-
2
-
-
77951208271
-
Epileptic EEG detection using the linear prediction error energy
-
Altunay, S., Telatar, Z., and Erogul, O. (2010). Epileptic EEG detection using the linear prediction error energy.Expert. Syst. Appl. 37, 5661-5665. doi: 10.1016/j.eswa.2010.02.045
-
(2010)
Expert. Syst. Appl
, vol.37
, pp. 5661-5665
-
-
Altunay, S.1
Telatar, Z.2
Erogul, O.3
-
3
-
-
0035682573
-
Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state
-
Andrzejak, R., Lehnertz, K., Mormann, F., Rieke, C., David, P., and Elger, C. (2001). Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys. Rev. E 64:061907. doi: 10.1103/PhysRevE.64.061907
-
(2001)
Phys. Rev. E
, vol.64
-
-
Andrzejak, R.1
Lehnertz, K.2
Mormann, F.3
Rieke, C.4
David, P.5
Elger, C.6
-
4
-
-
0001874436
-
Practical method for determining the minimum embedding dimension of a scalar time series
-
Cao, L. (1997). Practical method for determining the minimum embedding dimension of a scalar time series. Phys. D 110, 43-50. doi: 10.1016/S0167-2789(97)00118-8
-
(1997)
Phys. D
, vol.110
, pp. 43-50
-
-
Cao, L.1
-
5
-
-
77952285184
-
Wearable electroencephalography. What is it, why is it needed, and what does it entail?
-
Casson, A., Yates, D., Smith, S., Duncan, J., and Rodriguez-Villegas, E. (2010). Wearable electroencephalography. What is it, why is it needed, and what does it entail? IEEE Eng. Med. Biol. Mag. 29, 44-56. doi: 10.1109/MEMB.2010.936545
-
(2010)
IEEE Eng. Med. Biol. Mag
, vol.29
, pp. 44-56
-
-
Casson, A.1
Yates, D.2
Smith, S.3
Duncan, J.4
Rodriguez-Villegas, E.5
-
6
-
-
56349106179
-
Cross-correlation aided support vector machine classifier for classification of EG signals
-
Chandaka, S., Chatterjee, A., and Munshi, S. (2009). Cross-correlation aided support vector machine classifier for classification of EG signals. Expert Syst. Appl. 36, 1329-1336. doi: 10.1016/j.eswa.2007.11.017
-
(2009)
Expert Syst. Appl
, vol.36
, pp. 1329-1336
-
-
Chandaka, S.1
Chatterjee, A.2
Munshi, S.3
-
7
-
-
61849108243
-
Automatic identification of epilepsy by HOS and power spectrum parameters using EEG signals: A comparative study
-
Chua, K. C., Chandran, V., Acharya, R., and Lim, C. M. (2008). Automatic identification of epilepsy by HOS and power spectrum parameters using EEG signals: a comparative study. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2008, 3824-3827. doi: 10.1109/IEMBS.2008.4650043
-
(2008)
Conf. Proc. IEEE Eng. Med. Biol. Soc
, vol.2008
, pp. 3824-3827
-
-
Chua, K.C.1
Chandran, V.2
Acharya, R.3
Lim, C.M.4
-
11
-
-
84896329075
-
Classification of EEG signals for detection of epileptic seizures based on wavelets and statistical pattern recognition
-
Gajić, D., Djurovic, Z., Di Gennaro, S., and Gustafsson, F. (2014). Classification of EEG signals for detection of epileptic seizures based on wavelets and statistical pattern recognition. Biomed. Eng. Appl. Basis. Commun. 26, 1450021. doi: 10.4015/S1016237214500215
-
(2014)
Biomed. Eng. Appl. Basis. Commun
, vol.26
-
-
Gajić, D.1
Djurovic, Z.2
Di Gennaro, S.3
Gustafsson, F.4
-
12
-
-
38349123053
-
Principal component analysisenhanced cosine radial basis function neural network for robust epilepsy and seizure detection
-
