메뉴 건너뛰기




Volumn 9, Issue MAR, 2015, Pages

Detection of epileptiform activity in EEG signals based on time-frequency and non-linear analysis

Author keywords

Epileptiform activity; Non linear analysis; Quadratic classifiers; Scatter matrices; Seizure detection

Indexed keywords

FREQUENCY BANDS; FREQUENCY DOMAIN ANALYSIS; MATRIX ALGEBRA; SIGNAL PROCESSING;

EID: 84927642979     PISSN: None     EISSN: 16625188     Source Type: Journal    
DOI: 10.3389/fncom.2015.00038     Document Type: Article
Times cited : (141)

References (59)
  • 2
    • 77951208271 scopus 로고    scopus 로고
    • Epileptic EEG detection using the linear prediction error energy
    • Altunay, S., Telatar, Z., and Erogul, O. (2010). Epileptic EEG detection using the linear prediction error energy.Expert. Syst. Appl. 37, 5661-5665. doi: 10.1016/j.eswa.2010.02.045
    • (2010) Expert. Syst. Appl , vol.37 , pp. 5661-5665
    • Altunay, S.1    Telatar, Z.2    Erogul, O.3
  • 3
    • 0035682573 scopus 로고    scopus 로고
    • Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state
    • Andrzejak, R., Lehnertz, K., Mormann, F., Rieke, C., David, P., and Elger, C. (2001). Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys. Rev. E 64:061907. doi: 10.1103/PhysRevE.64.061907
    • (2001) Phys. Rev. E , vol.64
    • Andrzejak, R.1    Lehnertz, K.2    Mormann, F.3    Rieke, C.4    David, P.5    Elger, C.6
  • 4
    • 0001874436 scopus 로고    scopus 로고
    • Practical method for determining the minimum embedding dimension of a scalar time series
    • Cao, L. (1997). Practical method for determining the minimum embedding dimension of a scalar time series. Phys. D 110, 43-50. doi: 10.1016/S0167-2789(97)00118-8
    • (1997) Phys. D , vol.110 , pp. 43-50
    • Cao, L.1
  • 5
    • 77952285184 scopus 로고    scopus 로고
    • Wearable electroencephalography. What is it, why is it needed, and what does it entail?
    • Casson, A., Yates, D., Smith, S., Duncan, J., and Rodriguez-Villegas, E. (2010). Wearable electroencephalography. What is it, why is it needed, and what does it entail? IEEE Eng. Med. Biol. Mag. 29, 44-56. doi: 10.1109/MEMB.2010.936545
    • (2010) IEEE Eng. Med. Biol. Mag , vol.29 , pp. 44-56
    • Casson, A.1    Yates, D.2    Smith, S.3    Duncan, J.4    Rodriguez-Villegas, E.5
  • 6
    • 56349106179 scopus 로고    scopus 로고
    • Cross-correlation aided support vector machine classifier for classification of EG signals
    • Chandaka, S., Chatterjee, A., and Munshi, S. (2009). Cross-correlation aided support vector machine classifier for classification of EG signals. Expert Syst. Appl. 36, 1329-1336. doi: 10.1016/j.eswa.2007.11.017
    • (2009) Expert Syst. Appl , vol.36 , pp. 1329-1336
    • Chandaka, S.1    Chatterjee, A.2    Munshi, S.3
  • 7
    • 61849108243 scopus 로고    scopus 로고
    • Automatic identification of epilepsy by HOS and power spectrum parameters using EEG signals: A comparative study
    • Chua, K. C., Chandran, V., Acharya, R., and Lim, C. M. (2008). Automatic identification of epilepsy by HOS and power spectrum parameters using EEG signals: a comparative study. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2008, 3824-3827. doi: 10.1109/IEMBS.2008.4650043
    • (2008) Conf. Proc. IEEE Eng. Med. Biol. Soc , vol.2008 , pp. 3824-3827
    • Chua, K.C.1    Chandran, V.2    Acharya, R.3    Lim, C.M.4
  • 11
    • 84896329075 scopus 로고    scopus 로고
    • Classification of EEG signals for detection of epileptic seizures based on wavelets and statistical pattern recognition
