메뉴 건너뛰기




Volumn 6, Issue , 2015, Pages

Direct oriented growth of armchair graphene nanoribbons on germanium

Author keywords

[No Author keywords available]

Indexed keywords

GERMANIUM; GRAPHENE; NANORIBBON;

EID: 84938913211     PISSN: None     EISSN: 20411723     Source Type: Journal    
DOI: 10.1038/ncomms9006     Document Type: Article
Times cited : (187)

References (58)
  • 1
    • 56349108496 scopus 로고    scopus 로고
    • Mobility in semiconducting graphene nanoribbons: Phonon, impurity, and edge roughness scattering
    • Fang, T., Konar, A., Xing, H. & Jena, D. Mobility in semiconducting graphene nanoribbons: phonon, impurity, and edge roughness scattering. Phys. Rev. B 78, 205403 (2008).
    • (2008) Phys. Rev B , vol.78 , pp. 205403
    • Fang, T.1    Konar, A.2    Xing, H.3    Jena, D.4
  • 2
    • 84877744621 scopus 로고    scopus 로고
    • Ballistic to diffusive crossover of heat flow in graphene ribbons
    • Bae, M. H., et al. Ballistic to diffusive crossover of heat flow in graphene ribbons. Nat. Commun. 4, 1734 (2013).
    • (2013) Nat. Commun , vol.4 , pp. 1734
    • Bae, M.H.1
  • 3
    • 79960658023 scopus 로고    scopus 로고
    • Thermally limited current carrying ability of graphene nanoribbons
    • Liao, A. D., et al. Thermally limited current carrying ability of graphene nanoribbons. Phys. Rev. Lett. 106, 256801 (2011).
    • (2011) Phys. Rev. Lett , vol.106 , pp. 256801
    • Liao, A.D.1
  • 4
    • 33751110207 scopus 로고    scopus 로고
    • Half-metallic graphene nanoribbons
    • Son, Y. W., Cohen, M. L. & Louie, S. G. Half-metallic graphene nanoribbons. Nature 444, 347-349 (2006).
    • (2006) Nature , vol.444 , pp. 347-349
    • Son, Y.W.1    Cohen, M.L.2    Louie, S.G.3
  • 5
    • 84903771192 scopus 로고    scopus 로고
    • Direct experimental determination of onset of electron-electron interactions in gap opening of zigzag graphene nanoribbons
    • Li, Y. Y., Chen, M. X., Weinert, M. & Li, L. Direct experimental determination of onset of electron-electron interactions in gap opening of zigzag graphene nanoribbons. Nat. Commun. 5, 4311 (2014).
    • (2014) Nat. Commun , vol.5 , pp. 4311
    • Li, Y.Y.1    Chen, M.X.2    Weinert, M.3    Li, L.4
  • 6
  • 7
    • 35948971778 scopus 로고    scopus 로고
    • Quasiparticle energies and band gaps in graphene nanoribbons
    • Yang, L., Park, C. H., Son, Y. W., Cohen, M. L. & Louie, S. G. Quasiparticle energies and band gaps in graphene nanoribbons. Phys. Rev. Lett. 99, 186801 (2007).
    • (2007) Phys. Rev. Lett , vol.99 , pp. 186801
    • Yang, L.1    Park, C.H.2    Son, Y.W.3    Cohen, M.L.4    Louie, S.G.5
  • 8
    • 35348815666 scopus 로고    scopus 로고
    • Coulomb blockade in graphene nanoribbons
    • Sols, F., Guinea, F. & Neto, A. H. C. Coulomb blockade in graphene nanoribbons. Phys. Rev. Lett. 99, 166803 (2007).
    • (2007) Phys. Rev. Lett , vol.99 , pp. 166803
    • Sols, F.1    Guinea, F.2    Neto, A.H.C.3
  • 9
    • 55849119530 scopus 로고    scopus 로고
    • Edge-disorderinduced Anderson localization and conduction gap in graphene nanoribbons
    • Evaldsson, M., Zozoulenko, I. V., Xu, H. Y. & Heinzel, T. Edge-disorderinduced Anderson localization and conduction gap in graphene nanoribbons. Phys. Rev. B 78, 161407(R) (2008).
