메뉴 건너뛰기




Volumn 5, Issue , 2015, Pages

Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning

Author keywords

[No Author keywords available]

Indexed keywords

AMINO ACID; PROTEIN; SOLVENT;

EID: 84934966065     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep11476     Document Type: Article
Times cited : (322)

References (48)
  • 1
    • 0014116254 scopus 로고
    • Minimization of polypeptide energy. I. Preliminary structures of bovine pancreatic ribonuclease S-peptide
    • Gibson, K. D. & Scheraga, H. A. Minimization of polypeptide energy. I. Preliminary structures of bovine pancreatic ribonuclease S-peptide. Proc Natl Acad Sci USA 58, 420-427 (1967).
    • (1967) Proc Natl Acad Sci USA , vol.58 , pp. 420-427
    • Gibson, K.D.1    Scheraga, H.A.2
  • 2
    • 79251601609 scopus 로고    scopus 로고
    • Trends in template/fragment-free protein structure prediction
    • Zhou, Y. Q., Duan, Y., Yang, Y. D., Faraggi, E. & Lei, H. X. Trends in template/fragment-free protein structure prediction. Theor Chem Acc 128, 3-16 (2011).
    • (2011) Theor Chem Acc , vol.128 , pp. 3-16
    • Zhou, Y.Q.1    Duan, Y.2    Yang, Y.D.3    Faraggi, E.4    Lei, H.X.5
  • 3
    • 0035782925 scopus 로고    scopus 로고
    • Review: Protein secondary structure prediction continues to rise
    • Rost, B. Review: Protein secondary structure prediction continues to rise. J Struct Biol 134, 204-218 (2001).
    • (2001) J Struct Biol , vol.134 , pp. 204-218
    • Rost, B.1
  • 4
    • 83855162773 scopus 로고    scopus 로고
    • SPINE X: Improving protein secondary structure prediction by multi-step learning coupled with prediction of solvent accessible surface area and backbone torsion angles
    • Faraggi, E., Zhang, T., Yang, Y., Kurgan, L. & Zhou, Y. SPINE X: Improving protein secondary structure prediction by multi-step learning coupled with prediction of solvent accessible surface area and backbone torsion angles. J Computational Chemistry 33, 259-263 (2011).
    • (2011) J Computational Chemistry , vol.33 , pp. 259-263
    • Faraggi, E.1    Zhang, T.2    Yang, Y.3    Kurgan, L.4    Zhou, Y.5
  • 5
    • 84896921968 scopus 로고    scopus 로고
    • Context-based features enhance protein secondary structure prediction accuracy
    • Yaseen, A. & Li, Y. H. Context-Based Features Enhance Protein Secondary Structure Prediction Accuracy. J Chem Inf Model 54, 992-1002 (2014).
    • (2014) J Chem Inf Model , vol.54 , pp. 992-1002
    • Yaseen, A.1    Li, Y.H.2
  • 6
    • 25144432549 scopus 로고    scopus 로고
    • HYPROSP II - A knowledge-based hybrid method for protein secondary structure prediction based on local prediction confidence
    • Lin, H. N., Chang, J. M., Wu, K. P., Sung, T. Y. & Hsu, W. L. HYPROSP II - A knowledge-based hybrid method for protein secondary structure prediction based on local prediction confidence. Bioinformatics 21, 3227-3233 (2005).
    • (2005) Bioinformatics , vol.21 , pp. 3227-3233
    • Lin, H.N.1    Chang, J.M.2    Wu, K.P.3    Sung, T.Y.4    Hsu, W.L.5
  • 7
    • 33846249595 scopus 로고    scopus 로고
    • MUPRED: A tool for bridging the gap between template based methods and sequence profile based methods for protein secondary structure prediction
    • Bondugula, R. & Xu, D. MUPRED: a tool for bridging the gap between template based methods and sequence profile based methods for protein secondary structure prediction. Proteins 66, 664-670 (2007).
    • (2007) Proteins , vol.66 , pp. 664-670
    • Bondugula, R.1    Xu, D.2
  • 8
    • 35748978197 scopus 로고    scopus 로고
    • Consensus data mining (CDM) Protein secondary structure prediction server: Combining GOR v and Fragment database mining (FDM)
    • Cheng, H., Sen, T. Z., Jernigan, R. L. & Kloczkowski, A. Consensus Data Mining (CDM) Protein Secondary Structure Prediction Server: combining GOR V and Fragment Database Mining (FDM). Bioinformatics 23, 2628-2630 (2007).
    • (2007) Bioinformatics , vol.23 , pp. 2628-2630
    • Cheng, H.1    Sen, T.Z.2    Jernigan, R.L.3    Kloczkowski, A.4
  • 9
    • 4043050047 scopus 로고    scopus 로고
    • Combining evolutionary and structural information for local protein structure prediction
