메뉴 건너뛰기




Volumn 16, Issue 7, 2015, Pages 15872-15902

MD simulations of tRNA and aminoacyl-tRNA synthetases: Dynamics, folding, binding, and Allostery

Author keywords

Atomistic; Catalytic mechanism; Coarse grained; Editing; Empirical force field

Indexed keywords

AMINO ACID; AMINO ACID TRANSFER RNA LIGASE; MESSENGER RNA; TRANSFER RNA; PROTEIN BINDING;

EID: 84937243071     PISSN: 16616596     EISSN: 14220067     Source Type: Journal    
DOI: 10.3390/ijms160715872     Document Type: Review
Times cited : (32)

References (162)
  • 1
    • 70449209123 scopus 로고
    • On protein synthesis
    • Crick, F.H. On protein synthesis. Symp. Soc. Exp. Biol. 1958, 12, 138–163.
    • (1958) Symp. Soc. Exp. Biol , vol.12 , pp. 138-163
    • Crick, F.H.1
  • 2
    • 0010555072 scopus 로고
    • Enzymatic carboxyl activation of amino acids
    • Hoagland, M.B.; Keller, E.B.; Zamecnik, P.C. Enzymatic carboxyl activation of amino acids. J. Biol. Chem. 1956, 218, 345–358.
    • (1956) J. Biol. Chem , vol.218 , pp. 345-358
    • Hoagland, M.B.1    Keller, E.B.2    Zamecnik, P.C.3
  • 4
    • 0033862354 scopus 로고    scopus 로고
    • The crystal structure of yeast phenylalanine tRNA at 1.93 Å resolution: A classic structure revisited
    • Shi, H.; Moore, P.B. The crystal structure of yeast phenylalanine tRNA at 1.93 Å resolution: A classic structure revisited. RNA 2000, 6, 1091–1105.
    • (2000) RNA , vol.6 , pp. 1091-1105
    • Shi, H.1    Moore, P.B.2
  • 7
    • 49649110170 scopus 로고    scopus 로고
    • Aminoacyl tRNA synthetases and their connections to disease
    • Park, S.G.; Schimmel, P.; Kim, S. Aminoacyl tRNA synthetases and their connections to disease. Proc. Natl. Acad. Sci. USA 2008, 105, 11043–11049.
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 11043-11049
    • Park, S.G.1    Schimmel, P.2    Kim, S.3
  • 8
    • 84868529168 scopus 로고    scopus 로고
    • Structural diversity and protein engineering of the aminoacyl-tRNA synthetases
    • Perona, J.J.; Hadd, A. Structural diversity and protein engineering of the aminoacyl-tRNA synthetases. Biochemistry (Mosc.) 2012, 51, 8705–8729.
    • (2012) Biochemistry (Mosc.) , vol.51 , pp. 8705-8729
    • Perona, J.J.1    Hadd, A.2
  • 9
    • 0035236424 scopus 로고    scopus 로고
    • Domain-domain communication in aminoacyl-tRNA synthetases
    • Alexander, R.W.; Schimmel, P. Domain-domain communication in aminoacyl-tRNA synthetases. Prog. Nucl. Acid Res. Mol. Biol. 2001, 69, 317-349.
    • (2001) Prog. Nucl. Acid Res. Mol. Biol , vol.69 , pp. 317-349
    • Alexander, R.W.1    Schimmel, P.2
  • 10
    • 84893748547 scopus 로고    scopus 로고
    • The significance of the 2013 Nobel Prize in chemistry and the challenges ahead
    • Nussinov, R. The significance of the 2013 Nobel Prize in chemistry and the challenges ahead. PLoS Comput. Biol. 2014, 10, e1003423.
    • (2014) Plos Comput. Biol , vol.10
    • Nussinov, R.1
  • 11
    • 84907042049 scopus 로고    scopus 로고
    • Eppur Si Muove! The 2013 Nobel Prize in chemistry
    • Smith, J.C.; Roux, B. Eppur Si Muove! The 2013 Nobel Prize in chemistry. Structure 2013, 21, 2102–2105.
    • (2013) Structure , vol.21 , pp. 2102-2105
    • Smith, J.C.1    Roux, B.2
  • 14
    • 0015859467 scopus 로고
    • Principles that govern the folding of protein chains
    • Anfinsen, C.B. Principles that govern the folding of protein chains. Science 1973, 181, 223–230.
    • (1973) Science , vol.181 , pp. 223-230
    • Anfinsen, C.B.1
  • 16
    • 33646931471 scopus 로고    scopus 로고
    • Protein folding thermodynamics and dynamics: Where physics, chemistry, and biology meet
    • Shakhnovich, E. Protein folding thermodynamics and dynamics: Where physics, chemistry, and biology meet. Chem. Rev. 2006, 106, 1559–1588.
    • (2006) Chem. Rev , vol.106 , pp. 1559-1588
    • Shakhnovich, E.1
  • 17
    • 0034743155 scopus 로고    scopus 로고
    • From folding theories to folding proteins: A review and assessment of simulation studies of protein folding and unfolding
    • Shea, J.E.; Brooks, C.L. From folding theories to folding proteins: A review and assessment of simulation studies of protein folding and unfolding. Annu. Rev. Phys. Chem. 2001, 52, 499–535.
    • (2001) Annu. Rev. Phys. Chem , vol.52 , pp. 499-535
    • Shea, J.E.1    Brooks, C.L.2
  • 19
    • 84882643757 scopus 로고    scopus 로고
    • CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data
    • Huang, J.; MacKerell, A.D. CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. J. Comput. Chem. 2013, 34, 2135–2145.
    • (2013) J. Comput. Chem , vol.34 , pp. 2135-2145
    • Huang, J.1    Mackerell, A.D.2
  • 20
    • 34250318638 scopus 로고    scopus 로고
    • Refinement of the AMBER force field for nucleic acids: Improving the description of α/γ conformers
    • Pérez, A.; Marchán, I.; Svozil, D.; Sponer, J.; Cheatham, T.E.; Laughton, C.A.; Orozco, M. Refinement of the AMBER force field for nucleic acids: Improving the description of α/γ conformers. Biophys. J. 2007, 92, 3817–3829.
    • (2007) Biophys. J , vol.92 , pp. 3817-3829
    • Pérez, A.1    Marchán, I.2    Svozil, D.3    Sponer, J.4    Cheatham, T.E.5    Laughton, C.A.6    Orozco, M.7
  • 21
    • 84887064396 scopus 로고    scopus 로고
    • Refinement of the application of the GROMOS 54A7 force field to β-peptides
    • Lin, Z.; van Gunsteren, W.F. Refinement of the application of the GROMOS 54A7 force field to β-peptides. J. Comput. Chem. 2013, 34, 2796–2805.
    • (2013) J. Comput. Chem , vol.34 , pp. 2796-2805
    • Lin, Z.1    Van Gunsteren, W.F.2
  • 25
    • 0002467378 scopus 로고
    • Fast parallel algorithms for short-range molecular dynamics
    • Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19.
    • (1995) J. Comput. Phys , vol.117 , pp. 1-19
    • Plimpton, S.1
  • 27
    • 47149096704 scopus 로고    scopus 로고
    • CHARMM-GUI: A web-based graphical user interface for CHARMM
    • Jo, S.; Kim, T.; Iyer, V.G.; Im, W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem. 2008, 29, 1859–1865.
    • (2008) J. Comput. Chem , vol.29 , pp. 1859-1865
    • Jo, S.1    Kim, T.2    Iyer, V.G.3    Im, W.4
  • 28
    • 76249087938 scopus 로고    scopus 로고
    • CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields
    • Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; et al. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 2010, 31, 671–690.
    • (2010) J. Comput. Chem , vol.31 , pp. 671-690
    • Vanommeslaeghe, K.1    Hatcher, E.2    Acharya, C.3    Kundu, S.4    Zhong, S.5    Shim, J.6    Darian, E.7    Guvench, O.8    Lopes, P.9    Vorobyov, I.10
  • 31
    • 76149136021 scopus 로고    scopus 로고
    • Molecular simulation of ab initio protein folding for a millisecond folder NTL9(1–39)
    • Voelz, V.A.; Bowman, G.R.; Beauchamp, K.; Pande, V.S. Molecular simulation of ab initio protein folding for a millisecond folder NTL9(1–39). J. Am. Chem. Soc. 2010, 132, 1526–1528.
