-
1
-
-
84896038055
-
Macrophage phenotypes correspond with remodeling outcomes of various acellular dermal matrices
-
COI: 1:CAS:528:DC%2BC2cXlsV2mtrY%3D
-
Agrawal, H., S. S. Tholpady, A. E. Capito, D. B. Drake, and A. J. Katz. Macrophage phenotypes correspond with remodeling outcomes of various acellular dermal matrices. Open J. Regen. Med. 1:51–59, 2012.
-
(2012)
Open J. Regen. Med.
, vol.1
, pp. 51-59
-
-
Agrawal, H.1
Tholpady, S.S.2
Capito, A.E.3
Drake, D.B.4
Katz, A.J.5
-
2
-
-
79959508609
-
Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model
-
COI: 1:CAS:528:DC%2BC3MXptFWgurg%3D, PID: 21305607
-
Alexander, K. A., M. K. Chang, E. R. Maylin, T. Kohler, R. Muller, A. C. Wu, N. Van Rooijen, M. J. Sweet, D. A. Hume, L. J. Raggatt, and A. R. Pettit. Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model. J. Bone Miner. Res. 26:1517–1532, 2011.
-
(2011)
J. Bone Miner. Res.
, vol.26
, pp. 1517-1532
-
-
Alexander, K.A.1
Chang, M.K.2
Maylin, E.R.3
Kohler, T.4
Muller, R.5
Wu, A.C.6
Van Rooijen, N.7
Sweet, M.J.8
Hume, D.A.9
Raggatt, L.J.10
Pettit, A.R.11
-
3
-
-
11144245562
-
Monocytes and macrophages form branched cell columns in matrigel: implications for a role in neovascularization
-
COI: 1:CAS:528:DC%2BD2MXnt1Wrtw%3D%3D, PID: 15684834
-
Anghelina, M., P. Krishnan, L. Moldovan, and N. I. Moldovan. Monocytes and macrophages form branched cell columns in matrigel: implications for a role in neovascularization. Stem Cells Dev. 13:665–676, 2004.
-
(2004)
Stem Cells Dev.
, vol.13
, pp. 665-676
-
-
Anghelina, M.1
Krishnan, P.2
Moldovan, L.3
Moldovan, N.I.4
-
4
-
-
33144468586
-
Monocytes/macrophages cooperate with progenitor cells during neovascularization and tissue repair: conversion of cell columns into fibrovascular bundles
-
COI: 1:CAS:528:DC%2BD28Xhs1agu78%3D, PID: 16436667
-
Anghelina, M., P. Krishnan, L. Moldovan, and N. I. Moldovan. Monocytes/macrophages cooperate with progenitor cells during neovascularization and tissue repair: conversion of cell columns into fibrovascular bundles. Am. J. Pathol. 168:529–541, 2006.
-
(2006)
Am. J. Pathol.
, vol.168
, pp. 529-541
-
-
Anghelina, M.1
Krishnan, P.2
Moldovan, L.3
Moldovan, N.I.4
-
5
-
-
84885045471
-
Obesity promotes breast cancer by CCL2-mediated macrophage recruitment and angiogenesis
-
COI: 1:CAS:528:DC%2BC3sXhsFGrsrbL, PID: 23959857
-
Arendt, L. M., J. McCready, P. J. Keller, D. D. Baker, S. P. Naber, V. Seewaldt, and C. Kuperwasser. Obesity promotes breast cancer by CCL2-mediated macrophage recruitment and angiogenesis. Cancer Res. 73:6080–6093, 2013.
-
(2013)
Cancer Res.
, vol.73
, pp. 6080-6093
-
-
Arendt, L.M.1
McCready, J.2
Keller, P.J.3
Baker, D.D.4
Naber, S.P.5
Seewaldt, V.6
Kuperwasser, C.7
-
6
-
-
0141889330
-
Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect
-
PID: 14563800
-
Arinzeh, T. L., S. J. Peter, M. P. Archambault, C. van den Bos, S. Gordon, K. Kraus, A. Smith, and S. Kadiyala. Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect. J. Bone Joint Surg. Am. 85-A:1927–1935, 2003.
-
(2003)
J. Bone Joint Surg. Am.
, vol.85-A
, pp. 1927-1935
-
-
Arinzeh, T.L.1
Peter, S.J.2
Archambault, M.P.3
van den Bos, C.4
Gordon, S.5
Kraus, K.6
Smith, A.7
Kadiyala, S.8
-
7
-
-
34248997759
-
Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis
-
COI: 1:CAS:528:DC%2BD2sXlsFSjtrw%3D, PID: 17485518
-
Arnold, L., A. Henry, F. Poron, Y. Baba-Amer, N. van Rooijen, A. Plonquet, R. K. Gherardi, and B. Chazaud. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J. Exp. Med. 204:1057–1069, 2007.
-
(2007)
J. Exp. Med.
, vol.204
, pp. 1057-1069
-
-
Arnold, L.1
Henry, A.2
Poron, F.3
Baba-Amer, Y.4
van Rooijen, N.5
Plonquet, A.6
Gherardi, R.K.7
Chazaud, B.8
-
8
-
-
0031974606
-
Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb
-
COI: 1:CAS:528:DyaK1cXjtV2ktg%3D%3D, PID: 9421464
-
Arras, M., W. D. Ito, D. Scholz, B. Winkler, J. Schaper, and W. Schaper. Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. J. Clin. Investig. 101:40–50, 1998.
-
(1998)
J. Clin. Investig.
, vol.101
, pp. 40-50
-
-
Arras, M.1
Ito, W.D.2
Scholz, D.3
Winkler, B.4
Schaper, J.5
Schaper, W.6
-
9
-
-
0033195998
-
Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response
-
COI: 1:CAS:528:DyaK1MXlvFChu7w%3D, PID: 10559937
-
Ashcroft, G. S., X. Yang, A. B. Glick, M. Weinstein, J. L. Letterio, D. E. Mizel, M. Anzano, T. Greenwell-Wild, S. M. Wahl, C. Deng, and A. B. Roberts. Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nat. Cell Biol. 1:260–266, 1999.
-
(1999)
Nat. Cell Biol.
, vol.1
, pp. 260-266
-
-
Ashcroft, G.S.1
Yang, X.2
Glick, A.B.3
Weinstein, M.4
Letterio, J.L.5
Mizel, D.E.6
Anzano, M.7
Greenwell-Wild, T.8
Wahl, S.M.9
Deng, C.10
Roberts, A.B.11
-
10
-
-
0025963002
-
The human leukemia cell line, THP-1: a multifacetted model for the study of monocyte-macrophage differentiation
-
COI: 1:STN:280:DyaK3M7ltlCntA%3D%3D, PID: 1999239
-
Auwerx, J. The human leukemia cell line, THP-1: a multifacetted model for the study of monocyte-macrophage differentiation. Experientia 47:22–31, 1991.
-
(1991)
Experientia
, vol.47
, pp. 22-31
-
-
Auwerx, J.1
-
11
-
-
84882750764
-
Sphingosine 1-phosphate receptor 3 regulates recruitment of anti-inflammatory monocytes to microvessels during implant arteriogenesis
-
COI: 1:CAS:528:DC%2BC3sXhtlKqu7vP, PID: 23918395
-
Awojoodu, A. O., M. E. Ogle, L. S. Sefcik, D. T. Bowers, K. Martin, K. L. Brayman, K. R. Lynch, S. M. Peirce-Cottler, and E. Botchwey. Sphingosine 1-phosphate receptor 3 regulates recruitment of anti-inflammatory monocytes to microvessels during implant arteriogenesis. Proc. Natl. Acad. Sci. USA 110:13785–13790, 2013.
-
(2013)
Proc. Natl. Acad. Sci. USA
, vol.110
, pp. 13785-13790
-
-
Awojoodu, A.O.1
Ogle, M.E.2
Sefcik, L.S.3
Bowers, D.T.4
Martin, K.5
Brayman, K.L.6
Lynch, K.R.7
Peirce-Cottler, S.M.8
Botchwey, E.9
-
12
-
-
54949155201
-
Macrophage phenotype as a determinant of biologic scaffold remodeling
-
COI: 1:CAS:528:DC%2BD1cXht12ls7%2FM, PID: 18950271
-
Badylak, S. F., J. E. Valentin, A. K. Ravindra, G. P. McCabe, and A. M. Stewart-Akers. Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng. Part A 14:1835–1842, 2008.
