메뉴 건너뛰기




Volumn 32, Issue , 2015, Pages 113-119

Accessing DNA damage in chromatin: Preparing the chromatin landscape for base excision repair

Author keywords

AP endonuclease; Chromatin; Chromatin remodeling; Glycosylase; Histone acetylation; Histone variants; Ligase; Nucleosome dynamics; Polymerase ; Rotational setting

Indexed keywords

URACIL; ADENOSINE TRIPHOSPHATE; DNA; DNA DIRECTED DNA POLYMERASE BETA; HISTONE; NUCLEOSOME; URACIL DNA GLYCOSIDASE;

EID: 84938483122     PISSN: 15687864     EISSN: 15687856     Source Type: Journal    
DOI: 10.1016/j.dnarep.2015.04.021     Document Type: Article
Times cited : (53)

References (89)
  • 1
    • 1842411320 scopus 로고    scopus 로고
    • Crystal structure of the nucleosome core particle at 2.8 a resolution
    • Luger K., Mader A.W., Richmond R.K., Sargent D.F., Richmond T.J. Crystal structure of the nucleosome core particle at 2.8 a resolution. Nature 1997, 389:251-260.
    • (1997) Nature , vol.389 , pp. 251-260
    • Luger, K.1    Mader, A.W.2    Richmond, R.K.3    Sargent, D.F.4    Richmond, T.J.5
  • 2
    • 76949093375 scopus 로고    scopus 로고
    • Nucleosome positioning: how is it established, and why does it matter?
    • Radman-Livaja M., Rando O.J. Nucleosome positioning: how is it established, and why does it matter?. Dev. Biol. 2010, 339:258-266.
    • (2010) Dev. Biol. , vol.339 , pp. 258-266
    • Radman-Livaja, M.1    Rando, O.J.2
  • 3
    • 77953311493 scopus 로고    scopus 로고
    • Electrostatic interactions between arginines and the minor groove in the nucleosome
    • West S.M., Rohs R., Mann R.S., Honig B. Electrostatic interactions between arginines and the minor groove in the nucleosome. J. Biomol. Struct. Dyn. 2010, 27:861-866.
    • (2010) J. Biomol. Struct. Dyn. , vol.27 , pp. 861-866
    • West, S.M.1    Rohs, R.2    Mann, R.S.3    Honig, B.4
  • 4
  • 5
    • 33947524604 scopus 로고    scopus 로고
    • Histone variants - the structure behind the function
    • Ausio J. Histone variants - the structure behind the function. Brief. Funct. Genomic. Proteomic. 2006, 5:228-243.
    • (2006) Brief. Funct. Genomic. Proteomic. , vol.5 , pp. 228-243
    • Ausio, J.1
  • 6
    • 0035704707 scopus 로고    scopus 로고
    • Role of DNA sequence in nucleosome stability and dynamics
    • Widom J. Role of DNA sequence in nucleosome stability and dynamics. Q. Rev. Biophys. 2001, 34:269-324.
    • (2001) Q. Rev. Biophys. , vol.34 , pp. 269-324
    • Widom, J.1
  • 7
    • 77952575676 scopus 로고    scopus 로고
    • When push comes to shove: SWI/SNF uses a nucleosome to get rid of a nucleosome
    • Liu N., Hayes J.J. When push comes to shove: SWI/SNF uses a nucleosome to get rid of a nucleosome. Mol. Cell. 2010, 38:484-486.
    • (2010) Mol. Cell. , vol.38 , pp. 484-486
    • Liu, N.1    Hayes, J.J.2
  • 8
    • 0037007053 scopus 로고    scopus 로고
    • Chromatin remodeling: nucleosomes bulging at the seams
    • Peterson C.L. Chromatin remodeling: nucleosomes bulging at the seams. Curr. Biol. 2002, 12:R245-247.
    • (2002) Curr. Biol. , vol.12 , pp. R245-247
    • Peterson, C.L.1
  • 9
    • 84908151229 scopus 로고    scopus 로고
    • Histone core modifications regulating nucleosome structure and dynamics
    • Tessarz P., Kouzarides T. Histone core modifications regulating nucleosome structure and dynamics. Nat. Rev. Mol. Cell Biol. 2014, 15:703-708.