    • (2010) J. Am. Chem. Soc , vol.132 , pp. 1526-1528
    • Voelz, V.A.1    Bowman, G.R.2    Beauchamp, K.3    Pande, V.S.4
  • 32
    • 84861367246 scopus 로고    scopus 로고
    • Biomolecular simulation: A computational microscope for molecular biology
    • Dror, R.O.; Dirks, R.M.; Grossman, J.P.; Xu, H.; Shaw, D.E. Biomolecular simulation: A computational microscope for molecular biology. Annu. Rev. Biophys. 2012, 41, 429–452.
    • (2012) Annu. Rev. Biophys , vol.41 , pp. 429-452
    • Dror, R.O.1    Dirks, R.M.2    Grossman, J.P.3    Xu, H.4    Shaw, D.E.5
  • 33
    • 21244431972 scopus 로고    scopus 로고
    • Computation of electrostatic forces between solvated molecules determined by the Poisson-Boltzmann equation using a boundary element method
    • Lu, B.; Zhang, D.; McCammon, J.A. Computation of electrostatic forces between solvated molecules determined by the Poisson-Boltzmann equation using a boundary element method. J. Chem. Phys. 2005, 122, 214102.
    • (2005) J. Chem. Phys , vol.122
    • Lu, B.1    Zhang, D.2    McCammon, J.A.3
  • 34
    • 9244224092 scopus 로고    scopus 로고
    • An efficient hybrid explicit/implicit solvent method for biomolecular simulations
    • Lee, M.S.; Salsbury, F.R.; Olson, M.A. An efficient hybrid explicit/implicit solvent method for biomolecular simulations. J. Comput. Chem. 2004, 25, 1967–1978.
    • (2004) J. Comput. Chem , vol.25 , pp. 1967-1978
    • Lee, M.S.1    Salsbury, F.R.2    Olson, M.A.3
  • 35
    • 0037110472 scopus 로고    scopus 로고
    • Effective Born radii in the generalized Born approximation: The importance of being perfect
    • Onufriev, A.; Case, D.A.; Bashford, D. Effective Born radii in the generalized Born approximation: The importance of being perfect. J. Comput. Chem. 2002, 23, 1297–1304.
    • (2002) J. Comput. Chem , vol.23 , pp. 1297-1304
    • Onufriev, A.1    Case, D.A.2    Bashford, D.3
  • 36
    • 0032968133 scopus 로고    scopus 로고
    • Implicit solvent models
    • Roux, B.; Simonson, T. Implicit solvent models. Biophys. Chem. 1999, 78, 1–20.
    • (1999) Biophys. Chem , vol.78 , pp. 1-20
    • Roux, B.1    Simonson, T.2
  • 37
    • 0001616080 scopus 로고    scopus 로고
    • Replica-exchange molecular dynamics method for protein folding
    • Sugita, Y.; Okamoto, Y. Replica-exchange molecular dynamics method for protein folding. Chem. Phys. Lett. 1999, 314, 141–151.
    • (1999) Chem. Phys. Lett , vol.314 , pp. 141-151
    • Sugita, Y.1    Okamoto, Y.2
  • 39
    • 0342929614 scopus 로고
    • Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling
    • Torrie, G.M.; Valleau, J.P. Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. J. Comput. Phys. 1977, 23, 187–199.
    • (1977) J. Comput. Phys , vol.23 , pp. 187-199
    • Torrie, G.M.1    Valleau, J.P.2
  • 40
    • 3142716857 scopus 로고    scopus 로고
    • Accelerated molecular dynamics: A promising and efficient simulation method for biomolecules
    • Hamelberg, D.; Mongan, J.; McCammon, J.A. Accelerated molecular dynamics: A promising and efficient simulation method for biomolecules. J. Chem. Phys. 2004, 120, 11919–11929.
    • (2004) J. Chem. Phys , vol.120 , pp. 11919-11929
    • Hamelberg, D.1    Mongan, J.2    McCammon, J.A.3
  • 44
    • 84860767348 scopus 로고    scopus 로고
    • Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized born
    • Götz, A.W.; Williamson, M.J.; Xu, D.; Poole, D.; Le Grand, S.; Walker, R.C. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized born. J. Chem. Theory Comput. 2012, 8, 1542–1555.
    • (2012) J. Chem. Theory Comput , vol.8 , pp. 1542-1555
    • Götz, A.W.1    Williamson, M.J.2    Xu, D.3    Poole, D.4    Le Grand, S.5    Walker, R.C.6
  • 45
    • 84856215641 scopus 로고    scopus 로고
    • Architecture Implementation and parallelisation of the GROMOS software for biomolecular simulation
    • Schmid, N.; Christ, C.D.; Christen, M.; Eichenberger, A.P.; van Gunsteren, W.F. Architecture, implementation and parallelisation of the GROMOS software for biomolecular simulation. Comput. Phys. Commun. 2012, 183, 890–903.
    • (2012) Comput. Phys. Commun , vol.183 , pp. 890-903
    • Schmid, N.1    Christ, C.D.2    Christen, M.3    Eichenberger, A.P.4    Van Gunsteren, W.F.5
  • 46
    • 85017891343 scopus 로고    scopus 로고
    • The development and expansion of HOOMD-blue through six years of GPU proliferation
    • Anderson, J.A.; Glotzer, S.C. The development and expansion of HOOMD-blue through six years of GPU proliferation. Comput. Phys. 2013, arXiv1308.5587.
    • (2013) Comput. Phys
    • Anderson, J.A.1    Glotzer, S.C.2
  • 47
    • 79251597728 scopus 로고    scopus 로고
    • Implementing molecular dynamics on hybrid high performance computers—Short range forces
    • Brown, W.M.; Wang, P.; Plimpton, S.J.; Tharrington, A.N. Implementing molecular dynamics on hybrid high performance computers—Short range forces. Comput. Phys. Commun. 2011, 182, 898–911.
    • (2011) Comput. Phys. Commun , vol.182 , pp. 898-911
    • Brown, W.M.1    Wang, P.2    Plimpton, S.J.3    Tharrington, A.N.4
  • 49
    • 77958019726 scopus 로고    scopus 로고
    • Sop-GPU: Accelerating biomolecular simulations in the centisecond timescale using graphics processors
    • Zhmurov, A.; Dima, R.I.; Kholodov, Y.; Barsegov, V. Sop-GPU: Accelerating biomolecular simulations in the centisecond timescale using graphics processors. Proteins Struct. Funct. Bioinform. 2010, 78, 2984–2999.
    • (2010) Proteins Struct. Funct. Bioinform , vol.78 , pp. 2984-2999
    • Zhmurov, A.1    Dima, R.I.2    Kholodov, Y.3    Barsegov, V.4
  • 50
    • 84978695322 scopus 로고    scopus 로고
    • Coarse-grained and atomistic MD simulations of RNA and DNA folding
    • Leuchter, J.D.; Green, A.T.; Gilyard, J.; Rambarat, C.G.; Cho, S.S. Coarse-grained and atomistic MD simulations of RNA and DNA folding. Isr. J. Chem. 2014, 54, 1152–1164.
    • (2014) Isr. J. Chem , vol.54 , pp. 1152-1164
    • Leuchter, J.D.1    Green, A.T.2    Gilyard, J.3    Rambarat, C.G.4    Cho, S.S.5
  • 51
    • 84890447773 scopus 로고    scopus 로고
    • Polarizable force field for peptides and proteins based on the classical drude oscillator
    • Lopes, P.E.M.; Huang, J.; Shim, J.; Luo, Y.; Li, H.; Roux, B.; MacKerell, A.D. Polarizable force field for peptides and proteins based on the classical drude oscillator. J. Chem. Theory Comput. 2013, 9, 5430–5449.
    • (2013) J. Chem. Theory Comput , vol.9 , pp. 5430-5449
    • Lopes, P.1    Huang, J.2    Shim, J.3    Luo, Y.4    Li, H.5    Roux, B.6    Mackerell, A.D.7
  • 52
    • 78751676012 scopus 로고    scopus 로고
    • Development of CHARMM polarizable force field for nucleic acid bases based on the classical drude oscillator model
    • Baker, C.M.; Anisimov, V.M.; MacKerell, A.D. Development of CHARMM polarizable force field for nucleic acid bases based on the classical drude oscillator model. J. Phys. Chem. B 2011, 115, 580–596.
