메뉴 건너뛰기




Volumn 514, Issue 7524, 2014, Pages 608-611

Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons

Author keywords

[No Author keywords available]

Indexed keywords

GOLD; GRAPHENE; GRAPHENE NANORIBBON; NANORIBBON; UNCLASSIFIED DRUG;

EID: 84908431587     PISSN: 00280836     EISSN: 14764687     Source Type: Journal    
DOI: 10.1038/nature13831     Document Type: Article
Times cited : (816)

References (36)
  • 2
    • 84857783670 scopus 로고    scopus 로고
    • Spin-half paramagnetism in graphene induced by point defects
    • Nair, R. R. et al. Spin-half paramagnetism in graphene induced by point defects. Nature Phys. 8, 199-202 (2012).
    • (2012) Nature Phys. , vol.8 , pp. 199-202
    • Nair, R.R.1
  • 3
    • 33847768178 scopus 로고    scopus 로고
    • Defect-induced magnetism in graphene
    • Yazyev, O. V. & Helm, L. Defect-induced magnetism in graphene. Phys. Rev. B 75, 125408 (2007).
    • (2007) Phys. Rev. B , vol.75 , pp. 125408
    • Yazyev, O.V.1    Helm, L.2
  • 4
    • 46749150363 scopus 로고    scopus 로고
    • Tailoring the atomic structure of graphene nanoribbons by scanning tunneling microscopy lithography
    • Tapasztó, L., Dobrik, G., Lambin, P. & Biro, L. P. Tailoring the atomic structure of graphene nanoribbons by scanning tunneling microscopy lithography. Nature Nanotechnol. 3, 397-401 (2008).
    • (2008) Nature Nanotechnol. , vol.3 , pp. 397-401
    • Tapasztó, L.1    Dobrik, G.2    Lambin, P.3    Biro, L.P.4
  • 5
    • 0347948268 scopus 로고    scopus 로고
    • Induced magnetic ordering by proton irradiation in graphite
    • Esquinazi, P. et al. Induced magnetic ordering by proton irradiation in graphite. Phys. Rev. Lett. 91, 227201 (2003).
    • (2003) Phys. Rev. Lett. , vol.91 , pp. 227201
    • Esquinazi, P.1
  • 6
    • 43949130153 scopus 로고    scopus 로고
    • Vacancy-induced magnetism in graphene and graphene ribbons
    • Palacios, J. J. et al. Vacancy-induced magnetism in graphene and graphene ribbons. Phys. Rev. B 77, 195428 (2008).
    • (2008) Phys. Rev. B , vol.77 , pp. 195428
    • Palacios, J.J.1
  • 7
    • 27744534165 scopus 로고    scopus 로고
    • Two-dimensional gas of massless Dirac fermions in graphene
    • Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197-200 (2005).
    • (2005) Nature , vol.438 , pp. 197-200
    • Novoselov, K.S.1
  • 8
    • 61649121142 scopus 로고    scopus 로고
    • Room-temperature ferromagnetism of graphene
    • Wang, Y. et al. Room-temperature ferromagnetism of graphene. Nano Lett. 9, 220-224 (2009).
    • (2009) Nano Lett. , vol.9 , pp. 220-224
    • Wang, Y.1
  • 9
    • 84883787286 scopus 로고    scopus 로고
    • Towards intrinsic magnetism of graphene sheets with irregular zigzag edges
    • Chen, L. et al. Towards intrinsic magnetism of graphene sheets with irregular zigzag edges. Sci. Rep. 3, 2599 (2013).
    • (2013) Sci. Rep. , vol.3 , pp. 2599
    • Chen, L.1
  • 10
    • 0000781318 scopus 로고    scopus 로고
    • Edge state in graphene ribbons: Nanometer size effect and edge shape dependence
    • Nakada, K. et al. Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954-17961 (1996).
    • (1996) Phys. Rev. B , vol.54 , pp. 17954-17961
    • Nakada, K.1
  • 11
    • 0030492538 scopus 로고    scopus 로고
    • Peculiar localized state at zigzag graphite edge
    • Fujita, M. et al. Peculiar localized state at zigzag graphite edge. J. Phys. Soc. Jpn 65, 1920-1923 (1996).
    • (1996) J. Phys. Soc. Jpn , vol.65 , pp. 1920-1923
    • Fujita, M.1
  • 12
    • 34547334459 scopus 로고    scopus 로고
    • Energy band-gap engineering of graphene nanoribbons
    • Han, M. et al. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).
    • (2007) Phys. Rev. Lett. , vol.98 , pp. 206805
    • Han, M.1
  • 13
    • 40049093097 scopus 로고    scopus 로고