-
(2008)
Tissue Eng. Part A
, vol.14
, pp. 1835-1842
-
-
Badylak, S.F.1
Valentin, J.E.2
Ravindra, A.K.3
McCabe, G.P.4
Stewart-Akers, A.M.5
-
13
-
-
54349083877
-
Mesenchymal stem cells and cardiac repair: principles and practice
-
PID: 20559905
-
Bartunek, J., A. Behfar, M. Vanderheyden, W. Wijns, and A. Terzic. Mesenchymal stem cells and cardiac repair: principles and practice. J. Cardiovasc. Transl. Res. 1:115–119, 2008.
-
(2008)
J. Cardiovasc. Transl. Res.
, vol.1
, pp. 115-119
-
-
Bartunek, J.1
Behfar, A.2
Vanderheyden, M.3
Wijns, W.4
Terzic, A.5
-
14
-
-
78649258635
-
Biomaterial topography alters healing in vivo and monocyte/macrophage activation in vitro
-
PID: 20725970
-
Bota, P. C., A. M. Collie, P. Puolakkainen, R. B. Vernon, E. H. Sage, B. D. Ratner, and P. S. Stayton. Biomaterial topography alters healing in vivo and monocyte/macrophage activation in vitro. J. Biomed. Mater. Res. A 95:649–657, 2010.
-
(2010)
J. Biomed. Mater. Res. A
, vol.95
, pp. 649-657
-
-
Bota, P.C.1
Collie, A.M.2
Puolakkainen, P.3
Vernon, R.B.4
Sage, E.H.5
Ratner, B.D.6
Stayton, P.S.7
-
15
-
-
84856530367
-
Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials
-
COI: 1:CAS:528:DC%2BC38XhvFKltLc%3D, PID: 22166681
-
Brown, B. N., R. Londono, S. Tottey, L. Zhang, K. A. Kukla, M. T. Wolf, K. A. Daly, J. E. Reing, and S. F. Badylak. Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials. Acta Biomater. 8:978–987, 2012.
-
(2012)
Acta Biomater.
, vol.8
, pp. 978-987
-
-
Brown, B.N.1
Londono, R.2
Tottey, S.3
Zhang, L.4
Kukla, K.A.5
Wolf, M.T.6
Daly, K.A.7
Reing, J.E.8
Badylak, S.F.9
-
16
-
-
58249093204
-
Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component
-
COI: 1:CAS:528:DC%2BD1MXpsFOqtg%3D%3D, PID: 19121538
-
Brown, B. N., J. E. Valentin, A. M. Stewart-Akers, G. P. McCabe, and S. F. Badylak. Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials 30:1482–1491, 2009.
-
(2009)
Biomaterials
, vol.30
, pp. 1482-1491
-
-
Brown, B.N.1
Valentin, J.E.2
Stewart-Akers, A.M.3
McCabe, G.P.4
Badylak, S.F.5
-
17
-
-
84883780219
-
Enhancing microvascular formation and vessel maturation through temporal control over multiple pro-angiogenic and pro-maturation factors
-
COI: 1:CAS:528:DC%2BC3sXhsVSrsrzK, PID: 23972477
-
Brudno, Y., A. B. Ennett-Shepard, R. R. Chen, M. Aizenberg, and D. J. Mooney. Enhancing microvascular formation and vessel maturation through temporal control over multiple pro-angiogenic and pro-maturation factors. Biomaterials 34:9201–9209, 2013.
-
(2013)
Biomaterials
, vol.34
, pp. 9201-9209
-
-
Brudno, Y.1
Ennett-Shepard, A.B.2
Chen, R.R.3
Aizenberg, M.4
Mooney, D.J.5
-
18
-
-
53249155928
-
The immune system and the repair of skeletal muscle
-
COI: 1:CAS:528:DC%2BD1cXht1ejtL3K, PID: 18639637
-
Brunelli, S., and P. Rovere-Querini. The immune system and the repair of skeletal muscle. Pharmacol. Res. 58:117–121, 2008.
-
(2008)
Pharmacol. Res.
, vol.58
, pp. 117-121
-
-
Brunelli, S.1
Rovere-Querini, P.2
-
19
-
-
80052265428
-
Macrophage polarization in the maculae of age-related macular degeneration: a pilot study
-
COI: 1:CAS:528:DC%2BC3MXht1ymsrrP, PID: 21884302
-
Cao, X., D. Shen, M. M. Patel, J. Tuo, T. M. Johnson, T. W. Olsen, and C. C. Chan. Macrophage polarization in the maculae of age-related macular degeneration: a pilot study. Pathol. Int. 61:528–535, 2011.
-
(2011)
Pathol. Int.
, vol.61
, pp. 528-535
-
-
Cao, X.1
Shen, D.2
Patel, M.M.3
Tuo, J.4
Johnson, T.M.5
Olsen, T.W.6
Chan, C.C.7
-
20
-
-
79961066293
-
Humanized mice with ectopic artificial liver tissues
-
COI: 1:CAS:528:DC%2BC3MXps1ektr0%3D, PID: 21746904
-
Chen, A. A., D. K. Thomas, L. L. Ong, R. E. Schwartz, T. R. Golub, and S. N. Bhatia. Humanized mice with ectopic artificial liver tissues. Proc. Natl. Acad. Sci. USA 108:11842–11847, 2011.
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 11842-11847
-
-
Chen, A.A.1
Thomas, D.K.2
Ong, L.L.3
Schwartz, R.E.4
Golub, T.R.5
Bhatia, S.N.6
-
21
-
-
84896808531
-
Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages
-
COI: 1:CAS:528:DC%2BC2cXkvVChsr4%3D, PID: 24406319
-
Cho, D. I., M. R. Kim, H. Y. Jeong, H. C. Jeong, M. H. Jeong, S. H. Yoon, Y. S. Kim, and Y. Ahn. Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages. Exp. Mol. Med. 46:e70, 2014.
-
(2014)
Exp. Mol. Med.
, vol.46
, pp. 70
-
-
Cho, D.I.1
Kim, M.R.2
Jeong, H.Y.3
Jeong, H.C.4
Jeong, M.H.5
Yoon, S.H.6
Kim, Y.S.7
Ahn, Y.8
-
22
-
-
11244332504
-
Vascular leukocytes contribute to tumor vascularization
-
COI: 1:CAS:528:DC%2BD2MXltlGgtA%3D%3D, PID: 15358628
-
Conejo-Garcia, J. R., R. J. Buckanovich, F. Benencia, M. C. Courreges, S. C. Rubin, R. G. Carroll, and G. Coukos. Vascular leukocytes contribute to tumor vascularization. Blood 105:679–681, 2005.
-
(2005)
Blood
, vol.105
, pp. 679-681
-
-
Conejo-Garcia, J.R.1
Buckanovich, R.J.2
Benencia, F.3
Courreges, M.C.4
Rubin, S.C.5
Carroll, R.G.6
Coukos, G.7
-
23
-
-
82555178429
-
In vitro model of vascularized bone: synergizing vascular development and osteogenesis
-
COI: 1:CAS:528:DC%2BC3MXhs1GnsrbF, PID: 22164277
-
Correia, C., W. L. Grayson, M. Park, D. Hutton, B. Zhou, X. E. Guo, L. Niklason, R. A. Sousa, R. L. Reis, and G. Vunjak-Novakovic. In vitro model of vascularized bone: synergizing vascular development and osteogenesis. PLoS ONE 6:e28352, 2011.
-
(2011)
PLoS ONE
, vol.6
, pp. 28352
-
-
Correia, C.1
Grayson, W.L.2
Park, M.3
Hutton, D.4
Zhou, B.5
Guo, X.E.6
Niklason, L.7
Sousa, R.A.8
Reis, R.L.9
Vunjak-Novakovic, G.10
-
24
-
-
34548150402
-
Angiogenesis and chronic inflammation: cause or consequence?
-
PID: 17457680
-
Costa, C., J. Incio, and R. Soares. Angiogenesis and chronic inflammation: cause or consequence? Angiogenesis 10:149–166, 2007.
-
(2007)
Angiogenesis
, vol.10
, pp. 149-166
-
-
Costa, C.1
Incio, J.2
Soares, R.3
-
25
-
-
84885388561
-
The promotion of mandibular defect healing by the targeting of S1P receptors and the recruitment of alternatively activated macrophages
-
COI: 1:CAS:528:DC%2BC3sXhsV2js7bP, PID: 24064148
-
Das, A., C. E. Segar, B. B. Hughley, D. T. Bowers, and E. A. Botchwey. The promotion of mandibular defect healing by the targeting of S1P receptors and the recruitment of alternatively activated macrophages. Biomaterials 34:9853–9862, 2013.