    • (2011) J. Phys. Chem. B , vol.115 , pp. 580-596
    • Baker, C.M.1    Anisimov, V.M.2    Mackerell, A.D.3
  • 53
    • 78751688849 scopus 로고    scopus 로고
    • High-performance scalable molecular dynamics simulations of a polarizable force field based on classical drude oscillators in NAMD
    • Jiang, W.; Hardy, D.J.; Phillips, J.C.; MacKerell, A.D.; Schulten, K.; Roux, B. High-performance scalable molecular dynamics simulations of a polarizable force field based on classical drude oscillators in NAMD. J. Phys. Chem. Lett. 2011, 2, 87–92.
    • (2011) J. Phys. Chem. Lett , vol.2 , pp. 87-92
    • Jiang, W.1    Hardy, D.J.2    Phillips, J.C.3    Mackerell, A.D.4    Schulten, K.5    Roux, B.6
  • 54
    • 79951476387 scopus 로고    scopus 로고
    • PROPKA3: Consistent treatment of internal and surface residues in empirical pKa predictions
    • Olsson, M.H.M.; Søndergaard, C.R.; Rostkowski, M.; Jensen, J.H. PROPKA3: Consistent treatment of internal and surface residues in empirical pKa predictions. J. Chem. Theory Comput. 2011, 7, 525–537.
    • (2011) J. Chem. Theory Comput , vol.7 , pp. 525-537
    • Olsson, M.1    Søndergaard, C.R.2    Rostkowski, M.3    Jensen, J.H.4
  • 55
    • 4043132337 scopus 로고    scopus 로고
    • Constant-pH molecular dynamics using continuous titration coordinates
    • Lee, M.S.; Salsbury, F.R.; Brooks, C.L. Constant-pH molecular dynamics using continuous titration coordinates. Proteins Struct. Funct. Bioinform. 2004, 56, 738–752.
    • (2004) Proteins Struct. Funct. Bioinform , vol.56 , pp. 738-752
    • Lee, M.S.1    Salsbury, F.R.2    Brooks, C.L.3
  • 56
    • 84905865412 scopus 로고    scopus 로고
    • Recent development and application of constant pH molecular dynamics
    • Chen, W.; Morrow, B.H.; Shi, C.; Shen, J.K. Recent development and application of constant pH molecular dynamics. Mol. Simul. 2014, 40, 830–838.
    • (2014) Mol. Simul , vol.40 , pp. 830-838
    • Chen, W.1    Morrow, B.H.2    Shi, C.3    Shen, J.K.4
  • 57
    • 81055157084 scopus 로고    scopus 로고
    • Toward accurate prediction of pKa values for internal protein residues: The importance of conformational relaxation and desolvation energy
    • Wallace, J.A.; Wang, Y.; Shi, C.; Pastoor, K.J.; Nguyen, B.-L.; Xia, K.; Shen, J.K. Toward accurate prediction of pKa values for internal protein residues: The importance of conformational relaxation and desolvation energy. Proteins Struct. Funct. Bioinform. 2011, 79, 3364–3373.
    • (2011) Proteins Struct. Funct. Bioinform , vol.79 , pp. 3364-3373
    • Wallace, J.A.1    Wang, Y.2    Shi, C.3    Pastoor, K.J.4    Nguyen, B.-L.5    Xia, K.6    Shen, J.K.7
  • 58
    • 84902127084 scopus 로고    scopus 로고
    • Constant pH molecular dynamics of proteins in explicit solvent with proton tautomerism
    • Goh, G.B.; Hulbert, B.S.; Zhou, H.; Brooks, C.L. Constant pH molecular dynamics of proteins in explicit solvent with proton tautomerism. Proteins Struct. Funct. Bioinform. 2014, 82, 1319–1331.
    • (2014) Proteins Struct. Funct. Bioinform , vol.82 , pp. 1319-1331
    • Goh, G.B.1    Hulbert, B.S.2    Zhou, H.3    Brooks, C.L.4
  • 59
    • 0001861319 scopus 로고
    • Mossbauer spectroscopy in biological systems
    • Debrunner, P., Tsibris, J.C.M., Munck, E., Eds.; University of Illinois Press: Urbana, IL, USA
    • Levinthal, C. Mossbauer spectroscopy in biological systems. In Proceedings of a meeting held at Allerton House; Debrunner, P., Tsibris, J.C.M., Munck, E., Eds.; University of Illinois Press: Urbana, IL, USA, 1969.
    • (1969) Proceedings of a Meeting Held at Allerton House
    • Levinthal, C.1
  • 60
    • 0037062949 scopus 로고    scopus 로고
    • The chemical repertoire of natural ribozymes
    • Doudna, J.A.; Cech, T.R. The chemical repertoire of natural ribozymes. Nature 2002, 418, 222–228.
    • (2002) Nature , vol.418 , pp. 222-228
    • Doudna, J.A.1    Cech, T.R.2
  • 61
    • 33846169089 scopus 로고    scopus 로고
    • Eukaryotic regulatory RNAs: An answer to the “genome complexity” conundrum
    • Prasanth, K.V.; Spector, D.L. Eukaryotic regulatory RNAs: An answer to the “genome complexity” conundrum. Genes Dev. 2007, 21, 11–42.
    • (2007) Genes Dev , vol.21 , pp. 11-42
    • Prasanth, K.V.1    Spector, D.L.2
  • 62
    • 0037123632 scopus 로고    scopus 로고
    • An expanding universe of noncoding RNAs
    • Storz, G. An expanding universe of noncoding RNAs. Science 2002, 296, 1260–1263.
    • (2002) Science , vol.296 , pp. 1260-1263
    • Storz, G.1
  • 63
    • 81355142141 scopus 로고    scopus 로고
    • Non-coding RNAs in human disease
    • Esteller, M. Non-coding RNAs in human disease. Nat. Rev. Genet. 2011, 12, 861–874.
    • (2011) Nat. Rev. Genet , vol.12 , pp. 861-874
    • Esteller, M.1
  • 64
    • 70350462752 scopus 로고    scopus 로고
    • Assembly mechanisms of RNA pseudoknots are determined by the stabilities of constituent secondary structures
    • Cho, S.S.; Pincus, D.L.; Thirumalai, D. Assembly mechanisms of RNA pseudoknots are determined by the stabilities of constituent secondary structures. Proc. Natl. Acad. Sci. USA 2009, 106, 17349–17354.
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 17349-17354
    • Cho, S.S.1    Pincus, D.L.2    Thirumalai, D.3
  • 65
    • 84886695318 scopus 로고    scopus 로고
    • Sequence-dependent base-stacking stabilities guide tRNA folding energy landscapes
    • Li, R.; Ge, H.W.; Cho, S.S. Sequence-dependent base-stacking stabilities guide tRNA folding energy landscapes. J. Phys. Chem. B 2013, 117, 12943–12952.
    • (2013) J. Phys. Chem. B , vol.117 , pp. 12943-12952
    • Li, R.1    Ge, H.W.2    Cho, S.S.3
  • 67
    • 63449129633 scopus 로고    scopus 로고
    • Insights from coarse-grained Gō models for protein folding and dynamics
    • Hills, R.D.; Brooks, C.L. Insights from coarse-grained Gō models for protein folding and dynamics. Int. J. Mol. Sci. 2009, 10, 889–905.
    • (2009) Int. J. Mol. Sci , vol.10 , pp. 889-905
    • Hills, R.D.1    Brooks, C.L.2
  • 68
    • 0034685604 scopus 로고    scopus 로고
    • Topological and energetic factors: What determines the structural details of the transition state ensemble and “en-route” intermediates for protein folding? An investigation for small globular proteins
    • Clementi, C.; Nymeyer, H.; Onuchic, J.N. Topological and energetic factors: What determines the structural details of the transition state ensemble and “en-route” intermediates for protein folding? An investigation for small globular proteins. J. Mol. Biol. 2000, 298, 937–953.