    • (2014) Nat. Rev. Mol. Cell Biol. , vol.15 , pp. 703-708
    • Tessarz, P.1    Kouzarides, T.2
  • 10
    • 50649108365 scopus 로고    scopus 로고
    • Base excision repair and its role in maintaining genome stability
    • Baute J., Depicker A. Base excision repair and its role in maintaining genome stability. Crit. Rev. Biochem. Mol. Biol. 2008, 43:239-276.
    • (2008) Crit. Rev. Biochem. Mol. Biol. , vol.43 , pp. 239-276
    • Baute, J.1    Depicker, A.2
  • 11
    • 24044460415 scopus 로고    scopus 로고
    • DNA base damage recognition and removal: new twists and grooves
    • Huffman J.L., Sundheim O., Tainer J.A. DNA base damage recognition and removal: new twists and grooves. Mutat. Res. 2005, 577:55-76.
    • (2005) Mutat. Res. , vol.577 , pp. 55-76
    • Huffman, J.L.1    Sundheim, O.2    Tainer, J.A.3
  • 12
    • 84902073074 scopus 로고    scopus 로고
    • Base excision repair: a critical player in many games
    • Wallace S.S. Base excision repair: a critical player in many games. DNA Repair (Amst.) 2014, 19:14-26.
    • (2014) DNA Repair (Amst.) , vol.19 , pp. 14-26
    • Wallace, S.S.1
  • 14
    • 75749127253 scopus 로고    scopus 로고
    • Uracil-DNA glycosylase: structural, thermodynamic and kinetic aspects of lesion search and recognition
    • Zharkov D.O., Mechetin G.V., Nevinsky G.A. Uracil-DNA glycosylase: structural, thermodynamic and kinetic aspects of lesion search and recognition. Mutat. Res. 2010, 685:11-20.
    • (2010) Mutat. Res. , vol.685 , pp. 11-20
    • Zharkov, D.O.1    Mechetin, G.V.2    Nevinsky, G.A.3
  • 15
    • 49449088997 scopus 로고    scopus 로고
    • Uracil DNA glycosylase uses DNA hopping and short-range sliding to trap extrahelical uracils
    • Porecha R.H., Stivers J.T. Uracil DNA glycosylase uses DNA hopping and short-range sliding to trap extrahelical uracils. Proc. Natl. Acad. Sci. U. S. A. 2008, 105:10791-10796.
    • (2008) Proc. Natl. Acad. Sci. U. S. A. , vol.105 , pp. 10791-10796
    • Porecha, R.H.1    Stivers, J.T.2
  • 16
    • 3042579602 scopus 로고    scopus 로고
    • How do site-specific DNA-binding proteins find their targets?
    • Halford S.E., Marko J.F. How do site-specific DNA-binding proteins find their targets?. Nucleic Acids Res. 2004, 32:3040-3052.
    • (2004) Nucleic Acids Res. , vol.32 , pp. 3040-3052
    • Halford, S.E.1    Marko, J.F.2
  • 17
    • 27644460480 scopus 로고    scopus 로고
    • Measurement of the contributions of 1D and 3D pathways to the translocation of a protein along DNA
    • Gowers D.M., Wilson G.G., Halford S.E. Measurement of the contributions of 1D and 3D pathways to the translocation of a protein along DNA. Proc. Natl. Acad. Sci. U. S. A. 2005, 102:15883-15888.
    • (2005) Proc. Natl. Acad. Sci. U. S. A. , vol.102 , pp. 15883-15888
    • Gowers, D.M.1    Wilson, G.G.2    Halford, S.E.3
  • 19
    • 38049112778 scopus 로고    scopus 로고
    • Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells
    • Hegde M.L., Hazra T.K., Mitra S. Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells. Cell Res. 2008, 18:27-47.