Ghosh-Dastidar, S., Adeli, H., and Dadmehr, N. (2008). Principal component analysisenhanced cosine radial basis function neural network for robust epilepsy and seizure detection. IEEE Trans. Biomed. Eng. 55(2 Pt 1), 512-518. doi: 10.1109/TBME.2007.905490
-
(2008)
IEEE Trans. Biomed. Eng
, vol.55
, Issue.2
, pp. 512-518
-
-
Ghosh-Dastidar, S.1
Adeli, H.2
Dadmehr, N.3
-
13
-
-
0032962246
-
Automatic detection of seizures and spikes
-
Gotman, J. (1999). Automatic detection of seizures and spikes. J. Clin. Neurophysiol. 16, 130-140. doi: 10.1097/00004691-199903000-00005
-
(1999)
J. Clin. Neurophysiol
, vol.16
, pp. 130-140
-
-
Gotman, J.1
-
14
-
-
26944458497
-
Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients
-
Guler, I., and Ubeyli, E. D. (2005). Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients. J. Neurosci. Methods 148, 113-121. doi: 10.1016/j.jneumeth.2005.04.013
-
(2005)
J. Neurosci. Methods
, vol.148
, pp. 113-121
-
-
Guler, I.1
Ubeyli, E.D.2
-
15
-
-
79953693243
-
Automatic feature extraction using genetic programming: An application to epileptic EEG classification
-
Guo, L., Rivero, D., Dorado, J., Munteanu, C. R., and Pazos, A. (2011). Automatic feature extraction using genetic programming: an application to epileptic EEG classification. Expert Syst. Appl. 38, 10425-10436. doi: 10.1016/j.eswa.2011.02.118
-
(2011)
Expert Syst. Appl
, vol.38
, pp. 10425-10436
-
-
Guo, L.1
Rivero, D.2
Dorado, J.3
Munteanu, C.R.4
Pazos, A.5
-
16
-
-
67650751415
-
Classification of EEG signals using relative wavelet energy and artificial neural networks
-
(Shanghai)
-
Guo, L., Rivero, D., Seoane, J. A., and Pazos, A. (2009). "Classification of EEG signals using relative wavelet energy and artificial neural networks," in Proceedings of the 1st ACM/SIGEVO Summit on Genetic and Evolutionary Computation (Shanghai).
-
(2009)
Proceedings of the 1st ACM/SIGEVO Summit on Genetic and Evolutionary Computation
-
-
Guo, L.1
Rivero, D.2
Seoane, J.A.3
Pazos, A.4
-
17
-
-
0031141135
-
Classification of EEG signals using the wavelet transform
-
Hazarika, N., Chen, J., Tsoi, A., and Sergejew, A. (1997). Classification of EEG signals using the wavelet transform.Signal Process 59, 61-72. doi: 10.1016/S0165-1684(97)00038-8
-
(1997)
Signal Process
, vol.59
, pp. 61-72
-
-
Hazarika, N.1
Chen, J.2
Tsoi, A.3
Sergejew, A.4
-
18
-
-
0040219905
-
Detecting dynamical change in nonlinear time series
-
Hively, L. M., Gailey, P. C., and Protopopescu, V. A. (1999). Detecting dynamical change in nonlinear time series.Phys. Lett. A 258, 103-114. doi: 10.1016/S0375-9601(99)00342-4
-
(1999)
Phys. Lett. A
, vol.258
, pp. 103-114
-
-
Hively, L.M.1
Gailey, P.C.2
Protopopescu, V.A.3
-
19
-
-
0003905759
-
-
New York, NY: John Wiley and Sons
-
Hyvarinen, A., Karhunen, J., and Oja, E. (2001). Independent Component Analysis. New York, NY: John Wiley and Sons.
-
(2001)
Independent Component Analysis
-
-
Hyvarinen, A.1
Karhunen, J.2
Oja, E.3
-
20
-
-
0002304828
-
The temporal evolution of the largest Lyapunov exponent on the human epileptic cortex
-
eds D.W. Duke and W.S. Pritchard (Singapore: World Scientific)
-
Iasemidis, L. D., and Sackellares, J. C. (1991). "The temporal evolution of the largest Lyapunov exponent on the human epileptic cortex," in Measuring Chaos in the Human Brain, eds D.W. Duke and W.S. Pritchard (Singapore: World Scientific), 49-82.