    • (2008) Phys. Rev B , vol.78 , pp. 161407
    • Evaldsson, M.1    Zozoulenko, I.V.2    Xu, H.Y.3    Heinzel, T.4
  • 10
    • 60949113491 scopus 로고    scopus 로고
    • Conductance quantization and transport gaps in disordered graphene nanoribbons
    • Mucciolo, E. R., Neto, A. H. C. & Lewenkopf, C. H. Conductance quantization and transport gaps in disordered graphene nanoribbons. Phys. Rev. B 79, 075407 (2009).
    • (2009) Phys. Rev B , vol.79 , pp. 075407
    • Mucciolo, E.R.1    Neto, A.H.C.2    Lewenkopf, C.H.3
  • 11
    • 84863686988 scopus 로고    scopus 로고
    • Edge effect on thermal transport in graphene nanoribbons: A phonon localization mechanism beyond edge roughness scattering
    • Wang, Y., Qiu, B. & Ruan, X. L. Edge effect on thermal transport in graphene nanoribbons: a phonon localization mechanism beyond edge roughness scattering. Appl. Phys. Lett. 101, 013101 (2012).
    • (2012) Appl. Phys. Lett , vol.101 , pp. 013101
    • Wang, Y.1    Qiu, B.2    Ruan, X.L.3
  • 12
    • 34547334459 scopus 로고    scopus 로고
    • Energy band-gap engineering of graphene nanoribbons
    • Han, M. Y., Ozyilmaz, B., Zhang, Y. B. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).
    • (2007) Phys. Rev. Lett , vol.98 , pp. 206805
    • Han, M.Y.1    Ozyilmaz, B.2    Zhang, Y.B.3    Kim, P.4
  • 14
    • 75849164584 scopus 로고    scopus 로고
    • Electron transport in disordered graphene nanoribbons
    • Han, M. Y., Brant, J. C. & Kim, P. Electron transport in disordered graphene nanoribbons. Phys. Rev. Lett. 104, 056801 (2010).
    • (2010) Phys. Rev. Lett , vol.104 , pp. 056801
    • Han, M.Y.1    Brant, J.C.2    Kim, P.3
  • 15
    • 77954904482 scopus 로고    scopus 로고
    • Atomically precise bottom-up fabrication of graphene nanoribbons
    • Cai, J. M., et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470-473 (2010).
    • (2010) Nature , vol.466 , pp. 470-473
    • Cai, J.M.1
  • 16
    • 84871776139 scopus 로고    scopus 로고
    • Spatially resolved electronic structures of atomically precise armchair graphene nanoribbons
    • Huang, H., et al. Spatially resolved electronic structures of atomically precise armchair graphene nanoribbons. Sci. Rep. 2, 983 (2012).
    • (2012) Sci. Rep , vol.2 , pp. 983
    • Huang, H.1
  • 17
    • 84880782130 scopus 로고    scopus 로고
    • Tuning the band gap of graphene nanoribbons synthesized from molecular precursors
    • Chen, Y. C., et al. Tuning the band gap of graphene nanoribbons synthesized from molecular precursors. ACS Nano 7, 6123-6128 (2013).
    • (2013) ACS Nano , vol.7 , pp. 6123-6128
    • Chen, Y.C.1
  • 18
    • 84896952440 scopus 로고    scopus 로고
    • Large-scale solution synthesis of narrow graphene nanoribbons
    • Vo, T. H., et al. Large-scale solution synthesis of narrow graphene nanoribbons. Nat. Commun. 5, 3189 (2014).
    • (2014) Nat. Commun , vol.5 , pp. 3189
    • Vo, T.H.1
  • 19
    • 84893005111 scopus 로고    scopus 로고
    • Synthesis of structurally well-defined and liquid-phaseprocessable graphene nanoribbons
    • Narita, A., et al. Synthesis of structurally well-defined and liquid-phaseprocessable graphene nanoribbons. Nature Chem 6, 126-132 (2014).