    • (2000) J. Mol. Biol , vol.298 , pp. 937-953
    • Clementi, C.1    Nymeyer, H.2    Onuchic, J.N.3
  • 69
    • 3142782241 scopus 로고    scopus 로고
    • Quantifying the roughness on the free energy landscape: Entropic bottlenecks and protein folding rates
    • Chavez, L.L.; Onuchic, J.N.; Clementi, C. Quantifying the roughness on the free energy landscape: Entropic bottlenecks and protein folding rates. J. Am. Chem. Soc. 2004, 126, 8426–8432.
    • (2004) J. Am. Chem. Soc , vol.126 , pp. 8426-8432
    • Chavez, L.L.1    Onuchic, J.N.2    Clementi, C.3
  • 70
    • 13444301037 scopus 로고    scopus 로고
    • A survey of flexible protein binding mechanisms and their transition states using native topology based energy landscapes
    • Levy, Y.; Cho, S.S.; Onuchic, J.N.; Wolynes, P.G. A survey of flexible protein binding mechanisms and their transition states using native topology based energy landscapes. J. Mol. Biol. 2005, 346, 1121–1145.
    • (2005) J. Mol. Biol , vol.346 , pp. 1121-1145
    • Levy, Y.1    Cho, S.S.2    Onuchic, J.N.3    Wolynes, P.G.4
  • 71
  • 72
    • 83755161838 scopus 로고    scopus 로고
    • Folding of human telomerase RNA pseudoknot using ion-jump and temperature-quench simulations
    • Biyun, S.; Cho, S.S.; Thirumalai, D. Folding of human telomerase RNA pseudoknot using ion-jump and temperature-quench simulations. J. Am. Chem. Soc. 2011, 133, 20634–20643.
    • (2011) J. Am. Chem. Soc , vol.133 , pp. 20634-20643
    • Biyun, S.1    Cho, S.S.2    Thirumalai, D.3
  • 73
    • 84870535726 scopus 로고    scopus 로고
    • Folding path of P5abc RNA involves direct coupling of secondary and tertiary structures
    • Koculi, E.; Cho, S.S.; Desai, R.; Thirumalai, D.; Woodson, S.A. Folding path of P5abc RNA involves direct coupling of secondary and tertiary structures. Nucleic Acids Res. 2012, 40, 8011–8020.
    • (2012) Nucleic Acids Res , vol.40 , pp. 8011-8020
    • Koculi, E.1    Cho, S.S.2    Desai, R.3    Thirumalai, D.4    Woodson, S.A.5
  • 74
    • 83055179382 scopus 로고    scopus 로고
    • Fast folding of RNA pseudoknots initiated by laser temperature-jump
    • Narayanan, R.; Velmurugu, Y.; Kuznetsov, S.V.; Ansari, A. Fast folding of RNA pseudoknots initiated by laser temperature-jump. J. Am. Chem. Soc. 2011, 133, 18767–18774.
    • (2011) J. Am. Chem. Soc , vol.133 , pp. 18767-18774
    • Narayanan, R.1    Velmurugu, Y.2    Kuznetsov, S.V.3    Ansari, A.4
  • 75
    • 0035818481 scopus 로고    scopus 로고
    • Constructing, verifying, and dissecting the folding transition state of chymotrypsin inhibitor 2 with all-atom simulations
    • Li, L.; Shakhnovich, E.I. Constructing, verifying, and dissecting the folding transition state of chymotrypsin inhibitor 2 with all-atom simulations. Proc. Natl. Acad. Sci. USA 2001, 98, 13014–13018.
    • (2001) Proc. Natl. Acad. Sci. USA , vol.98 , pp. 13014-13018
    • Li, L.1    Shakhnovich, E.I.2
  • 77
    • 0036785556 scopus 로고    scopus 로고
    • The origins of asymmetry in the folding transition states of protein L and protein G
    • Karanicolas, J.; Brooks, C.L. The origins of asymmetry in the folding transition states of protein L and protein G. Protein Sci. 2002, 11, 2351–2361.
    • (2002) Protein Sci , vol.11 , pp. 2351-2361
    • Karanicolas, J.1    Brooks, C.L.2
  • 78
    • 58849083668 scopus 로고    scopus 로고
    • Quantitative criteria for native energetic heterogeneity influences in the prediction of protein folding kinetics
    • Cho, S.S.; Levy, Y.; Wolynes, P.G. Quantitative criteria for native energetic heterogeneity influences in the prediction of protein folding kinetics. Proc. Natl. Acad. Sci. USA 2009, 106, 434–439.
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 434-439
    • Cho, S.S.1    Levy, Y.2    Wolynes, P.G.3
  • 79
    • 0037154268 scopus 로고    scopus 로고
    • Protein folding mediated by solvation: Water expulsion and formation of the hydrophobic core occur after the structural collapse
    • Cheung, M.S.; García, A.E.; Onuchic, J.N. Protein folding mediated by solvation: Water expulsion and formation of the hydrophobic core occur after the structural collapse. Proc. Natl. Acad. Sci. USA 2002, 99, 685–690.
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , pp. 685-690
    • Cheung, M.S.1    García, A.E.2    Onuchic, J.N.3
  • 80
    • 84896300726 scopus 로고    scopus 로고
    • Coarse grained models reveal essential contributions of topological constraints to the conformational free energy of RNA bulges
    • Mustoe, A.M.; Al-Hashimi, H.M.; Brooks, C.L. Coarse grained models reveal essential contributions of topological constraints to the conformational free energy of RNA bulges. J. Phys. Chem. B 2014, 118, 2615–2627.
    • (2014) J. Phys. Chem. B , vol.118 , pp. 2615-2627
    • Mustoe, A.M.1    Al-Hashimi, H.M.2    Brooks, C.L.3
  • 81
    • 0016169138 scopus 로고
    • The molecular mechanism of thermal unfolding of Escherichia coli formylmethionine transfer RNA
    • Crothers, D.M.; Cole, P.E.; Hilbers, C.W.; Shulman, R.G. The molecular mechanism of thermal unfolding of Escherichia coli formylmethionine transfer RNA. J. Mol. Biol. 1974, 87, 63–88.
    • (1974) J. Mol. Biol , vol.87 , pp. 63-88
    • Crothers, D.M.1    Cole, P.E.2    Hilbers, C.W.3    Shulman, R.G.4
  • 82
    • 0032578472 scopus 로고    scopus 로고
    • Folding causes secondary structure rearrangement
    • Wu, M.; Tinoco, I. RNA folding causes secondary structure rearrangement. Proc. Natl. Acad. Sci. USA 1998, 95, 11555–11560.
    • (1998) Proc. Natl. Acad. Sci. USA , vol.95 , pp. 11555-11560
    • Wu, M.1    Tinoco, I.2
  • 83
    • 0034940798 scopus 로고    scopus 로고
    • Intramolecular secondary structure rearrangement by the kissing interaction of the Neurospora VS ribozyme
    • Andersen, A.A.; Collins, R.A. Intramolecular secondary structure rearrangement by the kissing interaction of the Neurospora VS ribozyme. Proc. Natl. Acad. Sci. USA 2001, 98, 7730–7735.
    • (2001) Proc. Natl. Acad. Sci. USA , vol.98 , pp. 7730-7735
    • Andersen, A.A.1    Collins, R.A.2
  • 84
    • 73249135897 scopus 로고    scopus 로고
    • Do conformational biases of simple helical junctions influence RNA folding stability and specificity?
    • Chu, V.B.; Lipfert, J.; Bai, Y.; Pande, V.S.; Doniach, S.; Herschlag, D. Do conformational biases of simple helical junctions influence RNA folding stability and specificity? RNA 2009, 15, 2195–2205.
    • (2009) RNA , vol.15 , pp. 2195-2205
    • Chu, V.B.1    Lipfert, J.2    Bai, Y.3    Pande, V.S.4    Doniach, S.5    Herschlag, D.6
  • 85
    • 74249115345 scopus 로고    scopus 로고
    • Topology links RNA secondary structure with global conformation, dynamics, and adaptation
    • Bailor, M.H.; Sun, X.; Al-Hashimi, H.M. Topology links RNA secondary structure with global conformation, dynamics, and adaptation. Science 2010, 327, 202–206.
    • (2010) Science , vol.327 , pp. 202-206
    • Bailor, M.H.1    Sun, X.2    Al-Hashimi, H.M.3
  • 87
    • 0032054952 scopus 로고    scopus 로고
    • Simulations of the molecular dynamics of nucleic acids
    • Auffinger, P.; Westhof, E. Simulations of the molecular dynamics of nucleic acids. Curr. Opin. Struct. Biol. 1998, 8, 227–236.