-
(1991)
Measuring Chaos in the Human Brain
, pp. 49-82
-
-
Iasemidis, L.D.1
Sackellares, J.C.2
-
21
-
-
0038238304
-
Adaptive epileptic seizure prediction system
-
Iasemidis, L., Shiau, D., Chaovalitwongse, W., Sackellares, J., Pardalos, P., Principe, J., et al. (2003). Adaptive epileptic seizure prediction system. IEEE Trans. Biomed. Eng. 50, 616-627. doi: 10.1109/TBME.2003.810689
-
(2003)
IEEE Trans. Biomed. Eng
, vol.50
, pp. 616-627
-
-
Iasemidis, L.1
Shiau, D.2
Chaovalitwongse, W.3
Sackellares, J.4
Pardalos, P.5
Principe, J.6
-
22
-
-
79953729618
-
Classification of electroencephalogram signals with combined time and frequency features
-
Iscan, Z., Dokur, Z., and Tamer, D. (2011). Classification of electroencephalogram signals with combined time and frequency features. Expert Syst. Appl. 38, 10499-10505. doi: 10.1016/j.eswa.2011.02.110
-
(2011)
Expert Syst. Appl
, vol.38
, pp. 10499-10505
-
-
Iscan, Z.1
Dokur, Z.2
Tamer, D.3
-
23
-
-
0034828556
-
Early seizure detection
-
Jerger, K., Netoff, T., Francis, J., Sauer, T., Pecora, L., Weinstein, S., et al. (2001). Early seizure detection. J. Clin. Neurophysiol. 18, 259-268. doi: 10.1097/00004691-200105000-00005
-
(2001)
J. Clin. Neurophysiol
, vol.18
, pp. 259-268
-
-
Jerger, K.1
Netoff, T.2
Francis, J.3
Sauer, T.4
Pecora, L.5
Weinstein, S.6
-
24
-
-
13844294484
-
Multivariate linear discrimination of seizures
-
Jerger, K., Weinstein, S., Sauer, T., and Schiff, S. (2005). Multivariate linear discrimination of seizures. Clin. Neurophysiol. 116, 545-551. doi: 10.1016/j.clinph.2004.08.023
-
(2005)
Clin. Neurophysiol
, vol.116
, pp. 545-551
-
-
Jerger, K.1
Weinstein, S.2
Sauer, T.3
Schiff, S.4
-
25
-
-
0029256646
-
Wavelet preprocessing for automated neural network detection of EEG spikes
-
Kalayci, T., and Özdamar, Ö. (1995). Wavelet preprocessing for automated neural network detection of EEG spikes.IEEE Eng. Med. Biol. 14, 160-166. doi: 10.1109/51.376754
-
(1995)
IEEE Eng. Med. Biol
, vol.14
, pp. 160-166
-
-
Kalayci, T.1
Özdamar, Ö.2
-
26
-
-
25144477526
-
Characterization of EEG-a comparative study
-
Kannathal, N., Acharya, U. R., Lim, C. M., and Sadasivan, P. K. (2005a). Characterization of EEG-a comparative study. Comput. Methods Programs Biomed. 80, 17-23. doi: 10.1016/j.cmpb.2005.06.005
-
(2005)
Comput. Methods Programs Biomed
, vol.80
, pp. 17-23
-
-
Kannathal, N.1
Acharya, U.R.2
Lim, C.M.3
Sadasivan, P.K.4
-
27
-
-
27744537035
-
Entropies for detection of epilepsy in EEG
-
Kannathal, N., Choo, M. L., Acharya, U. R., and Sadasivan, P. K. (2005b). Entropies for detection of epilepsy in EEG.Comput. Methods Programs Biomed. 80, 187-194. doi: 10.1016/j.cmpb.2005.06.012
-
(2005)
Comput. Methods Programs Biomed
, vol.80
, pp. 187-194
-
-
Kannathal, N.1
Choo, M.L.2
Acharya, U.R.3
Sadasivan, P.K.4
-
28
-
-
77954612893
-
Combination of EEG complexity and spectral analysis for epilepsy diagnosis and seizure detection
-
Liang, S. F., Wang, H. C., and Chang, W. L. (2010). Combination of EEG complexity and spectral analysis for epilepsy diagnosis and seizure detection. EURASIP J. Adv. Signal Process 2010:853434. doi: 10.1155/2010/853434
-
(2010)
EURASIP J. Adv. Signal Process
, vol.2010
-
-
Liang, S.F.1
Wang, H.C.2
Chang, W.L.3
-
30
-
-
77956652043
-
Epilepsy seizure detection using eigensystem spectral estimation and Multiple Layer Perceptron neural network
