메뉴 건너뛰기




Volumn 5, Issue , 2014, Pages

Direct experimental determination of onset of electron-electron interactions in gap opening of zigzag graphene nanoribbons

Author keywords

[No Author keywords available]

Indexed keywords

GRAPHENE; NANORIBBON;

EID: 84903771192     PISSN: None     EISSN: 20411723     Source Type: Journal    
DOI: 10.1038/ncomms5311     Document Type: Article
Times cited : (103)

References (50)
  • 2
    • 77955231284 scopus 로고    scopus 로고
    • Graphene transistors
    • Schwierz, F. Graphene transistors. Nat. Nanotech. 5, 487-496 (2010).
    • (2010) Nat. Nanotech. , vol.5 , pp. 487-496
    • Schwierz, F.1
  • 3
    • 84867304039 scopus 로고    scopus 로고
    • A roadmap for graphene
    • Novoselov, K. S. et al. A roadmap for graphene. Nature 490, 192-200 (2012).
    • (2012) Nature , vol.490 , pp. 192-200
    • Novoselov, K.S.1
  • 5
    • 0000781318 scopus 로고    scopus 로고
    • Edge state in graphene ribbons: Nanometer size effect and edge shape dependence
    • Nakada, K., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954 (1996).
    • (1996) Phys. Rev. B , vol.54 , pp. 17954
    • Nakada, K.1    Fujita, M.2    Dresselhaus, G.3    Dresselhaus, M.S.4
  • 6
    • 33751348065 scopus 로고    scopus 로고
    • Energy gaps in graphene nanoribbons
    • Son, Y. W., Cohen, M. L. & Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006).
    • (2006) Phys. Rev. Lett. , vol.97 , pp. 216803
    • Son, Y.W.1    Cohen, M.L.2    Louie, S.G.3
  • 7
    • 35948971778 scopus 로고    scopus 로고
    • Quasiparticle energies and band gaps in graphene nanoribbons
    • Yang, L., Park, C. H., Son, Y. W., Cohen, M. L. & Louie, S. G. Quasiparticle energies and band gaps in graphene nanoribbons. Phys. Rev. Lett. 99, 186801 (2007).
    • (2007) Phys. Rev. Lett. , vol.99 , pp. 186801
    • Yang, L.1    Park, C.H.2    Son, Y.W.3    Cohen, M.L.4    Louie, S.G.5
  • 8
    • 33751110207 scopus 로고    scopus 로고
    • Half-metallic graphene nanoribbons
    • DOI 10.1038/nature05180, PII NATURE05180
    • Son, Y. W., Cohen, M. L. & Louie, S. G. Half-metallic graphene nanoribbons. Nature 444, 347-349 (2006). (Pubitemid 44764106)
    • (2006) Nature , vol.444 , Issue.7117 , pp. 347-349
    • Son, Y.-W.1    Cohen, M.L.2    Louie, S.G.3
  • 10
    • 77957701735 scopus 로고    scopus 로고
    • Structure, and stability of graphene nanoribbons in oxygen, carbon dioxide, water, and ammonia
    • Seitsonen, A. P., Saitta, A. M., Wassmann, T., Lazzeri, M. & Mauri, F. Structure and stability of graphene nanoribbons in oxygen, carbon dioxide, water, and ammonia. Phys. Rev. B 82, 115425 (2010).
    • (2010) Phys. Rev. B , vol.82 , pp. 115425
    • Seitsonen, A.P.1    Saitta, A.M.2    Wassmann, T.3    Lazzeri, M.4    Mauri, F.5
  • 11
    • 34548146633 scopus 로고    scopus 로고
    • Enhanced half-metallicity in edge-oxidized zigzag graphene nanoribbons
    • DOI 10.1021/nl0708922
    • Hod, O., Barone, V., Peralta, J. E. & Scuseria, G. E. Enhanced half-metallicity in edge-oxidized zigzag graphene nanoribbons. Nano Lett. 7, 2295-2299 (2007). (Pubitemid 47310122)
    • (2007) Nano Letters , vol.7 , Issue.8 , pp. 2295-2299
    • Hod, O.1    Barone, V.2    Peralta, J.E.3    Scuseria, G.E.4
  • 12
    • 77949360616 scopus 로고    scopus 로고
    • Clar's theory, π-electron distribution, and geometry of graphene nanoribbons
    • Wassmann, T., Seitsonen, A. P., Saitta, A. M., Lazzeri, M. & Mauri, F. Clar's theory, π-electron distribution, and geometry of graphene nanoribbons. J. Am. Chem. Soc. 132, 3440-3451 (2010).
    • (2010) J. Am. Chem. Soc. , vol.132 , pp. 3440-3451
    • Wassmann, T.1    Seitsonen, A.P.2    Saitta, A.M.3    Lazzeri, M.4    Mauri, F.5
  • 13
    • 51749099351 scopus 로고    scopus 로고
    • Self-passivating edge reconstructions of graphene