    • Gajić, D., Djurovic, Z., Di Gennaro, S., and Gustafsson, F. (2014). Classification of EEG signals for detection of epileptic seizures based on wavelets and statistical pattern recognition. Biomed. Eng. Appl. Basis. Commun. 26, 1450021. doi: 10.4015/S1016237214500215
    • (2014) Biomed. Eng. Appl. Basis. Commun , vol.26
    • Gajić, D.1    Djurovic, Z.2    Di Gennaro, S.3    Gustafsson, F.4
  • 12
    • 38349123053 scopus 로고    scopus 로고
    • Principal component analysisenhanced cosine radial basis function neural network for robust epilepsy and seizure detection
    • Ghosh-Dastidar, S., Adeli, H., and Dadmehr, N. (2008). Principal component analysisenhanced cosine radial basis function neural network for robust epilepsy and seizure detection. IEEE Trans. Biomed. Eng. 55(2 Pt 1), 512-518. doi: 10.1109/TBME.2007.905490
    • (2008) IEEE Trans. Biomed. Eng , vol.55 , Issue.2 , pp. 512-518
    • Ghosh-Dastidar, S.1    Adeli, H.2    Dadmehr, N.3
  • 13
    • 0032962246 scopus 로고    scopus 로고
    • Automatic detection of seizures and spikes
    • Gotman, J. (1999). Automatic detection of seizures and spikes. J. Clin. Neurophysiol. 16, 130-140. doi: 10.1097/00004691-199903000-00005
    • (1999) J. Clin. Neurophysiol , vol.16 , pp. 130-140
    • Gotman, J.1
  • 14
    • 26944458497 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients
    • Guler, I., and Ubeyli, E. D. (2005). Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients. J. Neurosci. Methods 148, 113-121. doi: 10.1016/j.jneumeth.2005.04.013
    • (2005) J. Neurosci. Methods , vol.148 , pp. 113-121
    • Guler, I.1    Ubeyli, E.D.2
  • 15
    • 79953693243 scopus 로고    scopus 로고
    • Automatic feature extraction using genetic programming: An application to epileptic EEG classification
    • Guo, L., Rivero, D., Dorado, J., Munteanu, C. R., and Pazos, A. (2011). Automatic feature extraction using genetic programming: an application to epileptic EEG classification. Expert Syst. Appl. 38, 10425-10436. doi: 10.1016/j.eswa.2011.02.118
    • (2011) Expert Syst. Appl , vol.38 , pp. 10425-10436
    • Guo, L.1    Rivero, D.2    Dorado, J.3    Munteanu, C.R.4    Pazos, A.5
  • 17
    • 0031141135 scopus 로고    scopus 로고
    • Classification of EEG signals using the wavelet transform
    • Hazarika, N., Chen, J., Tsoi, A., and Sergejew, A. (1997). Classification of EEG signals using the wavelet transform.Signal Process 59, 61-72. doi: 10.1016/S0165-1684(97)00038-8
    • (1997) Signal Process , vol.59 , pp. 61-72
    • Hazarika, N.1    Chen, J.2    Tsoi, A.3    Sergejew, A.4
  • 18
    • 0040219905 scopus 로고    scopus 로고
    • Detecting dynamical change in nonlinear time series
    • Hively, L. M., Gailey, P. C., and Protopopescu, V. A. (1999). Detecting dynamical change in nonlinear time series.Phys. Lett. A 258, 103-114. doi: 10.1016/S0375-9601(99)00342-4
    • (1999) Phys. Lett. A , vol.258 , pp. 103-114
    • Hively, L.M.1    Gailey, P.C.2    Protopopescu, V.A.3
  • 20
    • 0002304828 scopus 로고
    • The temporal evolution of the largest Lyapunov exponent on the human epileptic cortex
    • eds D.W. Duke and W.S. Pritchard (Singapore: World Scientific)
    • Iasemidis, L. D., and Sackellares, J. C. (1991). "The temporal evolution of the largest Lyapunov exponent on the human epileptic cortex," in Measuring Chaos in the Human Brain, eds D.W. Duke and W.S. Pritchard (Singapore: World Scientific), 49-82.