-
(2013)
Biomaterials
, vol.34
, pp. 9853-9862
-
-
Das, A.1
Segar, C.E.2
Hughley, B.B.3
Bowers, D.T.4
Botchwey, E.A.5
-
26
-
-
84856723391
-
Mesenchymal stromal cells mediate a switch to alternatively activated monocytes/macrophages after acute myocardial infarction
-
COI: 1:CAS:528:DC%2BC3MXhsFOnsL7F, PID: 21901289
-
Dayan, V., G. Yannarelli, F. Billia, P. Filomeno, X. H. Wang, J. E. Davies, and A. Keating. Mesenchymal stromal cells mediate a switch to alternatively activated monocytes/macrophages after acute myocardial infarction. Basic Res. Cardiol. 106:1299–1310, 2011.
-
(2011)
Basic Res. Cardiol.
, vol.106
, pp. 1299-1310
-
-
Dayan, V.1
Yannarelli, G.2
Billia, F.3
Filomeno, P.4
Wang, X.H.5
Davies, J.E.6
Keating, A.7
-
27
-
-
84902146194
-
Yolk-sac-derived macrophages regulate fetal testis vascularization and morphogenesis
-
COI: 1:CAS:528:DC%2BC2cXos1aqu7c%3D, PID: 24912173
-
DeFalco, T., I. Bhattacharya, A. V. Williams, D. M. Sams, and B. Capel. Yolk-sac-derived macrophages regulate fetal testis vascularization and morphogenesis. Proc. Natl. Acad. Sci. USA 111:E2384–E2393, 2014.
-
(2014)
Proc. Natl. Acad. Sci. USA
, vol.111
, pp. 2384-2393
-
-
DeFalco, T.1
Bhattacharya, I.2
Williams, A.V.3
Sams, D.M.4
Capel, B.5
-
28
-
-
77956273530
-
Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction
-
COI: 1:CAS:528:DC%2BC3cXhtVCku73L, PID: 20404134
-
Fantin, A., J. M. Vieira, G. Gestri, L. Denti, Q. Schwarz, S. Prykhozhij, F. Peri, S. W. Wilson, and C. Ruhrberg. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116:829–840, 2010.
-
(2010)
Blood
, vol.116
, pp. 829-840
-
-
Fantin, A.1
Vieira, J.M.2
Gestri, G.3
Denti, L.4
Schwarz, Q.5
Prykhozhij, S.6
Peri, F.7
Wilson, S.W.8
Ruhrberg, C.9
-
29
-
-
84883378902
-
Immunomodulatory effect of a decellularized skeletal muscle scaffold in a discordant xenotransplantation model
-
COI: 1:CAS:528:DC%2BC3sXhsVCgtrfL, PID: 23940349
-
Fishman, J. M., M. W. Lowdell, L. Urbani, T. Ansari, A. J. Burns, M. Turmaine, J. North, P. Sibbons, A. M. Seifalian, K. J. Wood, M. A. Birchall, and P. De Coppi. Immunomodulatory effect of a decellularized skeletal muscle scaffold in a discordant xenotransplantation model. Proc. Natl. Acad. Sci. USA 110:14360–14365, 2013.
-
(2013)
Proc. Natl. Acad. Sci. USA
, vol.110
, pp. 14360-14365
-
-
Fishman, J.M.1
Lowdell, M.W.2
Urbani, L.3
Ansari, T.4
Burns, A.J.5
Turmaine, M.6
North, J.7
Sibbons, P.8
Seifalian, A.M.9
Wood, K.J.10
Birchall, M.A.11
De Coppi, P.12
-
30
-
-
53249095498
-
The immune system and cardiac repair
-
COI: 1:CAS:528:DC%2BD1cXht1ejtLvO, PID: 18620057
-
Frangogiannis, N. G. The immune system and cardiac repair. Pharmacol. Res. 58:88–111, 2008.
-
(2008)
Pharmacol. Res.
, vol.58
, pp. 88-111
-
-
Frangogiannis, N.G.1
-
31
-
-
84878419888
-
Glycosaminoglycan mimetic associated to human mesenchymal stem cell-based scaffolds inhibit ectopic bone formation, but induce angiogenesis in vivo
-
COI: 1:CAS:528:DC%2BC3sXosFKisbk%3D, PID: 23521005
-
Frescaline, G., T. Bouderlique, L. Mansoor, G. Carpentier, B. Baroukh, F. Sineriz, M. Trouillas, J. L. Saffar, J. Courty, J. J. Lataillade, D. Papy-Garcia, and P. Albanese. Glycosaminoglycan mimetic associated to human mesenchymal stem cell-based scaffolds inhibit ectopic bone formation, but induce angiogenesis in vivo. Tissue Eng. Part A 19:1641–1653, 2013.
-
(2013)
Tissue Eng. Part A
, vol.19
, pp. 1641-1653
-
-
Frescaline, G.1
Bouderlique, T.2
Mansoor, L.3
Carpentier, G.4
Baroukh, B.5
Sineriz, F.6
Trouillas, M.7
Saffar, J.L.8
Courty, J.9
Lataillade, J.J.10
Papy-Garcia, D.11
Albanese, P.12
-
32
-
-
84869480381
-
Macrophages modulate the viability and growth of human mesenchymal stem cells
-
COI: 1:CAS:528:DC%2BC38Xhs1Knu73J, PID: 22903635
-
Freytes, D. O., J. W. Kang, I. Marcos-Campos, and G. Vunjak-Novakovic. Macrophages modulate the viability and growth of human mesenchymal stem cells. J. Cell. Biochem. 114:220–229, 2013.
-
(2013)
J. Cell. Biochem.
, vol.114
, pp. 220-229
-
-
Freytes, D.O.1
Kang, J.W.2
Marcos-Campos, I.3
Vunjak-Novakovic, G.4
-
33
-
-
84155171091
-
Optimizing dynamic interactions between a cardiac patch and inflammatory host cells
-
COI: 1:CAS:528:DC%2BC3MXhs1Cru73E, PID: 21996612
-
Freytes, D. O., L. Santambrogio, and G. Vunjak-Novakovic. Optimizing dynamic interactions between a cardiac patch and inflammatory host cells. Cells Tissues Organs 195:171–182, 2012.
-
(2012)
Cells Tissues Organs
, vol.195
, pp. 171-182
-
-
Freytes, D.O.1
Santambrogio, L.2
Vunjak-Novakovic, G.3
-
34
-
-
77956878373
-
A subpopulation of CD163-positive macrophages is classically activated in psoriasis
-
COI: 1:CAS:528:DC%2BC3cXhtFGqtbvM, PID: 20555352
-
Fuentes-Duculan, J., M. Suarez-Farinas, L. C. Zaba, K. E. Nograles, K. C. Pierson, H. Mitsui, C. A. Pensabene, J. Kzhyshkowska, J. G. Krueger, and M. A. Lowes. A subpopulation of CD163-positive macrophages is classically activated in psoriasis. J. Investig. Dermatol. 130:2412–2422, 2010.
-
(2010)
J. Investig. Dermatol.
, vol.130
, pp. 2412-2422
-
-
Fuentes-Duculan, J.1
Suarez-Farinas, M.2
Zaba, L.C.3
Nograles, K.E.4
Pierson, K.C.5
Mitsui, H.6
Pensabene, C.A.7
Kzhyshkowska, J.8
Krueger, J.G.9
Lowes, M.A.10
-
35
-
-
79952122953
-
TNF-alpha promotes fracture repair by augmenting the recruitment and differentiation of muscle-derived stromal cells
-
COI: 1:CAS:528:DC%2BC3MXhs1Smtb8%3D, PID: 21209334
-
Glass, G. E., J. K. Chan, A. Freidin, M. Feldmann, N. J. Horwood, and J. Nanchahal. TNF-alpha promotes fracture repair by augmenting the recruitment and differentiation of muscle-derived stromal cells. Proc. Natl. Acad. Sci. USA 108:1585–1590, 2011.
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 1585-1590
-
-
Glass, G.E.1
Chan, J.K.2
Freidin, A.3
Feldmann, M.4
Horwood, N.J.5
Nanchahal, J.6
-
36
-
-
79956371111
-
Composite scaffold provides a cell delivery platform for cardiovascular repair
-
COI: 1:CAS:528:DC%2BC3MXmsVSkurk%3D, PID: 21508321
-
Godier-Furnemont, A. F., T. P. Martens, M. S. Koeckert, L. Wan, J. Parks, K. Arai, G. Zhang, B. Hudson, S. Homma, and G. Vunjak-Novakovic. Composite scaffold provides a cell delivery platform for cardiovascular repair. Proc. Natl. Acad. Sci. USA 108:7974–7979, 2011.