    • Koskinen, P., Malola, S. & Häkkinen, H. Self-passivating edge reconstructions of graphene. Phys. Rev. Lett. 101, 115502 (2008).
    • (2008) Phys. Rev. Lett. , vol.101 , pp. 115502
    • Koskinen, P.1    Malola, S.2    Häkkinen, H.3
  • 14
    • 65549127314 scopus 로고    scopus 로고
    • Quantum manifestations of graphene edge stress and edge instability: A first-principles study
    • Huang, B. et al. Quantum manifestations of graphene edge stress and edge instability: a first-principles study. Phys. Rev. Lett. 102, 166404 (2009).
    • (2009) Phys. Rev. Lett. , vol.102 , pp. 166404
    • Huang, B.1
  • 15
    • 34547334459 scopus 로고    scopus 로고
    • Energy band-gap engineering of graphene nanoribbons
    • Han, M. Y.,Özyilmaz, B., Zhang, Y. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).
    • (2007) Phys. Rev. Lett. , vol.98 , pp. 206805
    • Han, M.Y.1    Özyilmaz, B.2    Zhang, Y.3    Kim, P.4
  • 16
    • 40049093097 scopus 로고    scopus 로고
    • Chemically derived, ultrasmooth graphene nanoribbon semiconductors
    • DOI 10.1126/science.1150878
    • Li, X., Wang, X., Zhang, L., Lee, S. & Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229-1232 (2008). (Pubitemid 351323015)
    • (2008) Science , vol.319 , Issue.5867 , pp. 1229-1232
    • Li, X.1    Wang, X.2    Zhang, L.3    Lee, S.4    Dai, H.5
  • 17
    • 65249133533 scopus 로고    scopus 로고
    • Narrow graphene nanoribbons from carbon nanotubes
    • Jiao, L., Zhang, L., Wang, X., Diankov, G. & Dai, H. Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877-880 (2009).
    • (2009) Nature , vol.458 , pp. 877-880
    • Jiao, L.1    Zhang, L.2    Wang, X.3    Diankov, G.4    Dai, H.5
  • 18
    • 65249185111 scopus 로고    scopus 로고
    • Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons
    • Kosynkin, D. V. et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872-876 (2009).
    • (2009) Nature , vol.458 , pp. 872-876
    • Kosynkin, D.V.1
  • 19
    • 77952289665 scopus 로고    scopus 로고
    • Facile synthesis of highquality graphene nanoribbons
    • Jiao, L., Wang, X., Diankov, G., Wang, H. & Dai, H. Facile synthesis of highquality graphene nanoribbons. Nat. Nanotech. 5, 321-325 (2010).
    • (2010) Nat. Nanotech. , vol.5 , pp. 321-325
    • Jiao, L.1    Wang, X.2    Diankov, G.3    Wang, H.4    Dai, H.5
  • 20
    • 79961030425 scopus 로고    scopus 로고
    • Spatially resolving edge states of chiral graphene nanoribbons
    • Tao, C. et al. Spatially resolving edge states of chiral graphene nanoribbons. Nat. Phys. 7, 616-620 (2011).
    • (2011) Nat. Phys. , vol.7 , pp. 616-620
    • Tao, C.1
  • 21
    • 84872863401 scopus 로고    scopus 로고
    • Experimentally engineering the edge termination of graphene nanoribbons
    • Zhang, X. et al. Experimentally engineering the edge termination of graphene nanoribbons. ACS Nano 7, 198-202 (2013).
    • (2013) ACS Nano , vol.7 , pp. 198-202
    • Zhang, X.1
  • 22
    • 84859732722 scopus 로고    scopus 로고
    • Topographic and spectroscopic characterization of electronic edge states in CVD grown graphene nanoribbons
    • Pan, M. et al. Topographic and spectroscopic characterization of electronic edge states in CVD grown graphene nanoribbons. Nano Lett. 12, 1928-1933 (2012).
    • (2012) Nano Lett. , vol.12 , pp. 1928-1933
    • Pan, M.1
  • 23
    • 77954904482 scopus 로고    scopus 로고
    • Atomically precise bottom-up fabrication of graphene nanoribbons
    • Cai, J. M. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470-473 (2010).
    • (2010) Nature , vol.466 , pp. 470-473
    • Cai, J.M.1
  • 24
    • 84871776139 scopus 로고    scopus 로고
    • Spatially resolved electronic structures of atomically precise armchair graphene nanoribbons
    • Huang, H. et al. Spatially resolved electronic structures of atomically precise armchair graphene nanoribbons. Sci. Rep. 2, 983 (2012).
    • (2012) Sci. Rep. , vol.2 , pp. 983