    • Pei, J. & Grishin, N. V. Combining evolutionary and structural information for local protein structure prediction. Proteins 56, 782-794 (2004).
    • (2004) Proteins , vol.56 , pp. 782-794
    • Pei, J.1    Grishin, N.V.2
  • 10
    • 40549104155 scopus 로고    scopus 로고
    • Assessing secondary structure assignment of protein structures by using pairwise sequence-alignment benchmarks
    • Zhang, W., Dunker, A. K. & Zhou, Y. Q. Assessing secondary structure assignment of protein structures by using pairwise sequence-alignment benchmarks. Proteins 71, 61-67 (2008).
    • (2008) Proteins , vol.71 , pp. 61-67
    • Zhang, W.1    Dunker, A.K.2    Zhou, Y.Q.3
  • 11
    • 3543101355 scopus 로고    scopus 로고
    • Protein backbone angle prediction with machine learning approaches
    • Kuang, R., Leslie, C. S. & Yang, A. S. Protein backbone angle prediction with machine learning approaches. Bioinformatics 20, 1612-1621 (2004).
    • (2004) Bioinformatics , vol.20 , pp. 1612-1621
    • Kuang, R.1    Leslie, C.S.2    Yang, A.S.3
  • 12
    • 0027407722 scopus 로고
    • Estimation and use of protein backbone angle probabilities
    • Kang, H. S., Kurochkina, N. A. & Lee, B. Estimation and Use of Protein Backbone Angle Probabilities. J Mol Biol 229, 448-460 (1993).
    • (1993) J Mol Biol , vol.229 , pp. 448-460
    • Kang, H.S.1    Kurochkina, N.A.2    Lee, B.3
  • 13
    • 17844373552 scopus 로고    scopus 로고
    • Protein secondary structure prediction with dihedral angles
    • Wood, M. J. & Hirst, J. D. Protein secondary structure prediction with dihedral angles. Proteins 59, 476-481 (2005).
    • (2005) Proteins , vol.59 , pp. 476-481
    • Wood, M.J.1    Hirst, J.D.2
  • 14
    • 34249914807 scopus 로고    scopus 로고
    • Real-SPINE: An integrated system of neural networks for real-value prediction of protein structural properties
    • Dor, O. & Zhou, Y. Real-SPINE: an integrated system of neural networks for real-value prediction of protein structural properties. Proteins 68, 76-81 (2007).
    • (2007) Proteins , vol.68 , pp. 76-81
    • Dor, O.1    Zhou, Y.2
  • 15
    • 44949201613 scopus 로고    scopus 로고
    • Real-value prediction of backbone torsion angles
    • Xue, B., Dor, O., Faraggi, E. & Zhou, Y. Real-value prediction of backbone torsion angles. Proteins 72, 427-433 (2008).
    • (2008) Proteins , vol.72 , pp. 427-433
    • Xue, B.1    Dor, O.2    Faraggi, E.3    Zhou, Y.4
  • 16
    • 84927770389 scopus 로고    scopus 로고
    • Predicting backbone Calpha angles and dihedrals from protein sequences by stacked sparse auto-encoder deep neural network
    • Lyons, J. et al. Predicting backbone Calpha angles and dihedrals from protein sequences by stacked sparse auto-encoder deep neural network. J Comput Chem 35, 2040-2046 (2014).
    • (2014) J Comput Chem , vol.35 , pp. 2040-2046
    • Lyons, J.1
  • 17
    • 0025039476 scopus 로고
    • Predicting surface exposure of amino acids from protein sequence
    • Holbrook, S. R., Muskal, S. M. & Kim, S. H. Predicting surface exposure of amino acids from protein sequence. Protein Eng 3, 659-665 (1990).
    • (1990) Protein Eng , vol.3 , pp. 659-665
    • Holbrook, S.R.1    Muskal, S.M.2    Kim, S.H.3
  • 18
    • 0028109886 scopus 로고
    • Conservation and prediction of solvent accessibility in protein families
    • Rost, B. & Sander, C. Conservation and prediction of solvent accessibility in protein families. Proteins 20, 216-226 (1994).
    • (1994) Proteins , vol.20 , pp. 216-226
    • Rost, B.1    Sander, C.2
  • 19
    • 0036568293 scopus 로고    scopus 로고
    • Prediction of coordination number and relative solvent accessibility in proteins
    • Pollastri, G., Baldi, P., Fariselli, P. & Casadio, R. Prediction of coordination number and relative solvent accessibility in proteins. Proteins 47, 142-153 (2002).
    • (2002) Proteins , vol.47 , pp. 142-153
    • Pollastri, G.1    Baldi, P.2    Fariselli, P.3    Casadio, R.4
  • 20
    • 26444473604 scopus 로고    scopus 로고
    • Real value prediction of solvent accessibility in proteins using multiple sequence alignment and secondary structure