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 7974-7979
-
-
Godier-Furnemont, A.F.1
Martens, T.P.2
Koeckert, M.S.3
Wan, L.4
Parks, J.5
Arai, K.6
Zhang, G.7
Hudson, B.8
Homma, S.9
Vunjak-Novakovic, G.10
-
37
-
-
82655181358
-
A critical role for macrophages in neovessel formation and the development of stenosis in tissue-engineered vascular grafts
-
COI: 1:CAS:528:DC%2BC3MXhs1Wlt7rF, PID: 21865316
-
Hibino, N., T. Yi, D. R. Duncan, A. Rathore, E. Dean, Y. Naito, A. Dardik, T. Kyriakides, J. Madri, J. S. Pober, T. Shinoka, and C. K. Breuer. A critical role for macrophages in neovessel formation and the development of stenosis in tissue-engineered vascular grafts. FASEB J 25:4253–4263, 2011.
-
(2011)
FASEB J
, vol.25
, pp. 4253-4263
-
-
Hibino, N.1
Yi, T.2
Duncan, D.R.3
Rathore, A.4
Dean, E.5
Naito, Y.6
Dardik, A.7
Kyriakides, T.8
Madri, J.9
Pober, J.S.10
Shinoka, T.11
Breuer, C.K.12
-
38
-
-
42249111050
-
The local injection of peritoneal macrophages induces neovascularization in rat ischemic hind limb muscles
-
PID: 18468252
-
Hirose, N., H. Maeda, M. Yamamoto, Y. Hayashi, G. H. Lee, L. Chen, G. Radhakrishnan, P. Rao, and S. Sasaguri. The local injection of peritoneal macrophages induces neovascularization in rat ischemic hind limb muscles. Cell Transplant. 17:211–222, 2008.
-
(2008)
Cell Transplant.
, vol.17
, pp. 211-222
-
-
Hirose, N.1
Maeda, H.2
Yamamoto, M.3
Hayashi, Y.4
Lee, G.H.5
Chen, L.6
Radhakrishnan, G.7
Rao, P.8
Sasaguri, S.9
-
39
-
-
13944269178
-
Neovascularization and bone regeneration by implantation of autologous bone marrow mononuclear cells
-
COI: 1:CAS:528:DC%2BD2MXhs1Ggtbs%3D, PID: 15722124
-
Hisatome, T., Y. Yasunaga, S. Yanada, Y. Tabata, Y. Ikada, and M. Ochi. Neovascularization and bone regeneration by implantation of autologous bone marrow mononuclear cells. Biomaterials 26:4550–4556, 2005.
-
(2005)
Biomaterials
, vol.26
, pp. 4550-4556
-
-
Hisatome, T.1
Yasunaga, Y.2
Yanada, S.3
Tabata, Y.4
Ikada, Y.5
Ochi, M.6
-
40
-
-
84880512414
-
J. Macrophages transmit potent proangiogenic effects of oxLDL in vitro and in vivo involving HIF-1alpha activation: a novel aspect of angiogenesis in atherosclerosis
-
PID: 23661177
-
Hutter, R., W. S. Speidl, C. Valdiviezo, B. Sauter, R. Corti, V. Fuster, and J. Badimon. J. Macrophages transmit potent proangiogenic effects of oxLDL in vitro and in vivo involving HIF-1alpha activation: a novel aspect of angiogenesis in atherosclerosis. J. Cardiovasc. Transl. Res. 6:558–569, 2013.
-
(2013)
J. Cardiovasc. Transl. Res.
, vol.6
, pp. 558-569
-
-
Hutter, R.1
Speidl, W.S.2
Valdiviezo, C.3
Sauter, B.4
Corti, R.5
Fuster, V.6
Badimon, J.7
-
41
-
-
84892832431
-
M. Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo
-
COI: 1:CAS:528:DC%2BC2cXnt1Sqsw%3D%3D, PID: 24013945
-
Jetten, N., S. Verbruggen, M. J. Gijbels, M. J. Post, M. P. De Winther, and M. Donners. M. Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo. Angiogenesis 17:109–118, 2014.
-
(2014)
Angiogenesis
, vol.17
, pp. 109-118
-
-
Jetten, N.1
Verbruggen, S.2
Gijbels, M.J.3
Post, M.J.4
De Winther, M.P.5
Donners, M.6
-
42
-
-
77952532171
-
Macrophage plasticity in experimental atherosclerosis
-
PID: 20111605
-
Khallou-Laschet, J., A. Varthaman, G. Fornasa, C. Compain, A. T. Gaston, M. Clement, M. Dussiot, O. Levillain, S. Graff-Dubois, A. Nicoletti, and G. Caligiuri. Macrophage plasticity in experimental atherosclerosis. PLoS ONE 5:e8852, 2010.
-
(2010)
PLoS ONE
, vol.5
, pp. 8852
-
-
Khallou-Laschet, J.1
Varthaman, A.2
Fornasa, G.3
Compain, C.4
Gaston, A.T.5
Clement, M.6
Dussiot, M.7
Levillain, O.8
Graff-Dubois, S.9
Nicoletti, A.10
Caligiuri, G.11
-
43
-
-
70350558453
-
Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord
-
COI: 1:CAS:528:DC%2BD1MXhsVSmtrnJ, PID: 19864556
-
Kigerl, K. A., J. C. Gensel, D. P. Ankeny, J. K. Alexander, D. J. Donnelly, and P. G. Popovich. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J. Neurosci. 29:13435–13444, 2009.
-
(2009)
J. Neurosci.
, vol.29
, pp. 13435-13444
-
-
Kigerl, K.A.1
Gensel, J.C.2
Ankeny, D.P.3
Alexander, J.K.4
Donnelly, D.J.5
Popovich, P.G.6
-
44
-
-
84887016664
-
Enhancement of bone regeneration by dual release of a macrophage recruitment agent and platelet-rich plasma from gelatin hydrogels
-
COI: 1:CAS:528:DC%2BC3sXhs1SrsLbK, PID: 24125774
-
Kim, Y. H., H. Furuya, and Y. Tabata. Enhancement of bone regeneration by dual release of a macrophage recruitment agent and platelet-rich plasma from gelatin hydrogels. Biomaterials 35:214–224, 2014.
-
(2014)
Biomaterials
, vol.35
, pp. 214-224
-
-
Kim, Y.H.1
Furuya, H.2
Tabata, Y.3
-
45
-
-
84878393283
-
Wnts heal by restraining angiogenesis
-
COI: 1:CAS:528:DC%2BC3sXlsV2jsrs%3D, PID: 23538232
-
Kitajewski, J. Wnts heal by restraining angiogenesis. Blood 121:2381–2382, 2013.
-
(2013)
Blood
, vol.121
, pp. 2381-2382
-
-
Kitajewski, J.1
-
46
-
-
66049154097
-
M-CSF inhibition selectively targets pathological angiogenesis and lymphangiogenesis
-
COI: 1:CAS:528:DC%2BD1MXlvVGmurk%3D, PID: 19398755
-
Kubota, Y., K. Takubo, T. Shimizu, H. Ohno, K. Kishi, M. Shibuya, H. Saya, and T. Suda. M-CSF inhibition selectively targets pathological angiogenesis and lymphangiogenesis. J. Exp. Med. 206:1089–1102, 2009.
-
(2009)
J. Exp. Med.
, vol.206
, pp. 1089-1102
-
-
Kubota, Y.1
Takubo, K.2
Shimizu, T.3
Ohno, H.4
Kishi, K.5
Shibuya, M.6
Saya, H.7
Suda, T.8
-
47
-
-
54949106928
-
Macrophage roles following myocardial infarction
-
PID: 18656272
-
Lambert, J. M., E. F. Lopez, and M. L. Lindsey. Macrophage roles following myocardial infarction. Int. J. Cardiol. 130:147–158, 2008.
-
(2008)
Int. J. Cardiol.
, vol.130
, pp. 147-158
-
-
Lambert, J.M.1
Lopez, E.F.2
Lindsey, M.L.3
-
48
-
-
65549151760
-
Inflammatory and alternatively activated human macrophages attract vessel-associated stem cells, relying on separate HMGB1- and MMP-9-dependent pathways
-
COI: 1:CAS:528:DC%2BD1MXlvVCksrg%3D, PID: 19197071
-
Lolmede, K., L. Campana, M. Vezzoli, L. Bosurgi, R. Tonlorenzi, E. Clementi, M. E. Bianchi, G. Cossu, A. A. Manfredi, S. Brunelli, and P. Rovere-Querini. Inflammatory and alternatively activated human macrophages attract vessel-associated stem cells, relying on separate HMGB1- and MMP-9-dependent pathways. J. Leukoc. Biol. 85:779–787, 2009.