    • (2008) Cell Res. , vol.18 , pp. 27-47
    • Hegde, M.L.1    Hazra, T.K.2    Mitra, S.3
  • 20
    • 62349120246 scopus 로고    scopus 로고
    • DNA repair in mammalian cells: base excision repair: the long and short of it
    • Robertson A.B., Klungland A., Rognes T., Leiros I. DNA repair in mammalian cells: base excision repair: the long and short of it. Cell. Mol. Life Sci. 2009, 66:981-993.
    • (2009) Cell. Mol. Life Sci. , vol.66 , pp. 981-993
    • Robertson, A.B.1    Klungland, A.2    Rognes, T.3    Leiros, I.4
  • 23
    • 0033815382 scopus 로고    scopus 로고
    • Review of mammalian DNA repair and translational implications
    • Hansen W.K., Kelley M.R. Review of mammalian DNA repair and translational implications. J. Pharmacol. Exp. Ther. 2000, 295:1-9.
    • (2000) J. Pharmacol. Exp. Ther. , vol.295 , pp. 1-9
    • Hansen, W.K.1    Kelley, M.R.2
  • 24
    • 0034930217 scopus 로고    scopus 로고
    • Base excision repair in a network of defence and tolerance
    • Nilsen H., Krokan H.E. Base excision repair in a network of defence and tolerance. Carcinogenesis 2001, 22:987-998.
    • (2001) Carcinogenesis , vol.22 , pp. 987-998
    • Nilsen, H.1    Krokan, H.E.2
  • 25
    • 0034093291 scopus 로고    scopus 로고
    • Passing the baton in base excision repair
    • Wilson S.H., Kunkel T.A. Passing the baton in base excision repair. Nat. Struct. Biol. 2000, 7:176-178.
    • (2000) Nat. Struct. Biol. , vol.7 , pp. 176-178
    • Wilson, S.H.1    Kunkel, T.A.2
  • 27
    • 78650399787 scopus 로고    scopus 로고
    • Substrate channeling in mammalian base excision repair pathways: passing the baton
    • Prasad R., Shock D.D., Beard W.A., Wilson S.H. Substrate channeling in mammalian base excision repair pathways: passing the baton. J. Biol. Chem. 2010, 285:40479-40488.
    • (2010) J. Biol. Chem. , vol.285 , pp. 40479-40488
    • Prasad, R.1    Shock, D.D.2    Beard, W.A.3    Wilson, S.H.4
  • 29
    • 0023001414 scopus 로고
    • Sequence periodicities in chicken nucleosome core DNA
    • Satchwell S.C., Drew H.R., Travers A.A. Sequence periodicities in chicken nucleosome core DNA. J. Mol. Biol. 1986, 191:659-675.
    • (1986) J. Mol. Biol. , vol.191 , pp. 659-675
    • Satchwell, S.C.1    Drew, H.R.2    Travers, A.A.3
  • 32
    • 68349125112 scopus 로고    scopus 로고
    • What controls nucleosome positions?
    • Segal E., Widom J. What controls nucleosome positions?. Trends Genet. 2009, 25:335-343.
    • (2009) Trends Genet. , vol.25 , pp. 335-343
    • Segal, E.1    Widom, J.2
  • 33
    • 77953320684 scopus 로고    scopus 로고
    • DNA architecture, deformability, and nucleosome positioning
    • Xu F., Olson W.K. DNA architecture, deformability, and nucleosome positioning. J. Biomol. Struct. Dyn. 2010, 27:725-739.
    • (2010) J. Biomol. Struct. Dyn. , vol.27 , pp. 725-739
    • Xu, F.1    Olson, W.K.2
  • 34
    • 65249182676 scopus 로고    scopus 로고
    • Structural variability of nucleosomes detected by single-pair Forster resonance energy transfer: histone acetylation, sequence variation, and salt effects
    • Gansen A., Toth K., Schwarz N., Langowski J. Structural variability of nucleosomes detected by single-pair Forster resonance energy transfer: histone acetylation, sequence variation, and salt effects. J. Phys. Chem. B 2009, 113:2604-2613.