    • Huang, H.1
  • 25
    • 84880782130 scopus 로고    scopus 로고
    • Tuning the band gap of graphene nanoribbons synthesized from molecular precursors
    • Chen, Y. C. et al. Tuning the band gap of graphene nanoribbons synthesized from molecular precursors. ACS Nano 7, 6123-6128 (2013).
    • (2013) ACS Nano , vol.7 , pp. 6123-6128
    • Chen, Y.C.1
  • 26
    • 84876052832 scopus 로고    scopus 로고
    • Absence of edge states in covalently bonded zigzag edges of graphene on Ir(111)
    • Li, Y. et al. Absence of edge states in covalently bonded zigzag edges of graphene on Ir(111). Adv. Mater. 25, 1967-1972 (2013).
    • (2013) Adv. Mater. , vol.25 , pp. 1967-1972
    • Li, Y.1
  • 27
    • 77955976701 scopus 로고    scopus 로고
    • Epitaxial graphene on SiC(0001): More than just honeycombs
    • Qi, Y., Rhim, S. H., Sun, G. F., Weinert, M. & Li, L. Epitaxial graphene on SiC(0001): more than just honeycombs. Phys. Rev. Lett. 105, 085502 (2010).
    • (2010) Phys. Rev. Lett. , vol.105 , pp. 085502
    • Qi, Y.1    Rhim, S.H.2    Sun, G.F.3    Weinert, M.4    Li, L.5
  • 28
    • 82655188012 scopus 로고    scopus 로고
    • Si diffusion path for pit-free graphene growth on SiC(0001)
    • Sun, G. F. et al. Si diffusion path for pit-free graphene growth on SiC(0001). Phys. Rev. B 84, 195455 (2011).
    • (2011) Phys. Rev. B , vol.84 , pp. 195455
    • Sun, G.F.1
  • 29
    • 70349097285 scopus 로고    scopus 로고
    • Atomic-scale imaging and manipulation of ridges on epitaxial graphene on 6H-SiC(0001)
    • Sun, G. F., Jia, J. F., Xue, Q. K. & Li, L. Atomic-scale imaging and manipulation of ridges on epitaxial graphene on 6H-SiC(0001). Nanotechnology 20, 355701 (2009).
    • (2009) Nanotechnology , vol.20 , pp. 355701
    • Sun, G.F.1    Jia, J.F.2    Xue, Q.K.3    Li, L.4
  • 30
    • 48949087342 scopus 로고    scopus 로고
    • Giant phonon-induced conductance in scanning tunnelling spectroscopy of gate-tunable graphene
    • Zhang, Y. et al. Giant phonon-induced conductance in scanning tunnelling spectroscopy of gate-tunable graphene. Nat. Phys. 4, 627-630 (2008).
    • (2008) Nat. Phys. , vol.4 , pp. 627-630
    • Zhang, Y.1
  • 31
    • 42449128420 scopus 로고    scopus 로고
    • Atomic and electronic structure of few-layer graphene on SiC(0001) studied with scanning tunneling microscopy and spectroscopy
    • Lauffer, P. et al. Atomic and electronic structure of few-layer graphene on SiC(0001) studied with scanning tunneling microscopy and spectroscopy. Phys. Rev. B 77, 155426 (2008).
    • (2008) Phys. Rev. B , vol.77 , pp. 155426
    • Lauffer, P.1
  • 32
    • 34249901916 scopus 로고    scopus 로고
    • Interlayer interaction and electronic screening in multilayer graphene investigated with angle-resolved photoemission spectroscopy
    • Ohta, T. et al. Interlayer interaction and electronic screening in multilayer graphene investigated with angle-resolved photoemission spectroscopy. Phy. Rev. Lett. 98, 206802 (2007).
    • (2007) Phy. Rev. Lett. , vol.98 , pp. 206802
    • Ohta, T.1
  • 34
    • 60349093608 scopus 로고    scopus 로고
    • Controlled nanocutting of graphene
    • Ci, L. et al. Controlled nanocutting of graphene. Nano Res. 1, 116-122 (2008).
    • (2008) Nano Res. , vol.1 , pp. 116-122
    • Ci, L.1
  • 37
    • 77949442881 scopus 로고    scopus 로고
    • Quantum interference channeling at graphene edges
    • Yang, H. et al. Quantum interference channeling at graphene edges. Nano Lett. 10, 943-947 (2010).
    • (2010) Nano Lett. , vol.10 , pp. 943-947
    • Yang, H.1
  • 38
    • 84888253200 scopus 로고    scopus 로고
    • Spatial fluctuations in barrier height at the graphene-silicon carbide Schottky junction
    • Rajput, S. et al. Spatial fluctuations in barrier height at the graphene-silicon carbide Schottky junction. Nat. Commun. 4, 2752 (2013).
    • (2013) Nat. Commun. , vol.4 , pp. 2752