-
(2009)
J. Leukoc. Biol.
, vol.85
, pp. 779-787
-
-
Lolmede, K.1
Campana, L.2
Vezzoli, M.3
Bosurgi, L.4
Tonlorenzi, R.5
Clementi, E.6
Bianchi, M.E.7
Cossu, G.8
Manfredi, A.A.9
Brunelli, S.10
Rovere-Querini, P.11
-
49
-
-
84872507804
-
Twist1 induces CCL2 and recruits macrophages to promote angiogenesis
-
COI: 1:CAS:528:DC%2BC3sXptlejtQ%3D%3D, PID: 23329645
-
Low-Marchelli, J. M., V. C. Ardi, E. A. Vizcarra, N. van Rooijen, J. P. Quigley, and J. Yang. Twist1 induces CCL2 and recruits macrophages to promote angiogenesis. Cancer Res. 73:662–671, 2013.
-
(2013)
Cancer Res.
, vol.73
, pp. 662-671
-
-
Low-Marchelli, J.M.1
Ardi, V.C.2
Vizcarra, E.A.3
van Rooijen, N.4
Quigley, J.P.5
Yang, J.6
-
50
-
-
77957943567
-
The healing of bony defects by cell-free collagen-based scaffolds compared to stem cell-seeded tissue engineered constructs
-
COI: 1:CAS:528:DC%2BC3cXht12ntrbI, PID: 20863559
-
Lyons, F. G., A. A. Al-Munajjed, S. M. Kieran, M. E. Toner, C. M. Murphy, G. P. Duffy, and F. J. O’Brien. The healing of bony defects by cell-free collagen-based scaffolds compared to stem cell-seeded tissue engineered constructs. Biomaterials 31:9232–9243, 2010.
-
(2010)
Biomaterials
, vol.31
, pp. 9232-9243
-
-
Lyons, F.G.1
Al-Munajjed, A.A.2
Kieran, S.M.3
Toner, M.E.4
Murphy, C.M.5
Duffy, G.P.6
O’Brien, F.J.7
-
51
-
-
77957009635
-
Proangiogenic scaffolds as functional templates for cardiac tissue engineering
-
COI: 1:CAS:528:DC%2BC3cXhtFSnsLbN, PID: 20696917
-
Madden, L. R., D. J. Mortisen, E. M. Sussman, S. K. Dupras, J. A. Fugate, J. L. Cuy, K. D. Hauch, M. A. Laflamme, C. E. Murry, and B. D. Ratner. Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proc. Natl. Acad. Sci. USA 107:15211–15216, 2010.
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 15211-15216
-
-
Madden, L.R.1
Mortisen, D.J.2
Sussman, E.M.3
Dupras, S.K.4
Fugate, J.A.5
Cuy, J.L.6
Hauch, K.D.7
Laflamme, M.A.8
Murry, C.E.9
Ratner, B.D.10
-
52
-
-
84871076444
-
Macrophage plasticity and polarization in tissue repair and remodelling
-
COI: 1:CAS:528:DC%2BC38XhvVClt7nK, PID: 23096265
-
Mantovani, A., S. K. Biswas, M. R. Galdiero, A. Sica, and M. Locati. Macrophage plasticity and polarization in tissue repair and remodelling. J. Pathol. 229:176–185, 2013.
-
(2013)
J. Pathol.
, vol.229
, pp. 176-185
-
-
Mantovani, A.1
Biswas, S.K.2
Galdiero, M.R.3
Sica, A.4
Locati, M.5
-
53
-
-
7644231561
-
The chemokine system in diverse forms of macrophage activation and polarization
-
COI: 1:CAS:528:DC%2BD2cXptl2ktbs%3D, PID: 15530839
-
Mantovani, A., A. Sica, S. Sozzani, P. Allavena, A. Vecchi, and M. Locati. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25:677–686, 2004.
-
(2004)
Trends Immunol.
, vol.25
, pp. 677-686
-
-
Mantovani, A.1
Sica, A.2
Sozzani, S.3
Allavena, P.4
Vecchi, A.5
Locati, M.6
-
54
-
-
0036839143
-
Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes
-
COI: 1:CAS:528:DC%2BD38XotVKktrc%3D, PID: 12401408
-
Mantovani, A., S. Sozzani, M. Locati, P. Allavena, and A. Sica. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23:549–555, 2002.
-
(2002)
Trends Immunol.
, vol.23
, pp. 549-555
-
-
Mantovani, A.1
Sozzani, S.2
Locati, M.3
Allavena, P.4
Sica, A.5
-
55
-
-
33750813483
-
Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression
-
Martinez, F. O., S. Gordon, M. Locati, and A. Mantovani. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J. Immunol. 177:7303–7311, 2006.
-
(2006)
J. Immunol
, vol.177
, pp. 7303-7311
-
-
Martinez, F.O.1
Gordon, S.2
Locati, M.3
Mantovani, A.4
-
56
-
-
68749109482
-
Cell therapy with autologous bone marrow mononuclear stem cells is associated with superior cardiac recovery compared with use of nonmodified mesenchymal stem cells in a canine model of chronic myocardial infarction
-
Mathieu, M., J. Bartunek, B. El Oumeiri, K. Touihri, I. Hadad, P. Thoma, T. Metens, A. M. da Costa, M. Mahmoudabady, D. Egrise, D. Blocklet, N. Mazouz, R. Naeije, G. Heyndrickx, and K. McEntee. Cell therapy with autologous bone marrow mononuclear stem cells is associated with superior cardiac recovery compared with use of nonmodified mesenchymal stem cells in a canine model of chronic myocardial infarction. J. Thoracic Cardiovasc. Surg. 138:646–653, 2009.
-
(2009)
J. Thoracic Cardiovasc. Surg.
, vol.138
, pp. 646-653
-
-
Mathieu, M.1
Bartunek, J.2
El Oumeiri, B.3
Touihri, K.4
Hadad, I.5
Thoma, P.6
Metens, T.7
da Costa, A.M.8
Mahmoudabady, M.9
Egrise, D.10
Blocklet, D.11
Mazouz, N.12
Naeije, R.13
Heyndrickx, G.14
McEntee, K.15
-
57
-
-
84858785425
-
Myeloid angiogenic cells act as alternative M2 macrophages and modulate angiogenesis through interleukin-8
-
COI: 1:CAS:528:DC%2BC3MXhtlCgsbnO, PID: 21670847
-
Medina, R. J., C. L. O’Neill, T. M. O’Doherty, H. Knott, J. Guduric-Fuchs, T. A. Gardiner, and A. W. Stitt. Myeloid angiogenic cells act as alternative M2 macrophages and modulate angiogenesis through interleukin-8. Mol. Med. 17:1045–1055, 2011.
-
(2011)
Mol. Med.
, vol.17
, pp. 1045-1055
-
-
Medina, R.J.1
O’Neill, C.L.2
O’Doherty, T.M.3
Knott, H.4
Guduric-Fuchs, J.5
Gardiner, T.A.6
Stitt, A.W.7
-
58
-
-
0032479778
-
Host response to tissue engineered devices
-
PID: 10837656
-
Mikos, A. G., L. V. McIntire, J. M. Anderson, and J. E. Babensee. Host response to tissue engineered devices. Adv. Drug Deliv. Rev. 33:111–139, 1998.
-
(1998)
Adv. Drug Deliv. Rev.
, vol.33
, pp. 111-139
-
-
Mikos, A.G.1
McIntire, L.V.2
Anderson, J.M.3
Babensee, J.E.4
-
59
-
-
84866876763
-
Effect of modulating macrophage phenotype on peripheral nerve repair
-
COI: 1:CAS:528:DC%2BC38XhtlCqu77L, PID: 22979988
-
Mokarram, N., A. Merchant, V. Mukhatyar, G. Patel, and R. V. Bellamkonda. Effect of modulating macrophage phenotype on peripheral nerve repair. Biomaterials 33:8793–8801, 2012.
-
(2012)
Biomaterials
, vol.33
, pp. 8793-8801
-
-
Mokarram, N.1
Merchant, A.2
Mukhatyar, V.3
Patel, G.4
Bellamkonda, R.V.5
-
60
-
-
56749174940
-
Exploring the full spectrum of macrophage activation
-
COI: 1:CAS:528:DC%2BD1cXhsVWlsLfI, PID: 19029990
-
Mosser, D. M., and J. P. Edwards. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8:958–969, 2008.
-
(2008)
Nat. Rev. Immunol.