    • (1998) Curr. Opin. Struct. Biol , vol.8 , pp. 227-236
    • Auffinger, P.1    Westhof, E.2
  • 88
    • 84907859179 scopus 로고    scopus 로고
    • Triplex intermediates in folding of human telomeric quadruplexes probed by microsecond-scale molecular dynamics simulations
    • Stadlbauer, P.; Trantírek, L.; Cheathami, T.E.; Koča, J.; Šponer, J. Triplex intermediates in folding of human telomeric quadruplexes probed by microsecond-scale molecular dynamics simulations. Biochimie 2014, 105, 22–35.
    • (2014) Biochimie , vol.105 , pp. 22-35
    • Stadlbauer, P.1    Trantírek, L.2    Cheathami, T.E.3    Koča, J.4    Šponer, J.5
  • 89
    • 0031566427 scopus 로고    scopus 로고
    • RNA hydration: Three nanoseconds of multiple molecular dynamics simulations of the solvated tRNAAsp anticodon hairpin 1
    • Auffinger, P.; Westhof, E. RNA hydration: Three nanoseconds of multiple molecular dynamics simulations of the solvated tRNAAsp anticodon hairpin 1. J. Mol. Biol. 1997, 269, 326–341.
    • (1997) J. Mol. Biol , vol.269 , pp. 326-341
    • Auffinger, P.1    Westhof, E.2
  • 91
    • 0015497450 scopus 로고
    • Conformational changes of transfer ribonucleic acid. Equilibrium phase diagrams
    • Cole, P.E.; Yang, S.K.; Crothers, D.M. Conformational changes of transfer ribonucleic acid. Equilibrium phase diagrams. Biochemistry (Mosc.) 1972, 11, 4358–4368.
    • (1972) Biochemistry (Mosc.) , vol.11 , pp. 4358-4368
    • Cole, P.E.1    Yang, S.K.2    Crothers, D.M.3
  • 92
    • 0015497437 scopus 로고
    • Conformational changes of transfer ribonucleic acid. Comparison of the early melting transition of two tyrosine-specific transfer ribonucleic acids
    • Yang, S.K.; Crothers, D.M. Conformational changes of transfer ribonucleic acid. Comparison of the early melting transition of two tyrosine-specific transfer ribonucleic acids. Biochemistry (Mosc.) 1972, 11, 4375–4381.
    • (1972) Biochemistry (Mosc.) , vol.11 , pp. 4375-4381
    • Yang, S.K.1    Crothers, D.M.2
  • 95
    • 0035957280 scopus 로고    scopus 로고
    • Altering the intermediate in the equilibrium folding of unmodified yeast tRNAPhe with monovalent and divalent cations
    • Shelton, V.M.; Sosnick, T.R.; Pan, T. Altering the intermediate in the equilibrium folding of unmodified yeast tRNAPhe with monovalent and divalent cations. Biochemistry (Mosc.) 2001, 40, 3629–3638.
    • (2001) Biochemistry (Mosc.) , vol.40 , pp. 3629-3638
    • Shelton, V.M.1    Sosnick, T.R.2    Pan, T.3
  • 97
    • 84857420811 scopus 로고    scopus 로고
    • Kinetics of tRNA folding monitored by aminoacylation
    • Bhaskaran, H.; Rodriguez-Hernandez, A.; Perona, J.J. Kinetics of tRNA folding monitored by aminoacylation. RNA 2012, 18, 569–580.
    • (2012) RNA , vol.18 , pp. 569-580
    • Bhaskaran, H.1    Rodriguez-Hernandez, A.2    Perona, J.J.3
  • 98
    • 0036848383 scopus 로고    scopus 로고
    • Highly conserved modified nucleosides influence Mg2+-dependent tRNA folding
    • Nobles, K.N.; Yarian, C.S.; Liu, G.; Guenther, R.H.; Agris, P.F. Highly conserved modified nucleosides influence Mg2+-dependent tRNA folding. Nucleic Acids Res. 2002, 30, 4751–4760.
    • (2002) Nucleic Acids Res , vol.30 , pp. 4751-4760
    • Nobles, K.N.1    Yarian, C.S.2    Liu, G.3    Guenther, R.H.4    Agris, P.F.5
  • 101
    • 44149101971 scopus 로고    scopus 로고
    • Folding by discrete molecular dynamics: From structure prediction to folding mechanisms
    • Ding, F.; Sharma, S.; Chalasani, P.; Demidov, V.V.; Broude, N.E.; Dokholyan, N.V. Ab initio RNA folding by discrete molecular dynamics: From structure prediction to folding mechanisms. RNA 2008, 14, 1164–1173.
    • (2008) RNA , vol.14 , pp. 1164-1173
    • Ding, F.1    Sharma, S.2    Chalasani, P.3    Demidov, V.V.4    Broude, N.E.5    Dokholyan, N.V.6    Ab Initio, R.7
  • 102
    • 33645030244 scopus 로고    scopus 로고
    • Topological frustration and the folding of interleukin-1β
    • Gosavi, S.; Chavez, L.L.; Jennings, P.A.; Onuchic, J.N. Topological frustration and the folding of interleukin-1β. J. Mol. Biol. 2006, 357, 986–996.
    • (2006) J. Mol. Biol , vol.357 , pp. 986-996
    • Gosavi, S.1    Chavez, L.L.2    Jennings, P.A.3    Onuchic, J.N.4
  • 104
    • 58149173184 scopus 로고    scopus 로고
    • Coevolution of function and the folding landscape: Correlation with density of native contacts
    • Hills, R.D; Brooks, C.L. Coevolution of function and the folding landscape: Correlation with density of native contacts. Biophys. J. 2008, 95, L57–L59.
    • (2008) Biophys. J , vol.95 , pp. L57-L59
    • Hills, R.D.1    Brooks, C.L.2
  • 106
    • 84922381803 scopus 로고    scopus 로고
    • Topological constraints are major determinants of tRNA tertiary structure and dynamics and provide basis for tertiary folding cooperativity
    • Mustoe, A.M.; Brooks, C.L.; Al-Hashimi, H.M. Topological constraints are major determinants of tRNA tertiary structure and dynamics and provide basis for tertiary folding cooperativity. Nucleic Acids Res. 2014, 42, 11792–11804.
    • (2014) Nucleic Acids Res , vol.42 , pp. 11792-11804
    • Mustoe, A.M.1    Brooks, C.L.2    Al-Hashimi, H.M.3
  • 107
    • 84925240261 scopus 로고    scopus 로고
    • Noncanonical secondary structure stabilizes mitochondrial tRNASer (UCN) by reducing the entropic cost of tertiary folding
    • Mustoe, A.M.; Liu, X.; Lin, P.J.; Al-Hashimi, H.M.; Fierke, C.A.; Brooks, C.L. Noncanonical secondary structure stabilizes mitochondrial tRNASer (UCN) by reducing the entropic cost of tertiary folding. J. Am. Chem. Soc. 2015, 137, 3592–3599.
    • (2015) J. Am. Chem. Soc , vol.137 , pp. 3592-3599
    • Mustoe, A.M.1    Liu, X.2    Lin, P.J.3    Al-Hashimi, H.M.4    Fierke, C.A.5    Brooks, C.L.6
  • 108
    • 0028354926 scopus 로고
    • Molecular recognition in proteins: Simulation analysis of substrate binding by a tyrosyl-tRNA synthetase mutant
    • Lau, F.T.K.; Karplus, M. Molecular recognition in proteins: Simulation analysis of substrate binding by a tyrosyl-tRNA synthetase mutant. J. Mol. Biol. 1994, 236, 1049–1066.
    • (1994) J. Mol. Biol , vol.236 , pp. 1049-1066
    • Lau, F.1    Karplus, M.2
  • 109
    • 80054804699 scopus 로고    scopus 로고
    • Allosteric communication in cysteinyl tRNA synthetase: A network of direct and indirect readout
    • Ghosh, A.; Sakaguchi, R.; Liu, C.; Vishveshwara, S.; Hou, Y.-M. Allosteric communication in cysteinyl tRNA synthetase: A network of direct and indirect readout. J. Biol. Chem. 2011, 286, 37721–37731.