-
Naghsh-Nilchi, A. R., and Aghashahi, M. (2010). Epilepsy seizure detection using eigensystem spectral estimation and Multiple Layer Perceptron neural network. Biomed. Signal Process 5, 147-157. doi: 10.1016/j.bspc.2010.01.004
-
(2010)
Biomed. Signal Process
, vol.5
, pp. 147-157
-
-
Naghsh-Nilchi, A.R.1
Aghashahi, M.2
-
31
-
-
0037387643
-
Detection of seizure precursors from depth EEG using a sign periodogram transform
-
Niederhauser, J., Esteller, R., Echauz, J., Vachtsevanos, G., and Litt, B. (2003). Detection of seizure precursors from depth EEG using a sign periodogram transform. IEEE Trans. Biomed. Eng. 51, 449-458. doi: 10.1109/TBME.2003.809497
-
(2003)
IEEE Trans. Biomed. Eng
, vol.51
, pp. 449-458
-
-
Niederhauser, J.1
Esteller, R.2
Echauz, J.3
Vachtsevanos, G.4
Litt, B.5
-
32
-
-
0842310823
-
A neural-network-based detection of epilepsy
-
Nigam, V. P., and Graupe, D. (2004). A neural-network-based detection of epilepsy. Neurol. Res. 26, 55-60. doi: 10.1179/016164104773026534
-
(2004)
Neurol. Res
, vol.26
, pp. 55-60
-
-
Nigam, V.P.1
Graupe, D.2
-
33
-
-
41249099701
-
Optimal classification of epileptic seizures in EEG using wavelet analysis and genetic algorithm
-
Ocak, H. (2008). Optimal classification of epileptic seizures in EEG using wavelet analysis and genetic algorithm.Signal Process 88, 1858-1867. doi: 10.1016/j.sigpro.2008.01.026
-
(2008)
Signal Process
, vol.88
, pp. 1858-1867
-
-
Ocak, H.1
-
34
-
-
56349101801
-
Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy
-
Ocak, H. (2009). Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Syst. Appl. 36, 2027-2036. doi: 10.1016/j.eswa.2007.12.065
-
(2009)
Expert Syst. Appl
, vol.36
, pp. 2027-2036
-
-
Ocak, H.1
-
35
-
-
79957981604
-
EEG signals classification using the K-means clustering and a multilayer perceptron neural network model
-
Orhan, U., Hekim, M., and Ozer, M. (2011). EEG signals classification using the K-means clustering and a multilayer perceptron neural network model. Expert Syst. Appl. 38, 13475-13481. doi: 10.1016/j.eswa.2011.04.149
-
(2011)
Expert Syst. Appl
, vol.38
, pp. 13475-13481
-
-
Orhan, U.1
Hekim, M.2
Ozer, M.3
-
36
-
-
0033990625
-
Recurrent neural network based prediction of epileptic seizures in intra- and extracranial EEG
-
Petrosian, A., Prokhorov, D., Homan, R., Dasheiff, R., and Wunsch, D. (2000). Recurrent neural network based prediction of epileptic seizures in intra- and extracranial EEG. Neurocomputing 30, 201-218. doi: 10.1016/S0925-2312(99)00126-5
-
(2000)
Neurocomputing
, vol.30
, pp. 201-218
-
-
Petrosian, A.1
Prokhorov, D.2
Homan, R.3
Dasheiff, R.4
Wunsch, D.5
-
37
-
-
34247217946
-
Classification of epileptiform EEG using a hybrid system based on decision tree classier and fast fourier transform
-
Polat, K., and Gunes, S. (2007). Classification of epileptiform EEG using a hybrid system based on decision tree classier and fast fourier transform. Appl. Math. Comp. 187, 1017-1026. doi: 10.1016/j.amc.2006.09.022
-
(2007)
Appl. Math. Comp
, vol.187
, pp. 1017-1026
-
-
Polat, K.1
Gunes, S.2
-
38
-
-
0003409584
-
-
Upper Saddle River, NJ: Prentice Hall
-
Proakis, J., and Manolakis, D. (1996). Digital Signal Processing: Principles, Algorithms, and Applications. Upper Saddle River, NJ: Prentice Hall.