, vol.8
, pp. 958-969
-
-
Mosser, D.M.1
Edwards, J.P.2
-
61
-
-
36549033197
-
The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions
-
Nahrendorf, M., F. K. Swirski, E. Aikawa, L. Stangenberg, T. Wurdinger, J.-L. Figueiredo, P. Libby, R. Weissleder, and M. J. Pittet. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J. Exp. Med. 204:3037–3047, 2007
-
(2007)
J. Exp. Med
, vol.204
, pp. 3037-3047
-
-
Nahrendorf, M.1
Swirski, F.K.2
Aikawa, E.3
Stangenberg, L.4
Wurdinger, T.5
Figueiredo, J.-L.6
Libby, P.7
Weissleder, R.8
Pittet, M.J.9
-
62
-
-
36549033197
-
The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions
-
COI: 1:CAS:528:DC%2BD2sXhsVSgs7jL, PID: 18025128
-
Nahrendorf, M., F. K. Swirski, E. Aikawa, L. Stangenberg, T. Wurdinger, J. L. Figueiredo, P. Libby, R. Weissleder, and M. J. Pittet. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J. Exp. Med. 204:3037–3047, 2007.
-
(2007)
J. Exp. Med.
, vol.204
, pp. 3037-3047
-
-
Nahrendorf, M.1
Swirski, F.K.2
Aikawa, E.3
Stangenberg, L.4
Wurdinger, T.5
Figueiredo, J.L.6
Libby, P.7
Weissleder, R.8
Pittet, M.J.9
-
63
-
-
80053210046
-
Notch1 controls macrophage recruitment and Notch signaling is activated at sites of endothelial cell anastomosis during retinal angiogenesis in mice
-
COI: 1:CAS:528:DC%2BC3MXht1Ogu7vM, PID: 21795743
-
Outtz, H. H., I. W. Tattersall, N. M. Kofler, N. Steinbach, and J. Kitajewski. Notch1 controls macrophage recruitment and Notch signaling is activated at sites of endothelial cell anastomosis during retinal angiogenesis in mice. Blood 118:3436–3439, 2011.
-
(2011)
Blood
, vol.118
, pp. 3436-3439
-
-
Outtz, H.H.1
Tattersall, I.W.2
Kofler, N.M.3
Steinbach, N.4
Kitajewski, J.5
-
64
-
-
33645523979
-
Possible pathogenesis of painful intervertebral disc degeneration
-
Peng, B., J. Hao, S. Hou, W. Wu, D. Jiang, X. Fu, and Y. Yang. Possible pathogenesis of painful intervertebral disc degeneration. Spine (Phila Pa 1976) 31:560–566, 2006.
-
(2006)
Spine (Phila Pa 1976)
, vol.31
, pp. 560-566
-
-
Peng, B.1
Hao, J.2
Hou, S.3
Wu, W.4
Jiang, D.5
Fu, X.6
Yang, Y.7
-
65
-
-
77953963056
-
The enhancement of bone allograft incorporation by the local delivery of the sphingosine 1-phosphate receptor targeted drug FTY720
-
COI: 1:CAS:528:DC%2BC3cXnvFKjtLs%3D, PID: 20621764
-
Petrie Aronin, C. E., S. J. Shin, K. B. Naden, P. D. Rios, Jr., L. S. Sefcik, S. R. Zawodny, N. D. Bagayoko, Q. Cui, Y. Khan, and E. A. Botchwey. The enhancement of bone allograft incorporation by the local delivery of the sphingosine 1-phosphate receptor targeted drug FTY720. Biomaterials 31:6417–6424, 2010.
-
(2010)
Biomaterials
, vol.31
, pp. 6417-6424
-
-
Petrie Aronin, C.E.1
Shin, S.J.2
Naden, K.B.3
Rios, P.D.4
Sefcik, L.S.5
Zawodny, S.R.6
Bagayoko, N.D.7
Cui, Q.8
Khan, Y.9
Botchwey, E.A.10
-
66
-
-
0142039228
-
Simple and cost-effective isolation of monocytes from buffy coats
-
COI: 1:CAS:528:DC%2BD3sXmvVOht7o%3D, PID: 12957415
-
Repnik, U., M. Knezevic, and M. Jeras. Simple and cost-effective isolation of monocytes from buffy coats. J. Immunol. Methods 278:283–292, 2003.
-
(2003)
J. Immunol. Methods
, vol.278
, pp. 283-292
-
-
Repnik, U.1
Knezevic, M.2
Jeras, M.3
-
67
-
-
77949531670
-
Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling
-
COI: 1:CAS:528:DC%2BC3cXjs1emu7g%3D, PID: 20207947
-
Roh, J. D., R. Sawh-Martinez, M. P. Brennan, S. M. Jay, L. Devine, D. A. Rao, T. Yi, T. L. Mirensky, A. Nalbandian, B. Udelsman, N. Hibino, T. Shinoka, W. M. Saltzman, E. Snyder, T. R. Kyriakides, J. S. Pober, and C. K. Breuer. Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling. Proc. Natl. Acad. Sci. USA 107:4669–4674, 2010.
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 4669-4674
-
-
Roh, J.D.1
Sawh-Martinez, R.2
Brennan, M.P.3
Jay, S.M.4
Devine, L.5
Rao, D.A.6
Yi, T.7
Mirensky, T.L.8
Nalbandian, A.9
Udelsman, B.10
Hibino, N.11
Shinoka, T.12
Saltzman, W.M.13
Snyder, E.14
Kyriakides, T.R.15
Pober, J.S.16
Breuer, C.K.17
-
68
-
-
46749123975
-
TNF primes endothelial cells for angiogenic sprouting by inducing a tip cell phenotype
-
COI: 1:CAS:528:DC%2BD1cXmtlaiu7g%3D, PID: 18337563
-
Sainson, R. C., D. A. Johnston, H. C. Chu, M. T. Holderfield, M. N. Nakatsu, S. P. Crampton, J. Davis, E. Conn, and C. C. Hughes. TNF primes endothelial cells for angiogenic sprouting by inducing a tip cell phenotype. Blood 111:4997–5007, 2008.
-
(2008)
Blood
, vol.111
, pp. 4997-5007
-
-
Sainson, R.C.1
Johnston, D.A.2
Chu, H.C.3
Holderfield, M.T.4
Nakatsu, M.N.5
Crampton, S.P.6
Davis, J.7
Conn, E.8
Hughes, C.C.9
-
69
-
-
0042844768
-
Macrophage depletion inhibits experimental choroidal neovascularization
-
Sakurai, E., A. Anand, B. K. Ambati, N. van Rooijen, and J. Ambati. Macrophage depletion inhibits experimental choroidal neovascularization. Investig. Ophthalmol. Vis. Sci. 44:3578–3585, 2003.
-
(2003)
Investig. Ophthalmol. Vis. Sci.
, vol.44
, pp. 3578-3585
-
-
Sakurai, E.1
Anand, A.2
Ambati, B.K.3
van Rooijen, N.4
Ambati, J.5
-
70
-
-
40649109499
-
Innate and adaptive immune responses in tissue engineering
-
COI: 1:CAS:528:DC%2BD1cXjtlKgsLc%3D, PID: 18221888
-
Sefton, M. V., J. E. Babensee, and K. A. Woodhouse. Innate and adaptive immune responses in tissue engineering. Semin. Immunol. 20:83–85, 2008.
-
(2008)
Semin. Immunol.
, vol.20
, pp. 83-85
-
-
Sefton, M.V.1
Babensee, J.E.2
Woodhouse, K.A.3
-
71
-
-
84874457770
-
Genomic responses in mouse models poorly mimic human inflammatory diseases
-
COI: 1:CAS:528:DC%2BC3sXkvVKqsro%3D, PID: 23401516
-
Seok, J., H. S. Warren, A. G. Cuenca, M. N. Mindrinos, H. V. Baker, W. Xu, D. R. Richards, G. P. McDonald-Smith, H. Gao, L. Hennessy, C. C. Finnerty, C. M. Lopez, S. Honari, E. E. Moore, J. P. Minei, J. Cuschieri, P. E. Bankey, J. L. Johnson, J. Sperry, A. B. Nathens, T. R. Billiar, M. A. West, M. G. Jeschke, M. B. Klein, R. L. Gamelli, N. S. Gibran, B. H. Brownstein, C. Miller-Graziano, S. E. Calvano, P. H. Mason, J. P. Cobb, L. G. Rahme, S. F. Lowry, R. V. Maier, L. L. Moldawer, D. N. Herndon, R. W. Davis, W. Xiao, and R. G. Tompkins. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl. Acad. Sci. USA 110:3507–3512, 2013.