    • (1991) Measuring Chaos in the Human Brain , pp. 49-82
    • Iasemidis, L.D.1    Sackellares, J.C.2
  • 22
    • 79953729618 scopus 로고    scopus 로고
    • Classification of electroencephalogram signals with combined time and frequency features
    • Iscan, Z., Dokur, Z., and Tamer, D. (2011). Classification of electroencephalogram signals with combined time and frequency features. Expert Syst. Appl. 38, 10499-10505. doi: 10.1016/j.eswa.2011.02.110
    • (2011) Expert Syst. Appl , vol.38 , pp. 10499-10505
    • Iscan, Z.1    Dokur, Z.2    Tamer, D.3
  • 24
    • 13844294484 scopus 로고    scopus 로고
    • Multivariate linear discrimination of seizures
    • Jerger, K., Weinstein, S., Sauer, T., and Schiff, S. (2005). Multivariate linear discrimination of seizures. Clin. Neurophysiol. 116, 545-551. doi: 10.1016/j.clinph.2004.08.023
    • (2005) Clin. Neurophysiol , vol.116 , pp. 545-551
    • Jerger, K.1    Weinstein, S.2    Sauer, T.3    Schiff, S.4
  • 25
    • 0029256646 scopus 로고
    • Wavelet preprocessing for automated neural network detection of EEG spikes
    • Kalayci, T., and Özdamar, Ö. (1995). Wavelet preprocessing for automated neural network detection of EEG spikes.IEEE Eng. Med. Biol. 14, 160-166. doi: 10.1109/51.376754
    • (1995) IEEE Eng. Med. Biol , vol.14 , pp. 160-166
    • Kalayci, T.1    Özdamar, Ö.2
  • 28
    • 77954612893 scopus 로고    scopus 로고
    • Combination of EEG complexity and spectral analysis for epilepsy diagnosis and seizure detection
    • Liang, S. F., Wang, H. C., and Chang, W. L. (2010). Combination of EEG complexity and spectral analysis for epilepsy diagnosis and seizure detection. EURASIP J. Adv. Signal Process 2010:853434. doi: 10.1155/2010/853434
    • (2010) EURASIP J. Adv. Signal Process , vol.2010
    • Liang, S.F.1    Wang, H.C.2    Chang, W.L.3
  • 30
    • 77956652043 scopus 로고    scopus 로고
    • Epilepsy seizure detection using eigensystem spectral estimation and Multiple Layer Perceptron neural network
    • Naghsh-Nilchi, A. R., and Aghashahi, M. (2010). Epilepsy seizure detection using eigensystem spectral estimation and Multiple Layer Perceptron neural network. Biomed. Signal Process 5, 147-157. doi: 10.1016/j.bspc.2010.01.004
    • (2010) Biomed. Signal Process , vol.5 , pp. 147-157
    • Naghsh-Nilchi, A.R.1    Aghashahi, M.2
  • 31
    • 0037387643 scopus 로고    scopus 로고
    • Detection of seizure precursors from depth EEG using a sign periodogram transform
    • Niederhauser, J., Esteller, R., Echauz, J., Vachtsevanos, G., and Litt, B. (2003). Detection of seizure precursors from depth EEG using a sign periodogram transform. IEEE Trans. Biomed. Eng. 51, 449-458. doi: 10.1109/TBME.2003.809497
    • (2003) IEEE Trans. Biomed. Eng , vol.51 , pp. 449-458
    • Niederhauser, J.1    Esteller, R.2    Echauz, J.3    Vachtsevanos, G.4    Litt, B.5
  • 32
    • 0842310823 scopus 로고    scopus 로고
    • A neural-network-based detection of epilepsy
    • Nigam, V. P., and Graupe, D. (2004). A neural-network-based detection of epilepsy. Neurol. Res. 26, 55-60. doi: 10.1179/016164104773026534
    • (2004) Neurol. Res , vol.26 , pp. 55-60
    • Nigam, V.P.1    Graupe, D.2
  • 33
    • 41249099701 scopus 로고    scopus 로고
    • Optimal classification of epileptic seizures in EEG using wavelet analysis and genetic algorithm
    • Ocak, H. (2008). Optimal classification of epileptic seizures in EEG using wavelet analysis and genetic algorithm.Signal Process 88, 1858-1867. doi: 10.1016/j.sigpro.2008.01.026
    • (2008) Signal Process , vol.88 , pp. 1858-1867
    • Ocak, H.1
  • 34
    • 56349101801 scopus 로고    scopus 로고
    • Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy
    • Ocak, H. (2009). Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Syst. Appl. 36, 2027-2036. doi: 10.1016/j.eswa.2007.12.065
    • (2009) Expert Syst. Appl , vol.36 , pp. 2027-2036
    • Ocak, H.1
  • 35
    • 79957981604 scopus 로고    scopus 로고
    • EEG signals classification using the K-means clustering and a multilayer perceptron neural network model
    • Orhan, U., Hekim, M., and Ozer, M. (2011). EEG signals classification using the K-means clustering and a multilayer perceptron neural network model. Expert Syst. Appl. 38, 13475-13481. doi: 10.1016/j.eswa.2011.04.149
    • (2011) Expert Syst. Appl , vol.38 , pp. 13475-13481