    • (2014) Nature Chem , vol.6 , pp. 126-132
    • Narita, A.1
  • 20
    • 40049093097 scopus 로고    scopus 로고
    • Chemically derived, ultrasmooth graphene nanoribbon semiconductors
    • Li, X. L., Wang, X. R., Zhang, L., Lee, S. W. & Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229-1232 (2008).
    • (2008) Science , vol.319 , pp. 1229-1232
    • Li, X.L.1    Wang, X.R.2    Zhang, L.3    Lee, S.W.4    Dai, H.5
  • 22
    • 77957930639 scopus 로고    scopus 로고
    • Scalable templated growth of graphene nanoribbons on SiC
    • Sprinkle, M., et al. Scalable templated growth of graphene nanoribbons on SiC. Nat. Nanotechnol. 5, 727-731 (2010).
    • (2010) Nat. Nanotechnol , vol.5 , pp. 727-731
    • Sprinkle, M.1
  • 23
    • 84864475919 scopus 로고    scopus 로고
    • Step-templated CVD growth of aligned graphene nanoribbons supported by a single-layer graphene film
    • Ago, H., Ito, Y., Tsuji, M. & Ikeda, K. Step-templated CVD growth of aligned graphene nanoribbons supported by a single-layer graphene film. Nanoscale 4, 5178-5182 (2012).
    • (2012) Nanoscale , vol.4 , pp. 5178-5182
    • Ago, H.1    Ito, Y.2    Tsuji, M.3    Ikeda, K.4
  • 25
    • 84891360176 scopus 로고    scopus 로고
    • Lattice-oriented catalytic growth of graphene nanoribbons on heteroepitaxial nickel films
    • Ago, H., et al. Lattice-oriented catalytic growth of graphene nanoribbons on heteroepitaxial nickel films. ACS Nano 7, 10825-10833 (2013).
    • (2013) ACS Nano , vol.7 , pp. 10825-10833
    • Ago, H.1
  • 26
    • 68249161925 scopus 로고    scopus 로고
    • Scalable synthesis of few-layer graphene ribbons with controlled morphologies by a template method and their applications in nanoelectromechanical switches
    • Wei, D. C., et al. Scalable synthesis of few-layer graphene ribbons with controlled morphologies by a template method and their applications in nanoelectromechanical switches. J. Am. Chem. Soc. 131, 11147-11154 (2009).
    • (2009) J. Am. Chem. Soc , vol.131 , pp. 11147-11154
    • Wei, D.C.1
  • 27
    • 84863169353 scopus 로고    scopus 로고
    • Barrier-guided growth of micro- and nano-structured graphene
    • Safron, N. S., Kim, M., Gopalan, P. & Arnold, M. S. Barrier-guided growth of micro- and nano-structured graphene. Adv. Mater. 24, 1041-1045 (2012).
    • (2012) Adv. Mater , vol.24 , pp. 1041-1045
    • Safron, N.S.1    Kim, M.2    Gopalan, P.3    Arnold, M.S.4
  • 28
    • 84870925176 scopus 로고    scopus 로고
    • Site-and alignment-controlled growth of graphene nanoribbons from nickel nanobars
    • Kato, T. & Hatakeyama, R. Site- and alignment-controlled growth of graphene nanoribbons from nickel nanobars. Nat. Nanotechnol. 7, 651-656 (2012).
    • (2012) Nat. Nanotechnol , vol.7 , pp. 651-656
    • Kato, T.1    Hatakeyama, R.2
  • 29
    • 84873571550 scopus 로고    scopus 로고
    • In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes
    • Liu, Z., et al. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nat. Nanotechnol. 8, 119-124 (2013).
    • (2013) Nat. Nanotechnol , vol.8 , pp. 119-124
    • Liu, Z.1
  • 30
    • 84908426181 scopus 로고    scopus 로고
    • Exceptional charge transport properties of graphene on germanium
    • Cavallo, F., et al. Exceptional charge transport properties of graphene on germanium. ACS Nano 8, 10237-10245 (2014).