    • (2009) J. Phys. Chem. B , vol.113 , pp. 2604-2613
    • Gansen, A.1    Toth, K.2    Schwarz, N.3    Langowski, J.4
  • 35
    • 66149175673 scopus 로고    scopus 로고
    • Intrinsic promoter nucleosome stability/dynamics variations support a novel targeting mechanism
    • Kelbauskas L., Yodh J., Woodbury N., Lohr D. Intrinsic promoter nucleosome stability/dynamics variations support a novel targeting mechanism. Biochemistry 2009, 48:4217-4219.
    • (2009) Biochemistry , vol.48 , pp. 4217-4219
    • Kelbauskas, L.1    Yodh, J.2    Woodbury, N.3    Lohr, D.4
  • 37
    • 0034598944 scopus 로고    scopus 로고
    • Sequence and position-dependence of the equilibrium accessibility of nucleosomal DNA target sites
    • Anderson J.D., Widom J. Sequence and position-dependence of the equilibrium accessibility of nucleosomal DNA target sites. J. Mol. Biol. 2000, 296:979-987.
    • (2000) J. Mol. Biol. , vol.296 , pp. 979-987
    • Anderson, J.D.1    Widom, J.2
  • 38
    • 33847035523 scopus 로고    scopus 로고
    • Stopped-flow fluorescence resonance energy transfer for analysis of nucleosome dynamics
    • Tims H.S., Widom J. Stopped-flow fluorescence resonance energy transfer for analysis of nucleosome dynamics. Methods 2007, 41:296-303.
    • (2007) Methods , vol.41 , pp. 296-303
    • Tims, H.S.1    Widom, J.2
  • 39
    • 33746322063 scopus 로고    scopus 로고
    • Rapid accessibility of nucleosomal DNA in yeast on a second time scale
    • Bucceri A., Kapitza K., Thoma F. Rapid accessibility of nucleosomal DNA in yeast on a second time scale. EMBO J. 2006, 25:3123-3132.
    • (2006) EMBO J. , vol.25 , pp. 3123-3132
    • Bucceri, A.1    Kapitza, K.2    Thoma, F.3
  • 40
    • 0032493667 scopus 로고    scopus 로고
    • Evidence that partial unwrapping of DNA from nucleosomes facilitates the binding of heat shock factor following DNA replication in yeast
    • Geraghty D.S., Sucic H.B., Chen J., Pederson D.S. Evidence that partial unwrapping of DNA from nucleosomes facilitates the binding of heat shock factor following DNA replication in yeast. J. Biol. Chem. 1998, 273:20463-20472.
    • (1998) J. Biol. Chem. , vol.273 , pp. 20463-20472
    • Geraghty, D.S.1    Sucic, H.B.2    Chen, J.3    Pederson, D.S.4
  • 41
    • 33847076849 scopus 로고    scopus 로고
    • Chromatin modifications and their function
    • Kouzarides T. Chromatin modifications and their function. Cell 2007, 128:693-705.
    • (2007) Cell , vol.128 , pp. 693-705
    • Kouzarides, T.1
  • 44
    • 79953719035 scopus 로고    scopus 로고
    • Preparation of fully synthetic histone H3 reveals that acetyl-lysine 56 facilitates protein binding within nucleosomes
    • Shimko J.C., North J.A., Bruns A.N., Poirier M.G., Ottesen J.J. Preparation of fully synthetic histone H3 reveals that acetyl-lysine 56 facilitates protein binding within nucleosomes. J. Mol. Biol. 2011, 408:187-204.
    • (2011) J. Mol. Biol. , vol.408 , pp. 187-204
    • Shimko, J.C.1    North, J.A.2    Bruns, A.N.3    Poirier, M.G.4    Ottesen, J.J.5
  • 47
    • 0036221883 scopus 로고    scopus 로고
    • Salt-induced conformation and interaction changes of nucleosome core particles
    • Mangenot S., Leforestier A., Vachette P., Durand D., Livolant F. Salt-induced conformation and interaction changes of nucleosome core particles. Biophys. J. 2002, 82:345-356.
