gursoy, M.I.2
  • 53
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens, J. A. K., & Vandewalle, J. (1999). Least squares support vector machine classifiers. Neural Processing Letters, 9(3), 293–300.
    • (1999) Neural Processing Letters , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.1    Vandewalle, J.2
  • 55
    • 80052525221 scopus 로고    scopus 로고
    • Standards for epidemiologic studies and surveillance of epilepsy
    • Thurman, D. J., et al. (2011). Standards for epidemiologic studies and surveillance of epilepsy. Epilepsia, 52(s7), 2–26.
    • (2011) Epilepsia , vol.52 , Issue.7 , pp. 2-26
    • Thurman, D.J.1
  • 58
    • 71749109171 scopus 로고    scopus 로고
    • Lyapunov exponents/probabilistic neural networks for analysis of EEG signals
    • Übeyli, E. D. (2010). Lyapunov exponents/probabilistic neural networks for analysis of EEG signals. Expert Systems with Applications, 37(2), 985–992.
    • (2010) Expert Systems with Applications , vol.37 , Issue.2 , pp. 985-992
    • Übeyli, E.D.1
  • 59
    • 84878512713 scopus 로고    scopus 로고
    • Epileptic seizure detection in EEG signals using multifractal analysis and wavelet transform
    • Uthayakumar, R. & Easwaramoorthy, D. (2013). Epileptic seizure detection in EEG signals using multifractal analysis and wavelet transform. Fractals, 21(2).
    • (2013) Fractals , vol.21 , Issue.2
    • Uthayakumar, R.1    Easwaramoorthy, D.2
  • 60
    • 84921888468 scopus 로고    scopus 로고
    • World Health Organization. (2014). Neurological disorders, including epilepsy. Retrieved from http://www.who.int/mental_health/management/neurological/en/. Accessed 8 Apr 2014.
  • 61
    • 84908049235 scopus 로고    scopus 로고
    • Diagnosis of breast tumours and evaluation of prognostic risk by using machine learning approaches
    • Yuan, Q., Cai, C, Xiao, H., Liu, X., & Wen, Y. (2007). Diagnosis of breast tumours and evaluation of prognostic risk by using machine learning approaches. Communications in Computer and Information Science, 2, 1250–1260.
    • (2007) Communications in Computer and Information Science , vol.2 , pp. 1250-1260
    • Yuan, Q.1    Cai, C.2    Xiao, H.3    Liu, X.4    Wen, Y.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.