    • (2014) ACS Nano , vol.8 , pp. 10237-10245
    • Cavallo, F.1
  • 31
    • 84885459142 scopus 로고    scopus 로고
    • Monolayer graphene/germanium Schottky junction as highperformance self-driven infrared light photodetector
    • Zeng, L.-H., et al. Monolayer graphene/germanium Schottky junction as highperformance self-driven infrared light photodetector. ACS Appl. Mater. Interfaces 5, 9362-9366 (2013).
    • (2013) ACS Appl. Mater. Interfaces , vol.5 , pp. 9362-9366
    • Zeng, L.-H.1
  • 32
    • 84883081849 scopus 로고    scopus 로고
    • Direct growth of graphene film on germanium substrate
    • Wang, G., et al. Direct growth of graphene film on germanium substrate. Sci. Rep. 3, 2465 (2013).
    • (2013) Sci. Rep , vol.3 , pp. 2465
    • Wang, G.1
  • 33
    • 84898784065 scopus 로고    scopus 로고
    • Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium
    • Lee, J. H., et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 344, 286-289 (2014).
    • (2014) Science , vol.344 , pp. 286-289
    • Lee, J.H.1
  • 34
    • 33847762932 scopus 로고    scopus 로고
    • Spatially resolved raman spectroscopy of single- and few-layer graphene
    • Graf, D., et al. Spatially resolved raman spectroscopy of single- and few-layer graphene. Nano Lett. 7, 238-242 (2007).
    • (2007) Nano Lett , vol.7 , pp. 238-242
    • Graf, D.1
  • 35
    • 84860356363 scopus 로고    scopus 로고
    • Activation energy paths for graphene nucleation and growth on Cu
    • Kim, H., et al. Activation energy paths for graphene nucleation and growth on Cu. ACS Nano 6, 3614-3623 (2012).
    • (2012) ACS Nano , vol.6 , pp. 3614-3623
    • Kim, H.1
  • 36
    • 84875614617 scopus 로고    scopus 로고
    • Graphene growth dynamics on epitaxial copper thin films
    • Jacobberger, R. M. & Arnold, M. S. Graphene growth dynamics on epitaxial copper thin films. Chem. Mater. 25, 871-877 (2013).
    • (2013) Chem. Mater , vol.25 , pp. 871-877
    • Jacobberger, R.M.1    Arnold, M.S.2
  • 37
    • 79957494809 scopus 로고    scopus 로고
    • Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition
    • Yu, Q. K., et al. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat. Mater. 10, 443-449 (2011).
    • (2011) Nat. Mater , vol.10 , pp. 443-449
    • Yu, Q.K.1
  • 38
    • 77949442881 scopus 로고    scopus 로고
    • Quantum interference channeling at graphene edges
    • Yang, H., et al. Quantum interference channeling at graphene edges. Nano Lett. 10, 943-947 (2010).
    • (2010) Nano Lett , vol.10 , pp. 943-947
    • Yang, H.1
  • 39
    • 84889582877 scopus 로고    scopus 로고
    • Solid-source growth and atomic-scale characterization of graphene on Ag(111)
    • Kiraly, B., et al. Solid-source growth and atomic-scale characterization of graphene on Ag(111). Nat. Commun. 4, 2804 (2013).
    • (2013) Nat. Commun , vol.4 , pp. 2804
    • Kiraly, B.1
  • 40
    • 60949104104 scopus 로고    scopus 로고
    • The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons
    • Ritter, K. A. & Lyding, J. W. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat. Mater. 8, 235-242 (2009).
    • (2009) Nat. Mater , vol.8 , pp. 235-242
    • Ritter, K.A.1    Lyding, J.W.2
  • 41
    • 84908431587 scopus 로고    scopus 로고
    • Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons
    • Magda, G. Z., et al. Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons. Nature 514, 608-611 (2014).