    • (2002) Biophys. J. , vol.82 , pp. 345-356
    • Mangenot, S.1    Leforestier, A.2    Vachette, P.3    Durand, D.4    Livolant, F.5
  • 48
    • 1942535223 scopus 로고    scopus 로고
    • Tandem bromodomains in the chromatin remodeler RSC recognize acetylated histone H3 Lys14
    • Kasten M., Szerlong H., Erdjument-Bromage H., Tempst P., Werner M., Cairns B.R. Tandem bromodomains in the chromatin remodeler RSC recognize acetylated histone H3 Lys14. EMBO J. 2004, 23:1348-1359.
    • (2004) EMBO J. , vol.23 , pp. 1348-1359
    • Kasten, M.1    Szerlong, H.2    Erdjument-Bromage, H.3    Tempst, P.4    Werner, M.5    Cairns, B.R.6
  • 51
    • 20844453256 scopus 로고    scopus 로고
    • UV irradiation stimulates histone acetylation and chromatin remodeling at a repressed yeast locus
    • Yu Y., Teng Y., Liu H., Reed S.H., Waters R. UV irradiation stimulates histone acetylation and chromatin remodeling at a repressed yeast locus. Proc. Natl. Acad. Sci. U. S. A. 2005, 102:8650-8655.
    • (2005) Proc. Natl. Acad. Sci. U. S. A. , vol.102 , pp. 8650-8655
    • Yu, Y.1    Teng, Y.2    Liu, H.3    Reed, S.H.4    Waters, R.5
  • 52
    • 78650591912 scopus 로고    scopus 로고
    • Nucleosome eviction and activated transcription require p300 acetylation of histone H3 lysine 14
    • Luebben W.R., Sharma N., Nyborg J.K. Nucleosome eviction and activated transcription require p300 acetylation of histone H3 lysine 14. Proc. Natl. Acad. Sci. U. S. A. 2010, 107:19254-19259.
    • (2010) Proc. Natl. Acad. Sci. U. S. A. , vol.107 , pp. 19254-19259
    • Luebben, W.R.1    Sharma, N.2    Nyborg, J.K.3
  • 54
    • 34548239142 scopus 로고    scopus 로고
    • ATP-dependent chromatin remodeling is required for base excision repair in conventional but not in variant H2A Bbd nucleosomes
    • Menoni H., Gasparutto D., Hamiche A., Cadet J., Dimitrov S., Bouvet P., Angelov D. ATP-dependent chromatin remodeling is required for base excision repair in conventional but not in variant H2A Bbd nucleosomes. Mol. Cell. Biol. 2007, 27:5949-5956.
    • (2007) Mol. Cell. Biol. , vol.27 , pp. 5949-5956
    • Menoni, H.1    Gasparutto, D.2    Hamiche, A.3    Cadet, J.4    Dimitrov, S.5    Bouvet, P.6    Angelov, D.7
  • 56
    • 0037385490 scopus 로고    scopus 로고
    • Structures and interactions of the core histone tail domains
    • Zheng C., Hayes J.J. Structures and interactions of the core histone tail domains. Biopolymers 2003, 68:539-546.
    • (2003) Biopolymers , vol.68 , pp. 539-546
    • Zheng, C.1    Hayes, J.J.2
  • 58
    • 0033664380 scopus 로고    scopus 로고
    • Crystal structure of a nucleosome core particle containing the variant histone H2A.Z
    • Suto R.K., Clarkson M.J., Tremethick D.J., Luger K. Crystal structure of a nucleosome core particle containing the variant histone H2A.Z. Nat. Struct. Biol. 2000, 7:1121-1124.
    • (2000) Nat. Struct. Biol. , vol.7 , pp. 1121-1124
    • Suto, R.K.1    Clarkson, M.J.2    Tremethick, D.J.3    Luger, K.4
  • 59
    • 33645807371 scopus 로고    scopus 로고
    • A base-excision DNA-repair protein finds intrahelical lesion bases by fast sliding in contact with DNA
    • Blainey P.C., van Oijen A.M., Banerjee A., Verdine G.L., Xie X.S. A base-excision DNA-repair protein finds intrahelical lesion bases by fast sliding in contact with DNA. Proc. Natl. Acad. Sci. U. S. A. 2006, 103:5752-5757.