    • Orhan, U.1    Hekim, M.2    Ozer, M.3
  • 36
    • 0033990625 scopus 로고    scopus 로고
    • Recurrent neural network based prediction of epileptic seizures in intra- and extracranial EEG
    • Petrosian, A., Prokhorov, D., Homan, R., Dasheiff, R., and Wunsch, D. (2000). Recurrent neural network based prediction of epileptic seizures in intra- and extracranial EEG. Neurocomputing 30, 201-218. doi: 10.1016/S0925-2312(99)00126-5
    • (2000) Neurocomputing , vol.30 , pp. 201-218
    • Petrosian, A.1    Prokhorov, D.2    Homan, R.3    Dasheiff, R.4    Wunsch, D.5
  • 37
    • 34247217946 scopus 로고    scopus 로고
    • Classification of epileptiform EEG using a hybrid system based on decision tree classier and fast fourier transform
    • Polat, K., and Gunes, S. (2007). Classification of epileptiform EEG using a hybrid system based on decision tree classier and fast fourier transform. Appl. Math. Comp. 187, 1017-1026. doi: 10.1016/j.amc.2006.09.022
    • (2007) Appl. Math. Comp , vol.187 , pp. 1017-1026
    • Polat, K.1    Gunes, S.2
  • 40
    • 43949166788 scopus 로고
    • A practical method for calculating largest Lyapunov exponents from small data sets
    • Rosenstein, M. T., Collins, J. J., and De Luca, C. J. (1993). A practical method for calculating largest Lyapunov exponents from small data sets. Phys. D 65, 117-134. doi: 10.1016/0167-2789(93)90009-P
    • (1993) Phys. D , vol.65 , pp. 117-134
    • Rosenstein, M.T.1    Collins, J.J.2    De Luca, C.J.3
  • 41
    • 0037107846 scopus 로고    scopus 로고
    • Brain electrical activity analysis using wavelet-based informational tools
    • Rosso, O., Martin, M., and Plastino, A. (2002). Brain electrical activity analysis using wavelet-based informational tools. Phys. A 313, 587-608. doi: 10.1016/S0378-4371(02)00958-5
    • (2002) Phys. A , vol.313 , pp. 587-608
    • Rosso, O.1    Martin, M.2    Plastino, A.3
  • 43
    • 34248567678 scopus 로고    scopus 로고
    • Approximate entropy-based epileptic EEG detection using artificial neural networks
    • Srinivasan, V., Eswaran, C., and Sriraam, N. (2007). Approximate entropy-based epileptic EEG detection using artificial neural networks. IEEE Trans. Inf. Technol. Biomed. 11, 288-295. doi: 10.1109/TITB.2006.884369
    • (2007) IEEE Trans. Inf. Technol. Biomed , vol.11 , pp. 288-295
    • Srinivasan, V.1    Eswaran, C.2    Sriraam, N.3
  • 44
    • 33845386973 scopus 로고    scopus 로고
    • Application of adaptive neuro-fuzzy inference system for epileptic seizure detection using wavelet feature extraction
    • Subasi, A. (2007a). Application of adaptive neuro-fuzzy inference system for epileptic seizure detection using wavelet feature extraction. Comput. Biol. Med. 37, 227-244. doi: 10.1016/j.compbiomed.2005.12.003
    • (2007) Comput. Biol. Med , vol.37 , pp. 227-244
    • Subasi, A.1
  • 45
    • 33751396389 scopus 로고    scopus 로고
    • EEG signal classification using wavelet feature extraction and a mixture of expert model
    • Subasi, A. (2007b). EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst. Appl. 32, 1084-1093. doi: 10.1016/j.eswa.2006.02.005
    • (2007) Expert Syst. Appl , vol.32 , pp. 1084-1093
    • Subasi, A.1
  • 47
    • 38749083808 scopus 로고    scopus 로고
    • Automatic seizure detection based on time-frequency analysis and artificial neural networks
    • Tzallas, A. T., Tsipouras, M. G., and Fotiadis, D. I. (2007). Automatic seizure detection based on time-frequency analysis and artificial neural networks. Comput. Intell. Neurosci. 2007, 80510-80523. doi: 10.1155/2007/80510
    • (2007) Comput. Intell. Neurosci , vol.2007 , pp. 80510-80523
    • Tzallas, A.T.1    Tsipouras, M.G.2    Fotiadis, D.I.3
  • 48
    • 70349410385 scopus 로고    scopus 로고
    • Epileptic seizure detection in EEGs using time-frequency analysis
    • Tzallas, A. T., Tsipouras, M. G., and Fotiadis, D. I. (2009). Epileptic seizure detection in EEGs using time-frequency analysis. IEEE Trans. Inf. Technol. Biomed. 13, 703-710. doi: 10.1109/TITB.2009.2017939
    • (2009) IEEE Trans. Inf. Technol. Biomed , vol.13 , pp. 703-710
    • Tzallas, A.T.1    Tsipouras, M.G.2    Fotiadis, D.I.3
  • 49
    • 33746286608 scopus 로고    scopus 로고
    • Analysis of EEG signals using Lyapunov exponents
    • Ubeyli, E. D. (2006). Analysis of EEG signals using Lyapunov exponents. Neural Netwk. World 16, 257-273.