    • (2014) Nature , vol.514 , pp. 608-611
    • Magda, G.Z.1
  • 42
    • 79952445612 scopus 로고    scopus 로고
    • The origins and limits of metal-graphene junction resistance
    • Xia, F. N., Perebeinos, V., Lin, Y. M., Wu, Y. Q. & Avouris, P. The origins and limits of metal-graphene junction resistance. Nat. Nanotechnol. 6, 179-184 (2011).
    • (2011) Nat. Nanotechnol , vol.6 , pp. 179-184
    • Xia, F.N.1    Perebeinos, V.2    Lin, Y.M.3    Wu, Y.Q.4    Avouris, P.5
  • 43
    • 79955873818 scopus 로고    scopus 로고
    • Nanoscale Joule heating, Peltier cooling and current crowding at graphene-metal contacts
    • Grosse, K. L., Bae, M. H., Lian, F. F., Pop, E. & King, W. P. Nanoscale Joule heating, Peltier cooling and current crowding at graphene-metal contacts. Nat. Nanotechnol. 6, 287-290 (2011).
    • (2011) Nat. Nanotechnol , vol.6 , pp. 287-290
    • Grosse, K.L.1    Bae, M.H.2    Lian, F.F.3    Pop, E.4    King, W.P.5
  • 44
    • 79960831055 scopus 로고    scopus 로고
    • Contact resistance in top-gated graphene field-effect transistors
    • Huang, B. C., Zhang, M., Wang, Y. J. & Woo, J. Contact resistance in top-gated graphene field-effect transistors. Appl. Phys. Lett. 99, 032107 (2011).
    • (2011) Appl. Phys. Lett , vol.99 , pp. 032107
    • Huang, B.C.1    Zhang, M.2    Wang, Y.J.3    Woo, J.4
  • 45
    • 44149119344 scopus 로고    scopus 로고
    • Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors
    • Wang, X. R., et al. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 100, 206803 (2008).
    • (2008) Phys. Rev. Lett , vol.100 , pp. 206803
    • Wang, X.R.1
  • 47
    • 84858342490 scopus 로고    scopus 로고
    • Low contact resistance metals for graphene based devices
    • Watanabe, E., Conwill, A., Tsuya, D. & Koide, Y. Low contact resistance metals for graphene based devices. Diam. Relat. Mater. 24, 171-174 (2012).
    • (2012) Diam. Relat. Mater , vol.24 , pp. 171-174
    • Watanabe, E.1    Conwill, A.2    Tsuya, D.3    Koide, Y.4
  • 48
    • 84864688450 scopus 로고    scopus 로고
    • Determination of work function of graphene under a metal electrode and its role in contact resistance
    • Song, S. M., Park, J. K., Sul, O. J. & Cho, B. J. Determination of work function of graphene under a metal electrode and its role in contact resistance. Nano Lett. 12, 3887-3892 (2012).
    • (2012) Nano Lett , vol.12 , pp. 3887-3892
    • Song, S.M.1    Park, J.K.2    Sul, O.J.3    Cho, B.J.4
  • 49
    • 84871307235 scopus 로고    scopus 로고
    • Rapid thermal annealing of graphene-metal contact
    • Balci, O. & Kocabas, C. Rapid thermal annealing of graphene-metal contact. Appl. Phys. Lett. 101, 243105 (2012).
    • (2012) Appl. Phys. Lett , vol.101 , pp. 243105
    • Balci, O.1    Kocabas, C.2
  • 50
    • 78149246957 scopus 로고    scopus 로고
    • Comparative van der Waals density-functional study of graphene on metal surfaces
    • Hamada, I. & Otani, M. Comparative van der Waals density-functional study of graphene on metal surfaces. Phys. Rev. B 82, 153412 (2010).
    • (2010) Phys. Rev B , vol.82 , pp. 153412
    • Hamada, I.1    Otani, M.2
  • 51
    • 52749095866 scopus 로고    scopus 로고
    • Nanoscale surface chemistry over faceted substrates: Structure, reactivity and nanotemplates
    • Madey, T. E., Chen, W. H., Wang, H., Kaghazchi, P. & Jacob, T. Nanoscale surface chemistry over faceted substrates: structure, reactivity and nanotemplates. Chem. Soc. Rev. 37, 2310-2327 (2008).