    • (2006) Proc. Natl. Acad. Sci. U. S. A. , vol.103 , pp. 5752-5757
    • Blainey, P.C.1    van Oijen, A.M.2    Banerjee, A.3    Verdine, G.L.4    Xie, X.S.5
  • 61
    • 84868035470 scopus 로고    scopus 로고
    • Rules of engagement for base excision repair in chromatin
    • Odell I.D., Wallace S.S., Pederson D.S. Rules of engagement for base excision repair in chromatin. J. Cell. Physiol. 2012, 228:258-266.
    • (2012) J. Cell. Physiol. , vol.228 , pp. 258-266
    • Odell, I.D.1    Wallace, S.S.2    Pederson, D.S.3
  • 62
    • 0037934742 scopus 로고    scopus 로고
    • Suppressed catalytic activity of base excision repair enzymes on rotationally positioned uracil in nucleosomes
    • Beard B.C., Wilson S.H., Smerdon M.J. Suppressed catalytic activity of base excision repair enzymes on rotationally positioned uracil in nucleosomes. Proc. Natl. Acad. Sci. U. S. A. 2003, 100:7465-7470.
    • (2003) Proc. Natl. Acad. Sci. U. S. A. , vol.100 , pp. 7465-7470
    • Beard, B.C.1    Wilson, S.H.2    Smerdon, M.J.3
  • 63
    • 77449137042 scopus 로고    scopus 로고
    • Uracil DNA glycosylase activity on nucleosomal DNA depends on rotational orientation of targets
    • Cole H.A., Tabor-Godwin J.M., Hayes J.J. Uracil DNA glycosylase activity on nucleosomal DNA depends on rotational orientation of targets. J. Biol. Chem. 2010, 285:2876-2885.
    • (2010) J. Biol. Chem. , vol.285 , pp. 2876-2885
    • Cole, H.A.1    Tabor-Godwin, J.M.2    Hayes, J.J.3
  • 64
    • 77949528928 scopus 로고    scopus 로고
    • Rotational dynamics of DNA on the nucleosome surface markedly impact accessibility to a DNA repair enzyme
    • Hinz J.M., Rodriguez Y., Smerdon M.J. Rotational dynamics of DNA on the nucleosome surface markedly impact accessibility to a DNA repair enzyme. Proc. Natl. Acad. Sci. U. S. A. 2010, 107:4646-4651.
    • (2010) Proc. Natl. Acad. Sci. U. S. A. , vol.107 , pp. 4646-4651
    • Hinz, J.M.1    Rodriguez, Y.2    Smerdon, M.J.3
  • 66
    • 37549004382 scopus 로고    scopus 로고
    • Initiation of base excision repair of oxidative lesions in nucleosomes by the human, bifunctional DNA glycosylase NTH1
    • Prasad A., Wallace S.S., Pederson D.S. Initiation of base excision repair of oxidative lesions in nucleosomes by the human, bifunctional DNA glycosylase NTH1. Mol. Cell. Biol. 2007, 27:8442-8453.
    • (2007) Mol. Cell. Biol. , vol.27 , pp. 8442-8453
    • Prasad, A.1    Wallace, S.S.2    Pederson, D.S.3
  • 67
    • 75149158767 scopus 로고    scopus 로고
    • Non-specific DNA binding interferes with the efficient excision of oxidative lesions from chromatin by the human DNA glycosylase, NEIL1
    • Odell I.D., Newick K., Heintz N.H., Wallace S.S., Pederson D.S. Non-specific DNA binding interferes with the efficient excision of oxidative lesions from chromatin by the human DNA glycosylase, NEIL1. DNA Repair (Amst.) 2010, 9:134-143.
    • (2010) DNA Repair (Amst.) , vol.9 , pp. 134-143
    • Odell, I.D.1    Newick, K.2    Heintz, N.H.3    Wallace, S.S.4    Pederson, D.S.5
  • 68
    • 84877696971 scopus 로고    scopus 로고
    • The structural location of DNA lesions in nucleosome core particles determines accessibility by base excision repair enzymes
    • Rodriguez Y., Smerdon M.J. The structural location of DNA lesions in nucleosome core particles determines accessibility by base excision repair enzymes. J. Biol. Chem. 2013, 288:13863-13875.