    • (2011) J. Biol. Chem , vol.286 , pp. 37721-37731
    • Ghosh, A.1    Sakaguchi, R.2    Liu, C.3    Vishveshwara, S.4    Hou, Y.-M.5
  • 111
    • 33846014641 scopus 로고    scopus 로고
    • Mechanism of the difference in the binding affinity of E. Coli tRNAGln to glutaminyl-tRNA synthetase caused by noninterface nucleotides in variable loop
    • Yamasaki, S.; Nakamura, S.; Terada, T.; Shimizu, K. Mechanism of the difference in the binding affinity of E. coli tRNAGln to glutaminyl-tRNA synthetase caused by noninterface nucleotides in variable loop. Biophys. J. 2007, 92, 192–200.
    • (2007) Biophys. J , vol.92 , pp. 192-200
    • Yamasaki, S.1    Nakamura, S.2    Terada, T.3    Shimizu, K.4
  • 115
    • 84901522655 scopus 로고    scopus 로고
    • Probing the global and local dynamics of aminoacyl-tRNA synthetases using all-atom and coarse-grained simulations
    • Strom, A.M.; Fehling, S.C.; Bhattacharyya, S.; Hati, S. Probing the global and local dynamics of aminoacyl-tRNA synthetases using all-atom and coarse-grained simulations. J. Mol. Model. 2014, 20, 1–11.
    • (2014) J. Mol. Model , vol.20 , pp. 1-11
    • Strom, A.M.1    Fehling, S.C.2    Bhattacharyya, S.3    Hati, S.4
  • 116
    • 67349280328 scopus 로고    scopus 로고
    • Identification of the nucleophilic factors and the productive complex for the editing reaction by leucyl-tRNA synthetase
    • Hagiwara, Y.; Nureki, O.; Tateno, M. Identification of the nucleophilic factors and the productive complex for the editing reaction by leucyl-tRNA synthetase. FEBS Lett. 2009, 583, 1901–1908.
    • (2009) FEBS Lett , vol.583 , pp. 1901-1908
    • Hagiwara, Y.1    Nureki, O.2    Tateno, M.3
  • 117
    • 35648944297 scopus 로고    scopus 로고
    • A study of communication pathways in methionyl-tRNA synthetase by molecular dynamics simulations and structure network analysis
    • Ghosh, A.; Vishveshwara, S. A study of communication pathways in methionyl-tRNA synthetase by molecular dynamics simulations and structure network analysis. Proc. Natl. Acad. Sci. USA 2007, 104, 15711–15716.
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 15711-15716
    • Ghosh, A.1    Vishveshwara, S.2
  • 119
    • 0025216893 scopus 로고
    • Identification of the tRNA anticodon recognition site of Escherichia coli methionyl-tRNA synthetase
    • Ghosh, G.; Pelka, H.; Schulman, L.H. Identification of the tRNA anticodon recognition site of Escherichia coli methionyl-tRNA synthetase. Biochemistry (Mosc.) 1990, 29, 2220–2225.
    • (1990) Biochemistry (Mosc.) , vol.29 , pp. 2220-2225
    • Ghosh, G.1    Pelka, H.2    Schulman, L.H.3
  • 120
    • 77949907106 scopus 로고    scopus 로고
    • Allostery and conformational free energy changes in human tryptophanyl-tRNA synthetase from essential dynamics and structure networks
    • Bhattacharyya, M.; Ghosh, A.; Hansia, P.; Vishveshwara, S. Allostery and conformational free energy changes in human tryptophanyl-tRNA synthetase from essential dynamics and structure networks. Proteins Struct. Funct. Bioinform. 2010, 78, 506–517.
    • (2010) Proteins Struct. Funct. Bioinform , vol.78 , pp. 506-517
    • Bhattacharyya, M.1    Ghosh, A.2    Hansia, P.3    Vishveshwara, S.4
  • 121
    • 33748454627 scopus 로고    scopus 로고
    • Computational studies of tryptophanyl-tRNA synthetase: Activation of ATP by induced-fit
    • Kapustina, M.; Carter, C.W., Computational studies of tryptophanyl-tRNA synthetase: Activation of ATP by induced-fit. J. Mol. Biol. 2006, 362, 1159–1180.
    • (2006) J. Mol. Biol , vol.362 , pp. 1159-1180
    • Kapustina, M.1    Carter, C.W.2
  • 122
    • 55349114344 scopus 로고    scopus 로고
    • Comparative structural dynamics of Tyrosyl-tRNA synthetase complexed with different substrates explored by molecular dynamics
    • Li, T.; Froeyen, M.; Herdewijn, P. Comparative structural dynamics of Tyrosyl-tRNA synthetase complexed with different substrates explored by molecular dynamics. Eur. Biophys. J. 2008, 38, 25–35.
    • (2008) Eur. Biophys. J , vol.38 , pp. 25-35
    • Li, T.1    Froeyen, M.2    Herdewijn, P.3
  • 123
    • 84922613312 scopus 로고    scopus 로고
    • Structural states of the flexible catalytic loop of M. Tuberculosis tyrosyl-tRNA synthetase in different enzyme-substrate complexes
    • Mykuliak, V.V.; Dragan, A.I.; Kornelyuk, A.I. Structural states of the flexible catalytic loop of M. tuberculosis tyrosyl-tRNA synthetase in different enzyme-substrate complexes. Eur. Biophys. J. EBJ 2014, 43, 613–622.
    • (2014) Eur. Biophys. J. EBJ , vol.43 , pp. 613-622
    • Mykuliak, V.V.1    Dragan, A.I.2    Kornelyuk, A.I.3
  • 124
    • 84872724998 scopus 로고    scopus 로고
    • Asymmetric structure and domain binding interfaces of human tyrosyl-tRNA synthetase studied by molecular dynamics simulations
    • Savytskyi, O.V.; Yesylevskyy, S.O.; Kornelyuk, A.I. Asymmetric structure and domain binding interfaces of human tyrosyl-tRNA synthetase studied by molecular dynamics simulations. J. Mol. Recognit. 2013, 26, 113–120.
    • (2013) J. Mol. Recognit , vol.26 , pp. 113-120
    • Savytskyi, O.V.1    Yesylevskyy, S.O.2    Kornelyuk, A.I.3
  • 125
    • 79954446890 scopus 로고    scopus 로고
    • Molecular trigger for pre-transfer editing pathway in Valyl-tRNA synthetase: A molecular dynamics simulation study
    • Li, L.; Yu, L.; Huang, Q. Molecular trigger for pre-transfer editing pathway in Valyl-tRNA synthetase: A molecular dynamics simulation study. J. Mol. Model. 2010, 17, 555–564.
    • (2010) J. Mol. Model , vol.17 , pp. 555-564
    • Li, L.1    Yu, L.2    Huang, Q.3
  • 126
    • 67349129203 scopus 로고    scopus 로고
    • Molecular dynamics simulation study of valyl-tRNA synthetase with its pre- and post-transfer editing substratesBiophys
    • Bharatham, N.; Bharatham, K.; Lee, Y.; Woo Lee, K. Molecular dynamics simulation study of valyl-tRNA synthetase with its pre- and post-transfer editing substrates. Biophys. Chem. 2009, 143, 34–43.
    • (2009) Chem , vol.143 , pp. 34-43
    • Bharatham, N.1    Bharatham, K.2    Lee, Y.3    Woo Lee, K.4
  • 127
    • 32344451863 scopus 로고    scopus 로고
    • Free-Energy simulations and experiments reveal long-range electrostatic interactions and substrate-assisted specificity in an aminoacyl-tRNA synthetase
    • Thompson, D.; Plateau, P.; Simonson, T. Free-Energy simulations and experiments reveal long-range electrostatic interactions and substrate-assisted specificity in an aminoacyl-tRNA synthetase. ChemBioChem 2006, 7, 337–344.
    • (2006) Chembiochem , vol.7 , pp. 337-344
    • Thompson, D.1    Plateau, P.2    Simonson, T.3
  • 128
    • 33747671419 scopus 로고    scopus 로고
    • Molecular dynamics simulations show that bound Mg2+ contributes to amino acid and aminoacyl adenylate binding specificity in aspartyl-tRNA synthetase through long range electrostatic interactions
    • Thompson, D.; Simonson, T. Molecular dynamics simulations show that bound Mg2+ contributes to amino acid and aminoacyl adenylate binding specificity in aspartyl-tRNA synthetase through long range electrostatic interactions. J. Biol. Chem. 2006, 281, 23792–23803.