-
(2013)
Proc. Natl. Acad. Sci. USA
, vol.110
, pp. 3507-3512
-
-
Seok, J.1
Warren, H.S.2
Cuenca, A.G.3
Mindrinos, M.N.4
Baker, H.V.5
Xu, W.6
Richards, D.R.7
McDonald-Smith, G.P.8
Gao, H.9
Hennessy, L.10
Finnerty, C.C.11
Lopez, C.M.12
Honari, S.13
Moore, E.E.14
Minei, J.P.15
Cuschieri, J.16
Bankey, P.E.17
Johnson, J.L.18
Sperry, J.19
Nathens, A.B.20
Billiar, T.R.21
West, M.A.22
Jeschke, M.G.23
Klein, M.B.24
Gamelli, R.L.25
Gibran, N.S.26
Brownstein, B.H.27
Miller-Graziano, C.28
Calvano, S.E.29
Mason, P.H.30
Cobb, J.P.31
Rahme, L.G.32
Lowry, S.F.33
Maier, R.V.34
Moldawer, L.L.35
Herndon, D.N.36
Davis, R.W.37
Xiao, W.38
Tompkins, R.G.39
more..
-
72
-
-
84867898654
-
Humanized mice for immune system investigation: progress, promise and challenges
-
COI: 1:CAS:528:DC%2BC38XhsV2rsbjK, PID: 23059428
-
Shultz, L. D., M. A. Brehm, J. V. Garcia-Martinez, and D. L. Greiner. Humanized mice for immune system investigation: progress, promise and challenges. Nat. Rev. Immunol. 12:786–798, 2012.
-
(2012)
Nat. Rev. Immunol.
, vol.12
, pp. 786-798
-
-
Shultz, L.D.1
Brehm, M.A.2
Garcia-Martinez, J.V.3
Greiner, D.L.4
-
73
-
-
33846630040
-
Humanized mice in translational biomedical research
-
COI: 1:CAS:528:DC%2BD2sXpvVCisA%3D%3D, PID: 17259968
-
Shultz, L. D., F. Ishikawa, and D. L. Greiner. Humanized mice in translational biomedical research. Nat. Rev. Immunol. 7:118–130, 2007.
-
(2007)
Nat. Rev. Immunol.
, vol.7
, pp. 118-130
-
-
Shultz, L.D.1
Ishikawa, F.2
Greiner, D.L.3
-
74
-
-
79952135247
-
An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice
-
COI: 1:CAS:528:DC%2BC3MXjtVWktbs%3D, PID: 21317534
-
Sindrilaru, A., T. Peters, S. Wieschalka, C. Baican, A. Baican, H. Peter, A. Hainzl, S. Schatz, Y. Qi, A. Schlecht, J. M. Weiss, M. Wlaschek, C. Sunderkotter, and K. Scharffetter-Kochanek. An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J. Clin. Investig. 121:985–997, 2011.
-
(2011)
J. Clin. Investig.
, vol.121
, pp. 985-997
-
-
Sindrilaru, A.1
Peters, T.2
Wieschalka, S.3
Baican, C.4
Baican, A.5
Peter, H.6
Hainzl, A.7
Schatz, S.8
Qi, Y.9
Schlecht, A.10
Weiss, J.M.11
Wlaschek, M.12
Sunderkotter, C.13
Scharffetter-Kochanek, K.14
-
75
-
-
84896055839
-
The role of macrophage phenotype in vascularization of tissue engineering scaffolds
-
COI: 1:CAS:528:DC%2BC2cXjtl2gtrg%3D, PID: 24589361
-
Spiller, K. L., R. R. Anfang, K. J. Spiller, J. Ng, K. R. Nakazawa, J. W. Daulton, and G. Vunjak-Novakovic. The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials 35:4477–4488, 2014.
-
(2014)
Biomaterials
, vol.35
, pp. 4477-4488
-
-
Spiller, K.L.1
Anfang, R.R.2
Spiller, K.J.3
Ng, J.4
Nakazawa, K.R.5
Daulton, J.W.6
Vunjak-Novakovic, G.7
-
77
-
-
84878423909
-
Macrophage Wnt-Calcineurin-Flt1 signaling regulates mouse wound angiogenesis and repair
-
COI: 1:CAS:528:DC%2BC3sXlsV2jsLc%3D, PID: 23303818
-
Stefater, 3rd, J. A., S. Rao, K. Bezold, A. C. Aplin, R. F. Nicosia, J. W. Pollard, N. Ferrara, and R. A. Lang. Macrophage Wnt-Calcineurin-Flt1 signaling regulates mouse wound angiogenesis and repair. Blood 121:2574–2578, 2013.
-
(2013)
Blood
, vol.121
, pp. 2574-2578
-
-
Stefater, J.A.1
Rao, S.2
Bezold, K.3
Aplin, A.C.4
Nicosia, R.F.5
Pollard, J.W.6
Ferrara, N.7
Lang, R.A.8
-
78
-
-
84862140907
-
Microtechnology for mimicking in vivo tissue environment
-
PID: 22215276
-
Sung, J. H., and M. L. Shuler. Microtechnology for mimicking in vivo tissue environment. Ann. Biomed. Eng. 40:1289–1300, 2012.
-
(2012)
Ann. Biomed. Eng.
, vol.40
, pp. 1289-1300
-
-
Sung, J.H.1
Shuler, M.L.2
-
79
-
-
84904259304
-
Porous implants modulate healing and induce shifts in local macrophage polarization in the foreign body reaction
-
PID: 24248559
-
Sussman, E. M., M. C. Halpin, J. Muster, R. T. Moon, and B. D. Ratner. Porous implants modulate healing and induce shifts in local macrophage polarization in the foreign body reaction. Ann. Biomed. Eng. 42:1508–1516, 2014.
-
(2014)
Ann. Biomed. Eng.
, vol.42
, pp. 1508-1516
-
-
Sussman, E.M.1
Halpin, M.C.2
Muster, J.3
Moon, R.T.4
Ratner, B.D.5
-
80
-
-
35648933951
-
Mechanisms of Disease: angiogenesis in inflammatory diseases
-
COI: 1:CAS:528:DC%2BD2sXht1ejtrnL, PID: 17968334
-
Szekanecz, Z., and A. E. Koch. Mechanisms of Disease: angiogenesis in inflammatory diseases. Nat. Clin. Pract. Rheumatol. 3:635–643, 2007.
-
(2007)
Nat. Clin. Pract. Rheumatol.
, vol.3
, pp. 635-643
-
-
Szekanecz, Z.1
Koch, A.E.2
-
81
-
-
58949095822
-
Development of sarcomas in mice implanted with mesenchymal stem cells seeded onto bioscaffolds
-
COI: 1:CAS:528:DC%2BD1MXhtVaqtbg%3D, PID: 18849298
-
Tasso, R., A. Augello, M. Carida, F. Postiglione, M. G. Tibiletti, B. Bernasconi, S. Astigiano, F. Fais, M. Truini, R. Cancedda, and G. Pennesi. Development of sarcomas in mice implanted with mesenchymal stem cells seeded onto bioscaffolds. Carcinogenesis 30:150–157, 2009.
-
(2009)
Carcinogenesis
, vol.30
, pp. 150-157
-
-
Tasso, R.1
Augello, A.2
Carida, M.3
Postiglione, F.4
Tibiletti, M.G.5
Bernasconi, B.6
Astigiano, S.7
Fais, F.8
Truini, M.9
Cancedda, R.10
Pennesi, G.11
-
82
-
-
63549090131
-
When stem cells meet immunoregulation
-
COI: 1:CAS:528:DC%2BD1MXksVWntr4%3D, PID: 19539568
-
Tasso, R., and G. Pennesi. When stem cells meet immunoregulation. Int. Immunopharmacol. 9:596–598, 2009.
-
(2009)
Int. Immunopharmacol.
, vol.9
, pp. 596-598
-
-
Tasso, R.1
Pennesi, G.2
-
83
-
-
84866504259
-
A. A RHAMM mimetic peptide blocks hyaluronan signaling and reduces inflammation and fibrogenesis in excisional skin wounds
-
COI: 1:CAS:528:DC%2BC38XhsF2nsb7F, PID: 22889846
-
Tolg, C., S. R. Hamilton, E. Zalinska, L. McCulloch, R. Amin, N. Akentieva, F. Winnik, R. Savani, D. J. Bagli, L. G. Luyt, M. K. Cowman, J. B. McCarthy, and E. Turley. A. A RHAMM mimetic peptide blocks hyaluronan signaling and reduces inflammation and fibrogenesis in excisional skin wounds. Am. J. Pathol. 181:1250–1270, 2012.
-
(2012)
Am. J. Pathol.