    • Chemically derived, ultrasmooth graphene nanoribbon semiconductors
    • Li, X. et al. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229-1232 (2008).
    • (2008) Science , vol.319 , pp. 1229-1232
    • Li, X.1
  • 14
    • 60949113491 scopus 로고    scopus 로고
    • Conductance quantization and transport gaps in disordered graphene nanoribbons
    • Mucciolo, E. R. et al. Conductance quantization and transport gaps in disordered graphene nanoribbons. Phys. Rev. B 79, 075407 (2009).
    • (2009) Phys. Rev. B , vol.79 , pp. 075407
    • Mucciolo, E.R.1
  • 15
    • 60949104104 scopus 로고    scopus 로고
    • The influence of edge structure on the electronic properties of graphene quantumdots and nanoribbons
    • Ritter, K. A. & Lyding, J. W. The influence of edge structure on the electronic properties of graphene quantumdots and nanoribbons. Nature Mater. 8, 235-242 (2009).
    • (2009) Nature Mater. , vol.8 , pp. 235-242
    • Ritter, K.A.1    Lyding, J.W.2
  • 16
    • 33751348065 scopus 로고    scopus 로고
    • Energy gaps in graphene nanoribbons
    • Son, Y. W. et al. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006).
    • (2006) Phys. Rev. Lett. , vol.97 , pp. 216803
    • Son, Y.W.1
  • 17
    • 33751110207 scopus 로고    scopus 로고
    • Half-metallic graphene nanoribbons
    • Son, Y. W. et al. Half-metallic graphene nanoribbons. Nature444, 347-349 (2006).
    • (2006) Nature , vol.444 , pp. 347-349
    • Son, Y.W.1
  • 18
    • 68949149415 scopus 로고    scopus 로고
    • Carrier density and magnetism in graphene zigzag nanoribbons
    • Jung, J. & Macdonald, A. H. Carrier density and magnetism in graphene zigzag nanoribbons. Phys. Rev. B 79, 235433 (2009).
    • (2009) Phys. Rev. B , vol.79 , pp. 235433
    • Jung, J.1    MacDonald, A.H.2
  • 19
    • 84877029905 scopus 로고    scopus 로고
    • Quantum Monte Carlo studies of edge magnetism in chiral graphene nanoribbons
    • Golor, M. et al. Quantum Monte Carlo studies of edge magnetism in chiral graphene nanoribbons. Phys. Rev. B 87, 155441 (2013).
    • (2013) Phys. Rev. B , vol.87 , pp. 155441
    • Golor, M.1
  • 20
    • 79961030425 scopus 로고    scopus 로고
    • Spatially resolving edge states of chiral graphene nanoribbons
    • Tao, C. et al. Spatially resolving edge states of chiral graphene nanoribbons. Nature Phys. 7, 616-620 (2011).
    • (2011) Nature Phys. , vol.7 , pp. 616-620
    • Tao, C.1
  • 21
    • 84878357726 scopus 로고    scopus 로고
    • Electronic and magnetic properties of zigzag graphene nanoribbons on the (111) Surface of Cu, Ag, and Au
    • Li, Y. et al. Electronic and magnetic properties of zigzag graphene nanoribbons on the (111) Surface of Cu, Ag, and Au. Phys. Rev. Lett. 110, 216804 (2013).
    • (2013) Phys. Rev. Lett. , vol.110 , pp. 216804
    • Li, Y.1
  • 22
    • 80053609594 scopus 로고    scopus 로고
    • Theory of magnetic states in chiral graphene nanoribbons
    • Yazyev, O. et al. Theory of magnetic states in chiral graphene nanoribbons. Phys. Rev. B 84, 115406 (2011).
    • (2011) Phys. Rev. B , vol.84 , pp. 115406
    • Yazyev, O.1
  • 23
    • 76749093693 scopus 로고    scopus 로고
    • Bistability and oscillatory motion of natural nanomembranes appearing within monolayer graphene on silicon dioxide
    • Mashoff, T. et al. Bistability and oscillatory motion of natural nanomembranes appearing within monolayer graphene on silicon dioxide. Nano Lett. 10, 461-465 (2010).
    • (2010) Nano Lett. , vol.10 , pp. 461-465
    • Mashoff, T.1
  • 24
    • 50649120084 scopus 로고    scopus 로고
    • Structure, stability, edge states, and aromaticity of graphene ribbons
    • Wassmann, T. et al. Structure, stability, edge states, and aromaticity of graphene ribbons. Phys. Rev. Lett. 101, 096402 (2008).
    • (2008) Phys. Rev. Lett. , vol.101 , pp. 096402