-
(1996)
Digital Signal Processing: Principles, Algorithms, and Applications
-
-
Proakis, J.1
Manolakis, D.2
-
40
-
-
43949166788
-
A practical method for calculating largest Lyapunov exponents from small data sets
-
Rosenstein, M. T., Collins, J. J., and De Luca, C. J. (1993). A practical method for calculating largest Lyapunov exponents from small data sets. Phys. D 65, 117-134. doi: 10.1016/0167-2789(93)90009-P
-
(1993)
Phys. D
, vol.65
, pp. 117-134
-
-
Rosenstein, M.T.1
Collins, J.J.2
De Luca, C.J.3
-
41
-
-
0037107846
-
Brain electrical activity analysis using wavelet-based informational tools
-
Rosso, O., Martin, M., and Plastino, A. (2002). Brain electrical activity analysis using wavelet-based informational tools. Phys. A 313, 587-608. doi: 10.1016/S0378-4371(02)00958-5
-
(2002)
Phys. A
, vol.313
, pp. 587-608
-
-
Rosso, O.1
Martin, M.2
Plastino, A.3
-
42
-
-
34250729003
-
Epileptic seizure detection using neural fuzzy networks
-
(Vancouver, BC)
-
Sadati, N., Mohseni, H. R., and Magshoudi, A. (2006). "Epileptic seizure detection using neural fuzzy networks," inConference Proceeding IEEE International Conference on Fuzzy System (Vancouver, BC). doi: 10.1109/FUZZY.2006.1681772
-
(2006)
Conference Proceeding IEEE International Conference on Fuzzy System
-
-
Sadati, N.1
Mohseni, H.R.2
Magshoudi, A.3
-
43
-
-
34248567678
-
Approximate entropy-based epileptic EEG detection using artificial neural networks
-
Srinivasan, V., Eswaran, C., and Sriraam, N. (2007). Approximate entropy-based epileptic EEG detection using artificial neural networks. IEEE Trans. Inf. Technol. Biomed. 11, 288-295. doi: 10.1109/TITB.2006.884369
-
(2007)
IEEE Trans. Inf. Technol. Biomed
, vol.11
, pp. 288-295
-
-
Srinivasan, V.1
Eswaran, C.2
Sriraam, N.3
-
44
-
-
33845386973
-
Application of adaptive neuro-fuzzy inference system for epileptic seizure detection using wavelet feature extraction
-
Subasi, A. (2007a). Application of adaptive neuro-fuzzy inference system for epileptic seizure detection using wavelet feature extraction. Comput. Biol. Med. 37, 227-244. doi: 10.1016/j.compbiomed.2005.12.003
-
(2007)
Comput. Biol. Med
, vol.37
, pp. 227-244
-
-
Subasi, A.1
-
45
-
-
33751396389
-
EEG signal classification using wavelet feature extraction and a mixture of expert model
-
Subasi, A. (2007b). EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst. Appl. 32, 1084-1093. doi: 10.1016/j.eswa.2006.02.005
-
(2007)
Expert Syst. Appl
, vol.32
, pp. 1084-1093
-
-
Subasi, A.1
-
47
-
-
38749083808
-
Automatic seizure detection based on time-frequency analysis and artificial neural networks
-
Tzallas, A. T., Tsipouras, M. G., and Fotiadis, D. I. (2007). Automatic seizure detection based on time-frequency analysis and artificial neural networks. Comput. Intell. Neurosci. 2007, 80510-80523. doi: 10.1155/2007/80510
-
(2007)
Comput. Intell. Neurosci
, vol.2007
, pp. 80510-80523
-
-
Tzallas, A.T.1
Tsipouras, M.G.2
Fotiadis, D.I.3
-
48
-
-
70349410385
-
Epileptic seizure detection in EEGs using time-frequency analysis
-
Tzallas, A. T., Tsipouras, M. G., and Fotiadis, D. I. (2009). Epileptic seizure detection in EEGs using time-frequency analysis. IEEE Trans. Inf. Technol. Biomed. 13, 703-710. doi: 10.1109/TITB.2009.2017939
-
(2009)
IEEE Trans. Inf. Technol. Biomed
, vol.13
, pp. 703-710
-
-
Tzallas, A.T.1
Tsipouras, M.G.2
Fotiadis, D.I.3
-
49
-
-
33746286608
-
Analysis of EEG signals using Lyapunov exponents
-
Ubeyli, E. D. (2006). Analysis of EEG signals using Lyapunov exponents. Neural Netwk. World 16, 257-273.