    • (2006) J. Biol. Chem , vol.281 , pp. 23792-23803
    • Thompson, D.1    Simonson, T.2
  • 129
    • 71849095147 scopus 로고    scopus 로고
    • Template-based structure prediction and molecular dynamics simulation study of two mammalian aspartyl-tRNA synthetases
    • Ul-Haq, Z.; Khan, W.; Zarina, S.; Sattar, R.; Moin, S.T. Template-based structure prediction and molecular dynamics simulation study of two mammalian aspartyl-tRNA synthetases. J. Mol. Graph. Model. 2010, 28, 401–412.
    • (2010) J. Mol. Graph. Model , vol.28 , pp. 401-412
    • Ul-Haq, Z.1    Khan, W.2    Zarina, S.3    Sattar, R.4    Moin, S.T.5
  • 130
    • 0035895423 scopus 로고    scopus 로고
    • Binding free energies and free energy components from molecular dynamics and Poisson-Boltzmann calculations. Application to amino acid recognition by aspartyl-tRNA synthetase 1
    • Archontis, G.; Simonson, T.; Karplus, M. Binding free energies and free energy components from molecular dynamics and Poisson-Boltzmann calculations. Application to amino acid recognition by aspartyl-tRNA synthetase 1. J. Mol. Biol. 2001, 306, 307–327.
    • (2001) J. Mol. Biol , vol.306 , pp. 307-327
    • Archontis, G.1    Simonson, T.2    Karplus, M.3
  • 131
  • 132
    • 0032528684 scopus 로고    scopus 로고
    • Engineering an Mg2+ site to replace a structurally conserved arginine in the catalytic center of histidyl-tRNA synthetase by computer experiments
    • Arnez, J.G.; Flanagan, K.; Moras, D.; Simonson, T. Engineering an Mg2+ site to replace a structurally conserved arginine in the catalytic center of histidyl-tRNA synthetase by computer experiments. Proteins Struct. Funct. Bioinform. 1998, 32, 362–380.
    • (1998) Proteins Struct. Funct. Bioinform , vol.32 , pp. 362-380
    • Arnez, J.G.1    Flanagan, K.2    Moras, D.3    Simonson, T.4
  • 133
    • 3042572904 scopus 로고    scopus 로고
    • Functional asymmetry in the lysyl-tRNA synthetase explored by molecular dynamics, free energy calculations and experiment
    • Hughes, S.J.; Tanner, J.A.; Hindley, A.D.; Miller, A.D.; Gould, I.R. Functional asymmetry in the lysyl-tRNA synthetase explored by molecular dynamics, free energy calculations and experiment. BMC Struct. Biol. 2003, 3, doi:10.1186/1472-6807-3-5.
    • (2003) BMC Struct. Biol , pp. 3
    • Hughes, S.J.1    Tanner, J.A.2    Hindley, A.D.3    Miller, A.D.4    Gould, I.R.5
  • 136
    • 84937225656 scopus 로고    scopus 로고
    • Dynamics of the active sites of dimeric seryl tRNA synthetase from methanopyrus kandleri
    • Dutta, S.; Nandi, N. Dynamics of the active sites of dimeric seryl tRNA synthetase from methanopyrus kandleri. J. Phys. Chem. B 2015, in press.
    • (2015) J. Phys. Chem. B
    • Dutta, S.1    Nandi, N.2
  • 137
    • 84860531151 scopus 로고    scopus 로고
    • Molecular dynamics investigation into substrate binding and identity of the catalytic base in the mechanism of threonyl-tRNA synthetase
    • Bushnell, E.A.C.; Huang, W.; Llano, J.; Gauld, J.W. Molecular dynamics investigation into substrate binding and identity of the catalytic base in the mechanism of threonyl-tRNA synthetase. J. Phys. Chem. B 2012, 116, 5205–5212.
    • (2012) J. Phys. Chem. B , vol.116 , pp. 5205-5212
    • Bushnell, E.1    Huang, W.2    Llano, J.3    Gauld, J.W.4
  • 138
    • 0017121672 scopus 로고
    • The crystal structure of tyrosyl-transfer RNA synthetase at 2.7 Å resolution
    • Irwin, M.J.; Nyborg, J.; Reid, B.R.; Blow, D.M. The crystal structure of tyrosyl-transfer RNA synthetase at 2.7 Å resolution. J. Mol. Biol. 1976, 105, 577–586.
    • (1976) J. Mol. Biol , vol.105 , pp. 577-586
    • Irwin, M.J.1    Nyborg, J.2    Reid, B.R.3    Blow, D.M.4
  • 139
    • 0017599795 scopus 로고
    • Flexibility and rigidity in protein crystals
    • Blow, D.M. Flexibility and rigidity in protein crystals. Ciba Found. Symp. 1977, 55–61.
    • (1977) Ciba Found. Symp , pp. 55-61
    • Blow, D.M.1
  • 140
    • 0033784534 scopus 로고    scopus 로고
    • Induced fit in RNA–protein recognition
    • Williamson, J.R. Induced fit in RNA–protein recognition. Nat. Struct. Mol. Biol. 2000, 7, 834–837.
    • (2000) Nat. Struct. Mol. Biol , vol.7 , pp. 834-837
    • Williamson, J.R.1
  • 141
    • 0028883783 scopus 로고
    • Transition state stabilization by the “high” motif of class I aminoacyl-tRNA synthetases: The case of Escherichia coli methionyl-tRNA synthetase
    • Schmitt, E.; Panvert, M.; Blanquet, S.; Mechulam, Y. Transition state stabilization by the “high” motif of class I aminoacyl-tRNA synthetases: The case of Escherichia coli methionyl-tRNA synthetase. Nucleic Acids Res. 1995, 23, 4793–4798.
    • (1995) Nucleic Acids Res , vol.23 , pp. 4793-4798
    • Schmitt, E.1    Panvert, M.2    Blanquet, S.3    Mechulam, Y.4
  • 142
    • 27144545879 scopus 로고    scopus 로고
    • Structural basis for anticodon recognition by methionyl-tRNA synthetase
    • Nakanishi, K.; Ogiso, Y.; Nakama, T.; Fukai, S.; Nureki, O. Structural basis for anticodon recognition by methionyl-tRNA synthetase. Nat. Struct. Mol. Biol. 2005, 12, 931–932.
    • (2005) Nat. Struct. Mol. Biol , vol.12 , pp. 931-932
    • Nakanishi, K.1    Ogiso, Y.2    Nakama, T.3    Fukai, S.4    Nureki, O.5
  • 143
    • 79952619571 scopus 로고    scopus 로고
    • Interdomain compactization in human tyrosyl-tRNA synthetase studied by the hierarchical rotations technique
    • Yesylevskyy, S.O.; Savytskyi, O.V.; Odynets, K.A.; Kornelyuk, A.I. Interdomain compactization in human tyrosyl-tRNA synthetase studied by the hierarchical rotations technique. Biophys. Chem. 2011, 154, 90–98.
    • (2011) Biophys. Chem , vol.154 , pp. 90-98
    • Yesylevskyy, S.O.1    Savytskyi, O.V.2    Odynets, K.A.3    Kornelyuk, A.I.4
  • 144
    • 0033515887 scopus 로고    scopus 로고
    • Two distinct cytokines released from a human aminoacyl-tRNA synthetase
    • Wakasugi, K.; Schimmel, P. Two distinct cytokines released from a human aminoacyl-tRNA synthetase. Science 1999, 284, 147–151.
    • (1999) Science , vol.284 , pp. 147-151
    • Wakasugi, K.1    Schimmel, P.2
  • 146
    • 0024392753 scopus 로고
    • Structure of E. Coli glutaminyl-tRNA synthetase complexed with tRNAGln and ATP at 2.8 A resolution
    • Rould, M.A.; Perona, J.J.; Soll, D.; Steitz, T.A. Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNAGln and ATP at 2.8 A resolution. Science 1989, 246, 1135–1142.