    • (2008) Chem. Soc. Rev , vol.37 , pp. 2310-2327
    • Madey, T.E.1    Chen, W.H.2    Wang, H.3    Kaghazchi, P.4    Jacob, T.5
  • 52
    • 84867157744 scopus 로고    scopus 로고
    • How the orientation of graphene is determined during chemical vapor deposition growth
    • Zhang, X. Y., Xu, Z. W., Hui, L., Xin, J. & Ding, F. How the orientation of graphene is determined during chemical vapor deposition growth. J. Phys. Chem. Lett. 3, 2822-2827 (2012).
    • (2012) J. Phys. Chem. Lett , vol.3 , pp. 2822-2827
    • Zhang, X.Y.1    Xu, Z.W.2    Hui, L.3    Xin, J.4    Ding, F.5
  • 53
    • 61649126465 scopus 로고    scopus 로고
    • Planar GaAs nanowires on GaAs (100) substrates: Self-aligned, nearly twin-defect free, and transfer-printable
    • Fortuna, S. A., Wen, J. G., Chun, I. S. & Li, X. L. Planar GaAs nanowires on GaAs (100) substrates: self-aligned, nearly twin-defect free, and transfer-printable. Nano Lett. 8, 4421-4427 (2008).
    • (2008) Nano Lett , vol.8 , pp. 4421-4427
    • Fortuna, S.A.1    Wen, J.G.2    Chun, I.S.3    Li, X.L.4
  • 54
    • 84906283107 scopus 로고    scopus 로고
    • Self-assembly of carbon atoms on transition metal surfaces: Chemical vapor deposition growth mechanism of graphene
    • Zhang, X. Y., Li, H. & Ding, F. Self-assembly of carbon atoms on transition metal surfaces: chemical vapor deposition growth mechanism of graphene. Adv. Mater. 26, 5488-5495 (2014).
    • (2014) Adv. Mater , vol.26 , pp. 5488-5495
    • Zhang, X.Y.1    Li, H.2    Ding, F.3
  • 55
    • 0026135859 scopus 로고
    • Growth-kinetics simulation of the Al-Ga self-organization on GaAs(100) stepped surfaces
    • Lu, Y. T. & Metiu, H. Growth-kinetics simulation of the Al-Ga self-organization on GaAs(100) stepped surfaes. Surf. Sci. 245, 150-172 (1991).
    • (1991) Surf. Sci , vol.245 , pp. 150-172
    • Lu, Y.T.1    Metiu, H.2
  • 56
    • 0024737555 scopus 로고
    • Nucleation and growth of epitaxial silicon on Si(001) and Si(111) surfaces by scanning tunneling microscopy
    • Hamers, R. J., Köhler, U. K. & Demuth, J. E. Nucleation and growth of epitaxial silicon on Si(001) and Si(111) surfaces by scanning tunneling microscopy. Ultramicroscopy 31, 10-19 (1989).
    • (1989) Ultramicroscopy , vol.31 , pp. 10-19
    • Hamers, R.J.1    Köhler, U.K.2    Demuth, J.E.3
  • 57
    • 0000518968 scopus 로고    scopus 로고
    • Direct tests of microscopic growth models using hot scanning tunneling microscopy movies
    • Pearson, C., Krueger, M. & Ganz, E. Direct tests of microscopic growth models using hot scanning tunneling microscopy movies. Phys. Rev. Lett. 76, 23062309 (1996).
    • (1996) Phys. Rev. Lett , vol.76 , pp. 2306-2309
    • Pearson, C.1    Krueger, M.2    Ganz, E.3
  • 58
    • 0042714900 scopus 로고
    • The epitaxy of germanium on gallium-arsenide
    • Ayers, J. E. & Ghandhi, S. K. The epitaxy of germanium on gallium-arsenide. J. Cryst. Growth 89, 371-377 (1988).
    • (1988) J. Cryst. Growth , vol.89 , pp. 371-377
    • Ayers, J.E.1    Ghandhi, S.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.