-
(2006)
Neural Netwk. World
, vol.16
, pp. 257-273
-
-
Ubeyli, E.D.1
-
50
-
-
57649155303
-
Modified mixture of experts for analysis of EEG signals
-
Ubeyli, E. D. (2007). Modified mixture of experts for analysis of EEG signals. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2007, 1546-1549. doi: 10.1109/IEMBS.2007.4352598
-
(2007)
Conf. Proc. IEEE Eng. Med. Biol. Soc
, vol.2007
, pp. 1546-1549
-
-
Ubeyli, E.D.1
-
51
-
-
37349024109
-
Wavelet/mixture of experts network structure for EEG classification
-
Ubeyli, E. D. (2008). Wavelet/mixture of experts network structure for EEG classification. Expert Syst. Appl. 37, 1954-1962. doi: 10.1016/j.eswa.2007.02.006
-
(2008)
Expert Syst. Appl
, vol.37
, pp. 1954-1962
-
-
Ubeyli, E.D.1
-
52
-
-
33846095446
-
Features extracted by eigenvector methods for detection variability of EEG signals
-
Ubeyli, E. D., and Guler, I. (2007). Features extracted by eigenvector methods for detection variability of EEG signals. Pattern Recogn. Lett. 28, 592-603. doi: 10.1016/j.patrec.2006.10.004
-
(2007)
Pattern Recogn. Lett
, vol.28
, pp. 592-603
-
-
Ubeyli, E.D.1
Guler, I.2
-
53
-
-
85052872476
-
-
Boca Raton, FL: CRC Press
-
Varsavsky, A., Mareels, I., and Cook, M. (2011). Epileptic Seizures and the EEG: Measurement, Models, Detection and Prediction. Boca Raton, FL: CRC Press.
-
(2011)
Epileptic Seizures and the EEG: Measurement, Models, Detection and Prediction
-
-
Varsavsky, A.1
Mareels, I.2
Cook, M.3
-
54
-
-
79959978998
-
Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection
-
Wang, D., Miao, D., and Xie, C. (2011). Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection. Expert Syst. Appl. 38, 14314-14320. doi: 10.1016/j.eswa.2011.05.096
-
(2011)
Expert Syst. Appl
, vol.38
, pp. 14314-14320
-
-
Wang, D.1
Miao, D.2
Xie, C.3
-
55
-
-
0141833992
-
New horizons in ambulatory electroencephalography
-
Waterhouse, E. (2003). New horizons in ambulatory electroencephalography. IEEE Eng. Med. Biol. Mag. 22, 74-80. doi: 10.1109/MEMB.2003.1213629
-
(2003)
IEEE Eng. Med. Biol. Mag
, vol.22
, pp. 74-80
-
-
Waterhouse, E.1
-
56
-
-
84908144695
-
The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms
-
Welch, P. D. (1967). The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. AU-15, 70-73. doi: 10.1109/TAU.1967.1161901
-
(1967)
IEEE Trans. Audio Electroacoust
, vol.AU-15
, pp. 70-73
-
-
Welch, P.D.1
-
57
-
-
0004096855
-
-
Washington, DC: National Academy Press
-
Williams, G. P. (1997). Chaos Theory Tamed. Washington, DC: National Academy Press.
-
(1997)
Chaos Theory Tamed
-
-
Williams, G.P.1
-
58
-
-
0021224909
-
Determining Lyapunov exponents from a time series
-
Wolf, A., Swift, J. B., Swinney, H. L., and Vastano, J. A. (1985). Determining Lyapunov exponents from a time series.Phys. D 16, 285-317. doi: 10.1016/0167-2789(85)90011-9
-
(1985)
Phys. D
, vol.16
, pp. 285-317
-
-
Wolf, A.1
Swift, J.B.2
Swinney, H.L.3
Vastano, J.A.4
|