    • (1989) Science , vol.246 , pp. 1135-1142
    • Rould, M.A.1    Perona, J.J.2    Soll, D.3    Steitz, T.A.4
  • 147
    • 0035119935 scopus 로고    scopus 로고
    • Structural basis for anticodon recognition by discriminating glutamyl-tRNA synthetase
    • Sekine, S.; Nureki, O.; Shimada, A.; Vassylyev, D.G.; Yokoyama, S. Structural basis for anticodon recognition by discriminating glutamyl-tRNA synthetase. Nat. Struct. Mol. Biol. 2001, 8, 203–206.
    • (2001) Nat. Struct. Mol. Biol , vol.8 , pp. 203-206
    • Sekine, S.1    Nureki, O.2    Shimada, A.3    Vassylyev, D.G.4    Yokoyama, S.5
  • 149
    • 0033782994 scopus 로고    scopus 로고
    • Aminoacyl-tRNA synthesis
    • Ibba, M.; Söll, D. Aminoacyl-tRNA synthesis. Annu. Rev. Biochem. 2000, 69, 617–650.
    • (2000) Annu. Rev. Biochem , vol.69 , pp. 617-650
    • Ibba, M.1    Söll, D.2
  • 150
    • 0034332436 scopus 로고    scopus 로고
    • TRNA aminoacylation by arginyl-tRNA synthetase: Induced conformations during substrates binding
    • Delagoutte, B.; Moras, D.; Cavarelli, J. TRNA aminoacylation by arginyl-tRNA synthetase: Induced conformations during substrates binding. EMBO J. 2000, 19, 5599–5610.
    • (2000) EMBO J , vol.19 , pp. 5599-5610
    • Delagoutte, B.1    Moras, D.2    Cavarelli, J.3
  • 151
    • 56649088287 scopus 로고    scopus 로고
    • RNA-assisted catalysis in a protein enzyme: The 2′-hydroxyl of tRNAThr A76 promotes aminoacylation by threonyl-tRNA synthetase
    • Minajigi, A.; Francklyn, C.S. RNA-assisted catalysis in a protein enzyme: The 2′-hydroxyl of tRNAThr A76 promotes aminoacylation by threonyl-tRNA synthetase. Proc. Natl. Acad. Sci. USA 2008, 105, 17748–17753.
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 17748-17753
    • Minajigi, A.1    Francklyn, C.S.2
  • 152
    • 58149142798 scopus 로고    scopus 로고
    • Substrate-assisted catalysis in the aminoacyl transfer mechanism of histidyl-tRNA synthetase: A density functional theory study
    • Liu, H.; Gauld, J.W. Substrate-assisted catalysis in the aminoacyl transfer mechanism of histidyl-tRNA synthetase: A density functional theory study. J. Phys. Chem. B 2008, 112, 16874–16882.
    • (2008) J. Phys. Chem. B , vol.112 , pp. 16874-16882
    • Liu, H.1    Gauld, J.W.2
  • 153
    • 0026039073 scopus 로고
    • Aminoacylation of tRNAs as critical step of protein biosynthesis
    • Cramer, F.; Englisch, U.; Freist, W.; Sternbach, H. Aminoacylation of tRNAs as critical step of protein biosynthesis. Biochimie 1991, 73, 1027–1035.
    • (1991) Biochimie , vol.73 , pp. 1027-1035
    • Cramer, F.1    Englisch, U.2    Freist, W.3    Sternbach, H.4
  • 154
    • 42349103482 scopus 로고    scopus 로고
    • Fidelity mechanisms of the aminoacyl-tRNA synthetases
    • Köhrer, C., RajBhandary, U.L., Eds.; Nucleic Acids and Molecular Biology; Springer: Berlin, Germany; Heidelberg, Germany
    • Mascarenhas, A.P.; An, S.; Rosen, A.E.; Martinis, S.A.; Musier-Forsyth, K. Fidelity mechanisms of the aminoacyl-tRNA synthetases. In Protein Engineering; Köhrer, C., RajBhandary, U.L., Eds.; Nucleic Acids and Molecular Biology; Springer: Berlin, Germany; Heidelberg, Germany, 2009; pp. 155–203.
    • (2009) Protein Engineering , pp. 155-203
    • Mascarenhas, A.P.1    An, S.2    Rosen, A.E.3    Martinis, S.A.4    Musier-Forsyth, K.5
  • 156
    • 0017326738 scopus 로고
    • Editing mechanisms in protein synthesis. Rejection of valine by the isoleucyl-tRNA synthetase
    • Fersht, A.R. Editing mechanisms in protein synthesis. Rejection of valine by the isoleucyl-tRNA synthetase. Biochemistry (Mosc.) 1977, 16, 1025–1030.
    • (1977) Biochemistry (Mosc.) , vol.16 , pp. 1025-1030
    • Fersht, A.R.1
  • 157
    • 71549121009 scopus 로고    scopus 로고
    • The balance between pre- and post-transfer editing in tRNA synthetases
    • Martinis, S.A.; Boniecki, M.T. The balance between pre- and post-transfer editing in tRNA synthetases. FEBS Lett. 2010, 584, 455–459.
    • (2010) FEBS Lett , vol.584 , pp. 455-459
    • Martinis, S.A.1    Boniecki, M.T.2
  • 158
    • 27144477810 scopus 로고    scopus 로고
    • The crystal structure of leucyl-tRNA synthetase complexed with tRNALeu in the post-transfer–editing conformation
    • Tukalo, M.; Yaremchuk, A.; Fukunaga, R.; Yokoyama, S.; Cusack, S. The crystal structure of leucyl-tRNA synthetase complexed with tRNALeu in the post-transfer–editing conformation. Nat. Struct. Mol. Biol. 2005, 12, 923–930.
    • (2005) Nat. Struct. Mol. Biol , vol.12 , pp. 923-930
    • Tukalo, M.1    Yaremchuk, A.2    Fukunaga, R.3    Yokoyama, S.4    Cusack, S.5
  • 159
    • 55849145559 scopus 로고    scopus 로고
    • DNA polymerases and aminoacyl-tRNA synthetases: Shared mechanisms for ensuring the fidelity of gene expression
    • Francklyn, C.S. DNA polymerases and aminoacyl-tRNA synthetases: Shared mechanisms for ensuring the fidelity of gene expression. Biochemistry (Mosc.) 2008, 47, 11695–11703.
    • (2008) Biochemistry (Mosc.) , vol.47 , pp. 11695-11703
    • Francklyn, C.S.1
  • 160
    • 84863723708 scopus 로고    scopus 로고
    • Structural dynamics of the aminoacylation and proofreading functional cycle of bacterial leucyl-tRNA synthetase
    • Palencia, A.; Crépin, T.; Vu, M.T.; Lincecum, T.L.; Martinis, S.A.; Cusack, S. Structural dynamics of the aminoacylation and proofreading functional cycle of bacterial leucyl-tRNA synthetase. Nat. Struct. Mol. Biol. 2012, 19, 677–684.
    • (2012) Nat. Struct. Mol. Biol , vol.19 , pp. 677-684
    • Palencia, A.1    Crépin, T.2    Vu, M.T.3    Lincecum, T.L.4    Martinis, S.A.5    Cusack, S.6
  • 161
    • 84906091500 scopus 로고    scopus 로고
    • Synthetic and editing mechanisms of aminoacyl-tRNA synthetases
    • Perona, J.J.; Gruic-Sovulj, I. Synthetic and editing mechanisms of aminoacyl-tRNA synthetases. Top. Curr. Chem. 2014, 344, 1–41.
    • (2014) Top. Curr. Chem , vol.344 , pp. 1-41
    • Perona, J.J.1    Gruic-Sovulj, I.2
  • 162
    • 84864088342 scopus 로고    scopus 로고
    • Kinetic partitioning between synthetic and editing pathways in class I aminoacyl-tRNA synthetases occurs at both pre-transfer and post-transfer hydrolytic steps
    • Cvetesic, N.; Perona, J.J.; Gruic-Sovulj, I. Kinetic partitioning between synthetic and editing pathways in class I aminoacyl-tRNA synthetases occurs at both pre-transfer and post-transfer hydrolytic steps. J. Biol. Chem. 2012, 287, 25381–25394.
    • (2012) J. Biol. Chem , vol.287 , pp. 25381-25394
    • Cvetesic, N.1    Perona, J.J.2    Gruic-Sovulj, I.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.