    • (2013) J. Biol. Chem. , vol.288 , pp. 13863-13875
    • Rodriguez, Y.1    Smerdon, M.J.2
  • 70
    • 0034625082 scopus 로고    scopus 로고
    • Uracil-DNA glycosylase-DNA substrate and product structures: conformational strain promotes catalytic efficiency by coupled stereoelectronic effects
    • Parikh S.S., Walcher G., Jones G.D., Slupphaug G., Krokan H.E., Blackburn G.M., Tainer J.A. Uracil-DNA glycosylase-DNA substrate and product structures: conformational strain promotes catalytic efficiency by coupled stereoelectronic effects. Proc. Natl. Acad. Sci. U. S. A. 2000, 97:5083-5088.
    • (2000) Proc. Natl. Acad. Sci. U. S. A. , vol.97 , pp. 5083-5088
    • Parikh, S.S.1    Walcher, G.2    Jones, G.D.3    Slupphaug, G.4    Krokan, H.E.5    Blackburn, G.M.6    Tainer, J.A.7
  • 71
    • 0037205473 scopus 로고    scopus 로고
    • Presteady-state analysis of a single catalytic turnover by Escherichia coli uracil-DNA glycosylase reveals a pinch-pull-push mechanism
    • Wong I., Lundquist A.J., Bernards A.S., Mosbaugh D.W. Presteady-state analysis of a single catalytic turnover by Escherichia coli uracil-DNA glycosylase reveals a pinch-pull-push mechanism. J. Biol. Chem. 2002, 277:19424-19432.
    • (2002) J. Biol. Chem. , vol.277 , pp. 19424-19432
    • Wong, I.1    Lundquist, A.J.2    Bernards, A.S.3    Mosbaugh, D.W.4
  • 72
    • 84904705249 scopus 로고    scopus 로고
    • Impact of abasic site orientation within nucleosomes on human APE1 endonuclease activity
    • Hinz J.M. Impact of abasic site orientation within nucleosomes on human APE1 endonuclease activity. Mut. Res. Fundam. Mol. Mech. Mutagen. 2014, 766-767:19-24.
    • (2014) Mut. Res. Fundam. Mol. Mech. Mutagen. , pp. 19-24
    • Hinz, J.M.1
  • 74
    • 84875655568 scopus 로고    scopus 로고
    • Nucleosome core particle-catalyzed strand scission at abasic sites
    • Sczepanski J.T., Zhou C., Greenberg M.M. Nucleosome core particle-catalyzed strand scission at abasic sites. Biochemistry 2013, 52:2157-2164.
    • (2013) Biochemistry , vol.52 , pp. 2157-2164
    • Sczepanski, J.T.1    Zhou, C.2    Greenberg, M.M.3
  • 75
    • 0036847501 scopus 로고    scopus 로고
    • DNA base excision repair of uracil residues in reconstituted nucleosome core particles
    • Nilsen H., Lindahl T., Verreault A. DNA base excision repair of uracil residues in reconstituted nucleosome core particles. EMBO J. 2002, 21:5943-5952.
    • (2002) EMBO J. , vol.21 , pp. 5943-5952
    • Nilsen, H.1    Lindahl, T.2    Verreault, A.3
  • 76
    • 0036862512 scopus 로고    scopus 로고
    • Flap endonuclease 1 efficiently cleaves base excision repair and DNA replication intermediates assembled into nucleosomes
    • Huggins C.F., Chafin D.R., Aoyagi S., Henricksen L.A., Bambara R.A., Hayes J.J. Flap endonuclease 1 efficiently cleaves base excision repair and DNA replication intermediates assembled into nucleosomes. Mol. Cell. 2002, 10:1201-1211.