    • Wassmann, T.1
  • 25
    • 38749109969 scopus 로고    scopus 로고
    • Graphene nanoflakes with large spin
    • Wang, W. L. et al. Graphene nanoflakes with large spin. Nano Lett. 8, 241-245 (2008).
    • (2008) Nano Lett. , vol.8 , pp. 241-245
    • Wang, W.L.1
  • 26
    • 33746466594 scopus 로고    scopus 로고
    • High-temperature ferromagnetism of sp electrons in narrow impurity bands
    • Edwards, D. M., & Katsnelson, M. I. High-temperature ferromagnetism of sp electrons in narrow impurity bands. J. Phys. Condens. Matter 18, 7209-7225 (2006).
    • (2006) J. Phys. Condens. Matter , vol.18 , pp. 7209-7225
    • Edwards, D.M.1    Katsnelson, M.I.2
  • 27
    • 77956323477 scopus 로고    scopus 로고
    • Observation of magnetic edge state in graphene nanoribbons
    • Joly, V. L. J. et al. Observation of magnetic edge state in graphene nanoribbons. Phys. Rev. B 81, 245428 (2010).
    • (2010) Phys. Rev. B , vol.81 , pp. 245428
    • Joly, V.L.J.1
  • 28
    • 84883787286 scopus 로고    scopus 로고
    • Towards intrinsic magnetism of graphene sheets with irregular zigzag edges
    • Chen, L. et al. Towards intrinsic magnetism of graphene sheets with irregular zigzag edges. Sci. Rep. 3, 2599 (2013).
    • (2013) Sci. Rep. , vol.3 , pp. 2599
    • Chen, L.1
  • 29
    • 70449523327 scopus 로고    scopus 로고
    • Room-temperature ferromagnetism in graphite driven by two-dimensional networks of point defects
    • Červenka, J. et al. Room-temperature ferromagnetism in graphite driven by two-dimensional networks of point defects. Nature Phys. 5, 840-844 (2009).
    • (2009) Nature Phys. , vol.5 , pp. 840-844
    • Červenka, J.1
  • 30
    • 79961123025 scopus 로고    scopus 로고
    • Nonlocal exchange effects in zigzag-edge magnetismof neutral graphene nanoribbons
    • Jung, J. Nonlocal exchange effects in zigzag-edge magnetismof neutral graphene nanoribbons. Phys. Rev. B 83, 165415 (2011).
    • (2011) Phys. Rev. B , vol.83 , pp. 165415
    • Jung, J.1
  • 31
    • 84877029905 scopus 로고    scopus 로고
    • Quantum Monte Carlo studies of edge magnetism in chiral graphene nanoribbon
    • Golor, M. et al. Quantum Monte Carlo studies of edge magnetism in chiral graphene nanoribbon. Phys. Rev. B 87, 155441 (2013).
    • (2013) Phys. Rev. B , vol.87 , pp. 155441
    • Golor, M.1
  • 32
    • 27744460065 scopus 로고
    • Ab initio molecular-dynamics simulation of the liquidmetal-amorphous-semiconductor transition in germanium
    • Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquidmetal-amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251 (1994).
    • (1994) Phys. Rev. B , vol.49 , pp. 14251
    • Kresse, G.1    Hafner, J.2
  • 33
    • 2442537377 scopus 로고    scopus 로고
    • Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
    • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).
    • (1996) Phys. Rev. B , vol.54 , pp. 11169
    • Kresse, G.1    Furthmüller, J.2
  • 34
    • 0011236321 scopus 로고    scopus 로고
    • From ultrasoft pseudopotentials to the projector augmented-wave method
    • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).
    • (1999) Phys. Rev. B , vol.59 , pp. 1758
    • Kresse, G.1    Joubert, D.2
  • 35
    • 25744460922 scopus 로고
    • Projector augmented-wave method
    • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).
    • (1994) Phys. Rev. B , vol.50 , pp. 17953
    • Blöchl, P.E.1
  • 36
    • 0000226949 scopus 로고    scopus 로고
    • Environment-dependent tight-binding potential model
    • erratum 54, 10982 (1996)
    • Tang, M. S. et al. Environment-dependent tight-binding potential model. Phys. Rev. B 53, 979 (1996); erratum 54, 10982 (1996).
    • (1996) Phys. Rev. B , vol.53 , pp. 979
    • Tang, M.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.