    • (2006) Neural Netwk. World , vol.16 , pp. 257-273
    • Ubeyli, E.D.1
  • 50
    • 57649155303 scopus 로고    scopus 로고
    • Modified mixture of experts for analysis of EEG signals
    • Ubeyli, E. D. (2007). Modified mixture of experts for analysis of EEG signals. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2007, 1546-1549. doi: 10.1109/IEMBS.2007.4352598
    • (2007) Conf. Proc. IEEE Eng. Med. Biol. Soc , vol.2007 , pp. 1546-1549
    • Ubeyli, E.D.1
  • 51
    • 37349024109 scopus 로고    scopus 로고
    • Wavelet/mixture of experts network structure for EEG classification
    • Ubeyli, E. D. (2008). Wavelet/mixture of experts network structure for EEG classification. Expert Syst. Appl. 37, 1954-1962. doi: 10.1016/j.eswa.2007.02.006
    • (2008) Expert Syst. Appl , vol.37 , pp. 1954-1962
    • Ubeyli, E.D.1
  • 52
    • 33846095446 scopus 로고    scopus 로고
    • Features extracted by eigenvector methods for detection variability of EEG signals
    • Ubeyli, E. D., and Guler, I. (2007). Features extracted by eigenvector methods for detection variability of EEG signals. Pattern Recogn. Lett. 28, 592-603. doi: 10.1016/j.patrec.2006.10.004
    • (2007) Pattern Recogn. Lett , vol.28 , pp. 592-603
    • Ubeyli, E.D.1    Guler, I.2
  • 54
    • 79959978998 scopus 로고    scopus 로고
    • Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection
    • Wang, D., Miao, D., and Xie, C. (2011). Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection. Expert Syst. Appl. 38, 14314-14320. doi: 10.1016/j.eswa.2011.05.096
    • (2011) Expert Syst. Appl , vol.38 , pp. 14314-14320
    • Wang, D.1    Miao, D.2    Xie, C.3
  • 55
    • 0141833992 scopus 로고    scopus 로고
    • New horizons in ambulatory electroencephalography
    • Waterhouse, E. (2003). New horizons in ambulatory electroencephalography. IEEE Eng. Med. Biol. Mag. 22, 74-80. doi: 10.1109/MEMB.2003.1213629
    • (2003) IEEE Eng. Med. Biol. Mag , vol.22 , pp. 74-80
    • Waterhouse, E.1
  • 56
    • 84908144695 scopus 로고
    • The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms
    • Welch, P. D. (1967). The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. AU-15, 70-73. doi: 10.1109/TAU.1967.1161901
    • (1967) IEEE Trans. Audio Electroacoust , vol.AU-15 , pp. 70-73
    • Welch, P.D.1
  • 57
    • 0004096855 scopus 로고    scopus 로고
    • Washington, DC: National Academy Press
    • Williams, G. P. (1997). Chaos Theory Tamed. Washington, DC: National Academy Press.
    • (1997) Chaos Theory Tamed
    • Williams, G.P.1
  • 58
    • 0021224909 scopus 로고
    • Determining Lyapunov exponents from a time series
    • Wolf, A., Swift, J. B., Swinney, H. L., and Vastano, J. A. (1985). Determining Lyapunov exponents from a time series.Phys. D 16, 285-317. doi: 10.1016/0167-2789(85)90011-9
    • (1985) Phys. D , vol.16 , pp. 285-317
    • Wolf, A.1    Swift, J.B.2    Swinney, H.L.3    Vastano, J.A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.