, vol.181
, pp. 1250-1270
-
-
Tolg, C.1
Hamilton, S.R.2
Zalinska, E.3
McCulloch, L.4
Amin, R.5
Akentieva, N.6
Winnik, F.7
Savani, R.8
Bagli, D.J.9
Luyt, L.G.10
Cowman, M.K.11
McCarthy, J.B.12
Turley, E.13
-
84
-
-
84864403927
-
Tunable hydrogel-microsphere composites that modulate local inflammation and collagen bulking
-
COI: 1:CAS:528:DC%2BC38XhtFeiur%2FJ, PID: 22659176
-
Tous, E., H. M. Weber, M. H. Lee, K. J. Koomalsingh, T. Shuto, N. Kondo, J. H. Gorman, 3rd, D. Lee, R. C. Gorman, and J. A. Burdick. Tunable hydrogel-microsphere composites that modulate local inflammation and collagen bulking. Acta Biomater. 8:3218–3227, 2012.
-
(2012)
Acta Biomater.
, vol.8
, pp. 3218-3227
-
-
Tous, E.1
Weber, H.M.2
Lee, M.H.3
Koomalsingh, K.J.4
Shuto, T.5
Kondo, N.6
Gorman, J.H.7
Lee, D.8
Gorman, R.C.9
Burdick, J.A.10
-
85
-
-
84873120774
-
The temporal and spatial distribution of macrophage subpopulations during arteriogenesis
-
COI: 1:CAS:528:DC%2BC3sXktFeru74%3D, PID: 23391417
-
Troidl, C., G. Jung, K. Troidl, J. Hoffmann, H. Mollmann, H. Nef, W. Schaper, C. W. Hamm, and T. Schmitz-Rixen. The temporal and spatial distribution of macrophage subpopulations during arteriogenesis. Curr. Vasc. Pharmacol. 11:5–12, 2013.
-
(2013)
Curr. Vasc. Pharmacol.
, vol.11
, pp. 5-12
-
-
Troidl, C.1
Jung, G.2
Troidl, K.3
Hoffmann, J.4
Mollmann, H.5
Nef, H.6
Schaper, W.7
Hamm, C.W.8
Schmitz-Rixen, T.9
-
86
-
-
74249095850
-
Classically and alternatively activated macrophages contribute to tissue remodelling after myocardial infarction
-
COI: 1:STN:280:DC%2BC3c7kvFCjuw%3D%3D, PID: 19228260
-
Troidl, C., H. Mollmann, H. Nef, F. Masseli, S. Voss, S. Szardien, M. Willmer, A. Rolf, J. Rixe, K. Troidl, S. Kostin, C. Hamm, and A. Elsasser. Classically and alternatively activated macrophages contribute to tissue remodelling after myocardial infarction. J. Cell Mol. Med. 13:3485–3496, 2009.
-
(2009)
J. Cell Mol. Med.
, vol.13
, pp. 3485-3496
-
-
Troidl, C.1
Mollmann, H.2
Nef, H.3
Masseli, F.4
Voss, S.5
Szardien, S.6
Willmer, M.7
Rolf, A.8
Rixe, J.9
Troidl, K.10
Kostin, S.11
Hamm, C.12
Elsasser, A.13
-
87
-
-
79952158210
-
Biomimetic platforms for human stem cell research
-
COI: 1:CAS:528:DC%2BC3MXisFGqtL8%3D, PID: 21362565
-
Vunjak-Novakovic, G., and D. T. Scadden. Biomimetic platforms for human stem cell research. Cell Stem Cell 8:252–261, 2011.
-
(2011)
Cell Stem Cell
, vol.8
, pp. 252-261
-
-
Vunjak-Novakovic, G.1
Scadden, D.T.2
-
88
-
-
34547461118
-
Ex vivo programmed macrophages ameliorate experimental chronic inflammatory renal disease
-
COI: 1:CAS:528:DC%2BD2sXot1Cmsbk%3D, PID: 17440493
-
Wang, Y., Y. P. Wang, G. Zheng, V. W. Lee, L. Ouyang, D. H. Chang, D. Mahajan, J. Coombs, Y. M. Wang, S. I. Alexander, and D. C. Harris. Ex vivo programmed macrophages ameliorate experimental chronic inflammatory renal disease. Kidney Int. 72:290–299, 2007.
-
(2007)
Kidney Int.
, vol.72
, pp. 290-299
-
-
Wang, Y.1
Wang, Y.P.2
Zheng, G.3
Lee, V.W.4
Ouyang, L.5
Chang, D.H.6
Mahajan, D.7
Coombs, J.8
Wang, Y.M.9
Alexander, S.I.10
Harris, D.C.11
-
89
-
-
84864126835
-
CCR2 recruits an inflammatory macrophage subpopulation critical for angiogenesis in tissue repair
-
COI: 1:CAS:528:DC%2BC38XhtFOntrnL, PID: 22577176
-
Willenborg, S., T. Lucas, G. van Loo, J. A. Knipper, T. Krieg, I. Haase, B. Brachvogel, M. Hammerschmidt, A. Nagy, N. Ferrara, M. Pasparakis, and S. A. Eming. CCR2 recruits an inflammatory macrophage subpopulation critical for angiogenesis in tissue repair. Blood 120:613–625, 2012.
-
(2012)
Blood
, vol.120
, pp. 613-625
-
-
Willenborg, S.1
Lucas, T.2
van Loo, G.3
Knipper, J.A.4
Krieg, T.5
Haase, I.6
Brachvogel, B.7
Hammerschmidt, M.8
Nagy, A.9
Ferrara, N.10
Pasparakis, M.11
Eming, S.A.12
-
90
-
-
84885383646
-
A biodegradable microvessel scaffold as a framework to enable vascular support of engineered tissues
-
COI: 1:CAS:528:DC%2BC3sXhsFenu7vE, PID: 24079890
-
Ye, X., L. Lu, M. E. Kolewe, H. Park, B. L. Larson, E. S. Kim, and L. E. Freed. A biodegradable microvessel scaffold as a framework to enable vascular support of engineered tissues. Biomaterials 34:10007–10015, 2013.
-
(2013)
Biomaterials
, vol.34
, pp. 10007-10015
-
-
Ye, X.1
Lu, L.2
Kolewe, M.E.3
Park, H.4
Larson, B.L.5
Kim, E.S.6
Freed, L.E.7
-
91
-
-
0033828394
-
The ischemic heart–experimental models
-
COI: 1:CAS:528:DC%2BD3cXls12rtr0%3D, PID: 10945923
-
Ytrehus, K. The ischemic heart–experimental models. Pharmacol. Res. 42:193–203, 2000.
-
(2000)
Pharmacol. Res.
, vol.42
, pp. 193-203
-
-
Ytrehus, K.1
-
92
-
-
84893487976
-
Angiogenic capacity of M1- and M2-polarized macrophages is determined by the levels of TIMP-1 complexed with their secreted proMMP-9
-
COI: 1:CAS:528:DC%2BC3sXhvFOru7bM, PID: 24174628
-
Zajac, E., B. Schweighofer, T. A. Kupriyanova, A. Juncker-Jensen, P. Minder, J. P. Quigley, and E. I. Deryugina. Angiogenic capacity of M1- and M2-polarized macrophages is determined by the levels of TIMP-1 complexed with their secreted proMMP-9. Blood 122:4054–4067, 2013.
-
(2013)
Blood
, vol.122
, pp. 4054-4067
-
-
Zajac, E.1
Schweighofer, B.2
Kupriyanova, T.A.3
Juncker-Jensen, A.4
Minder, P.5
Quigley, J.P.6
Deryugina, E.I.7
-
93
-
-
84880271647
-
Zwitterionic hydrogels implanted in mice resist the foreign-body reaction
-
COI: 1:CAS:528:DC%2BC3sXnsVyjsrY%3D, PID: 23666011
-
Zhang, L., Z. Cao, T. Bai, L. Carr, J. R. Ella-Menye, C. Irvin, B. D. Ratner, and S. Jiang. Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat. Biotechnol. 31:553–556, 2013.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 553-556
-
-
Zhang, L.1
Cao, Z.2
Bai, T.3
Carr, L.4
Ella-Menye, J.R.5
Irvin, C.6
Ratner, B.D.7
Jiang, S.8
-
94
-
-
33745245544
-
Adult endothelial progenitor cells from human peripheral blood maintain monocyte/macrophage function throughout in vitro culture
-
COI: 1:CAS:528:DC%2BD28Xls1Kju7c%3D, PID: 16775629
-
Zhang, S. J., H. Zhang, Y. J. Wei, W. J. Su, Z. K. Liao, M. Hou, J. Y. Zhou, and S. S. Hu. Adult endothelial progenitor cells from human peripheral blood maintain monocyte/macrophage function throughout in vitro culture. Cell Res. 16:577–584, 2006.
-
(2006)
Cell Res.
, vol.16
, pp. 577-584
-
-
Zhang, S.J.1
Zhang, H.2
Wei, Y.J.3
Su, W.J.4
Liao, Z.K.5
Hou, M.6
Zhou, J.Y.7
Hu, S.S.8
|