    • Rajput, S.1
  • 39
    • 84903761131 scopus 로고    scopus 로고
    • Direct experimental evidence for the reversal of carrier type upon hydrogen intercalation in epitaxial graphene/SiC(0001)
    • Rajput, S., Li, Y. Y. & Li, L. Direct experimental evidence for the reversal of carrier type upon hydrogen intercalation in epitaxial graphene/SiC(0001). Appl. Phys. Lett. 104, 041908 (2014).
    • (2014) Appl. Phys. Lett. , vol.104 , pp. 041908
    • Rajput, S.1    Li, Y.Y.2    Li, L.3
  • 40
    • 57749111933 scopus 로고    scopus 로고
    • Edge states and optical transition energies in carbon nanoribbons
    • Jiang, J., Lu, W. & Bernholc, J. Edge states and optical transition energies in carbon nanoribbons. Phys. Rev. Lett. 101, 246803 (2008).
    • (2008) Phys. Rev. Lett. , vol.101 , pp. 246803
    • Jiang, J.1    Lu, W.2    Bernholc, J.3
  • 41
    • 42649133148 scopus 로고    scopus 로고
    • Suppression of spin polarization in graphene nanoribbons by edge defects and impurities
    • Huang, B., Liu, F., Wu, J., Gu, B. L. & Duan, W. Suppression of spin polarization in graphene nanoribbons by edge defects and impurities. Phys. Rev. B 77, 153411 (2008).
    • (2008) Phys. Rev. B , vol.77 , pp. 153411
    • Huang, B.1    Liu, F.2    Wu, J.3    Gu, B.L.4    Duan, W.5
  • 42
    • 84958737084 scopus 로고
    • Electronic states at the surfaces of crystals
    • Goodwin, E. T. Electronic states at the surfaces of crystals. Proc. Camb. Phil. Soc. 35, 205 (1939).
    • (1939) Proc. Camb. Phil. Soc. , vol.35 , pp. 205
    • Goodwin, E.T.1
  • 43
    • 34147178700 scopus 로고
    • On the surfaces states associated with a periodic potential
    • Shockley, W. On the surfaces states associated with a periodic potential. Phys. Rev. 56, 317 (1939).
    • (1939) Phys. Rev. , vol.56 , pp. 317
    • Shockley, W.1
  • 44
    • 0346846616 scopus 로고    scopus 로고
    • Surface-state Stark shift in a scanning tunneling microscope
    • Limot, L., Maroutian, T., Johansson, P. & Berndt, R. Surface-state Stark shift in a scanning tunneling microscope. Phys. Rev. Lett. 91, 196801 (2003).
    • (2003) Phys. Rev. Lett. , vol.91 , pp. 196801
    • Limot, L.1    Maroutian, T.2    Johansson, P.3    Berndt, R.4
  • 45
    • 2442537377 scopus 로고    scopus 로고
    • Efficient iterative schemes for ab initio totalenergy calculations using a plane-wave basis set
    • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio totalenergy calculations using a plane-wave basis set. Phys. Rev. B 54, 1116911186 (1996).
    • (1996) Phys. Rev. B , vol.54 , pp. 1116911186
    • Kresse, G.1    Furthmüller, J.2
  • 46
    • 0030190741 scopus 로고    scopus 로고
    • Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
    • DOI 10.1016/0927-0256(96)00008-0, PII S0927025696000080
    • Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15-50 (1996). (Pubitemid 126412269)
    • (1996) Computational Materials Science , vol.6 , Issue.1 , pp. 15-50
    • Kresse, G.1    Furthmuller, J.2
  • 47
    • 26144450583 scopus 로고
    • Self-interaction correction to density-functional approximations for many-electron systems
    • Perdew, J. P. & Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 10, 5048-5079 (1981).
    • (1981) Phys. Rev. B , vol.10 , pp. 5048-5079
    • Perdew, J.P.1    Zunger, A.2
  • 48
    • 25744460922 scopus 로고
    • Projector augmented-wave method
    • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953-17979 (1994).
    • (1994) Phys. Rev. B , vol.50 , pp. 17953-17979
    • Blöchl, P.E.1
  • 49
    • 0011236321 scopus 로고    scopus 로고
    • From ultrasoft pseudopotentials to the projector augmented-wave method
    • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758-1775 (1999).
    • (1999) Phys. Rev. B , vol.59 , pp. 1758-1775
    • Kresse, G.1    Joubert, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.