    • (2002) Mol. Cell. , vol.10 , pp. 1201-1211
    • Huggins, C.F.1    Chafin, D.R.2    Aoyagi, S.3    Henricksen, L.A.4    Bambara, R.A.5    Hayes, J.J.6
  • 77
    • 0034603742 scopus 로고    scopus 로고
    • DNA sequence-dependent contributions of core histone tails to nucleosome stability: differential effects of acetylation and proteolytic tail removal
    • Widlund H.R., Vitolo J.M., Thiriet C., Hayes J.J. DNA sequence-dependent contributions of core histone tails to nucleosome stability: differential effects of acetylation and proteolytic tail removal. Biochemistry 2000, 39:3835-3841.
    • (2000) Biochemistry , vol.39 , pp. 3835-3841
    • Widlund, H.R.1    Vitolo, J.M.2    Thiriet, C.3    Hayes, J.J.4
  • 78
    • 34247181137 scopus 로고    scopus 로고
    • The core histone tail domains contribute to sequence-dependent nucleosome positioning
    • Yang Z., Zheng C., Hayes J.J. The core histone tail domains contribute to sequence-dependent nucleosome positioning. J. Biol. Chem. 2007, 282:7930-7938.
    • (2007) J. Biol. Chem. , vol.282 , pp. 7930-7938
    • Yang, Z.1    Zheng, C.2    Hayes, J.J.3
  • 81
    • 0036785614 scopus 로고    scopus 로고
    • The SWI/SNF chromatin-remodeling factor stimulates repair by human excision nuclease in the mononucleosome core particle
    • Hara R., Sancar A. The SWI/SNF chromatin-remodeling factor stimulates repair by human excision nuclease in the mononucleosome core particle. Mol. Cell. Biol. 2002, 22:6779-6787.
    • (2002) Mol. Cell. Biol. , vol.22 , pp. 6779-6787
    • Hara, R.1    Sancar, A.2
  • 84
    • 34547850642 scopus 로고    scopus 로고
    • Different structural states in oligonucleosomes are required for early versus late steps of base excision repair
    • Nakanishi S., Prasad R., Wilson S.H., Smerdon M. Different structural states in oligonucleosomes are required for early versus late steps of base excision repair. Nucleic Acids Res. 2007, 35:4313-4321.
    • (2007) Nucleic Acids Res. , vol.35 , pp. 4313-4321
    • Nakanishi, S.1    Prasad, R.2    Wilson, S.H.3    Smerdon, M.4
  • 85
    • 84892942381 scopus 로고    scopus 로고
    • New and emerging HDAC inhibitors for cancer treatment
    • West A.C., Johnstone R.W. New and emerging HDAC inhibitors for cancer treatment. J. Clin. Invest. 2014, 124:30-39.
    • (2014) J. Clin. Invest. , vol.124 , pp. 30-39
    • West, A.C.1    Johnstone, R.W.2
  • 86
    • 84866534208 scopus 로고    scopus 로고
    • Alternative modes of binding of poly (ADP-ribose) polymerase 1 to free DNA and nucleosomes
    • Clark N.J., Kramer M., Muthurajan U.M., Luger K. Alternative modes of binding of poly (ADP-ribose) polymerase 1 to free DNA and nucleosomes. J. Biol. Chem. 2012, 287:32430-32439.
    • (2012) J. Biol. Chem. , vol.287 , pp. 32430-32439
    • Clark, N.J.1    Kramer, M.2    Muthurajan, U.M.3    Luger, K.4
  • 88
    • 38349078193 scopus 로고    scopus 로고
    • Site selectivity of platinum anticancer therapeutics
    • Wu B., Droge P., Davey C.A. Site selectivity of platinum anticancer therapeutics. Nat. Chem. Biol. 2008, 4:110-112.
    • (2008) Nat. Chem. Biol. , vol.4 , pp. 110-112
    • Wu, B.1    Droge, P.2    Davey, C.A.3
  • 89
    • 78650424297 scopus 로고    scopus 로고
    • Consequences of cisplatin binding on nucleosome structure and dynamics
    • Todd R.C., Lippard S.J. Consequences of cisplatin binding on nucleosome structure and dynamics. Chem. Biol. 2010, 17:1334-1343.
    • (2010) Chem. Biol. , vol.17 , pp. 1334-1343
    • Todd, R.C.1    Lippard, S.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.