    • Garg, A., Kaur, H. & Raghava, G. P. Real value prediction of solvent accessibility in proteins using multiple sequence alignment and secondary structure. Proteins 61, 318-324 (2005).
    • (2005) Proteins , vol.61 , pp. 318-324
    • Garg, A.1    Kaur, H.2    Raghava, G.P.3
  • 21
    • 6344258643 scopus 로고    scopus 로고
    • Prediction of protein accessible surface areas by support vector regression
    • Yuan, Z. & Huang, B. Prediction of protein accessible surface areas by support vector regression. Proteins 57, 558-564 (2004).
    • (2004) Proteins , vol.57 , pp. 558-564
    • Yuan, Z.1    Huang, B.2
  • 22
    • 0037340834 scopus 로고    scopus 로고
    • Real value prediction of solvent accessibility from amino acid sequence
    • Ahmad, S., Gromiha, M. M. & Sarai, A. Real value prediction of solvent accessibility from amino acid sequence. Proteins 50, 629-635 (2003).
    • (2003) Proteins , vol.50 , pp. 629-635
    • Ahmad, S.1    Gromiha, M.M.2    Sarai, A.3
  • 23
    • 4043052866 scopus 로고    scopus 로고
    • Accurate prediction of solvent accessibility using neural networks-based regression
    • Adamczak, R., Porollo, A. & Meller, J. Accurate prediction of solvent accessibility using neural networks-based regression. Proteins 56, 753-767 (2004).
    • (2004) Proteins , vol.56 , pp. 753-767
    • Adamczak, R.1    Porollo, A.2    Meller, J.3
  • 24
    • 17844392864 scopus 로고    scopus 로고
    • Combining prediction of secondary structure and solvent accessibility in proteins
    • Adamczak, R., Porollo, A. & Meller, J. Combining prediction of secondary structure and solvent accessibility in proteins. Proteins 59, 467-475 (2005).
    • (2005) Proteins , vol.59 , pp. 467-475
    • Adamczak, R.1    Porollo, A.2    Meller, J.3
  • 25
    • 84878372856 scopus 로고    scopus 로고
    • Prediction of one-dimensional structural properties of proteins by integrated neural network
    • ((ed^(eds Rangwala H., Karypis G.). Wiley
    • Zhou, Y. & Faraggi, E. Prediction of one-dimensional structural properties of proteins by integrated neural network. In: Protein Structure Prediction: Method and Algorithms ((ed^(eds Rangwala H., Karypis G.). Wiley (2010).
    • (2010) In: Protein Structure Prediction: Method and Algorithms
    • Zhou, Y.1    Faraggi, E.2
  • 26
    • 35348818718 scopus 로고    scopus 로고
    • Learning multiple layers of representation
    • Hinton, G. E. Learning multiple layers of representation. Trends Cogn Sci 11, 428-434 (2007).
    • (2007) Trends Cogn Sci , vol.11 , pp. 428-434
    • Hinton, G.E.1
  • 27
    • 84867316765 scopus 로고    scopus 로고
    • Deep architectures for protein contact map prediction
    • Di Lena, P., Nagata, K. & Baldi, P. Deep architectures for protein contact map prediction. Bioinformatics 28, 2449-2457 (2012).
    • (2012) Bioinformatics , vol.28 , pp. 2449-2457
    • Di Lena, P.1    Nagata, K.2    Baldi, P.3
  • 28
    • 84874545393 scopus 로고    scopus 로고
    • DNdisorder: Predicting protein disorder using boosting and deep networks
    • Eickholt, J. & Cheng, J. L. DNdisorder: predicting protein disorder using boosting and deep networks. Bmc Bioinformatics 14, 88 (2013).
    • (2013) Bmc Bioinformatics , vol.14 , pp. 88
    • Eickholt, J.1    Cheng, J.L.2
  • 29
    • 84858841519 scopus 로고    scopus 로고
    • A unified multitask architecture for predicting local protein properties
    • Qi, Y. J., Oja, M., Weston, J. & Noble, W. S. A Unified Multitask Architecture for Predicting Local Protein Properties. Plos One 7, e32235 (2012).
    • (2012) Plos One , vol.7 , pp. e32235
    • Qi, Y.J.1    Oja, M.2    Weston, J.3    Noble, W.S.4
  • 30
    • 84923265167 scopus 로고    scopus 로고
    • A deep learning network approach to ab initio protein secondary structure prediction
    • Spencer, M., Eickholt, J. & Cheng, J. L. A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction. Ieee Acm T Comput Bi 12, 103-112 (2015).
    • (2015) Ieee Acm T Comput Bi , vol.12 , pp. 103-112
    • Spencer, M.1    Eickholt, J.2    Cheng, J.L.3
  • 31
    • 23144438711 scopus 로고    scopus 로고
    • PISCES: Recent improvements to a PDB sequence culling server
    • Wang, G. & Dunbrack, R. L., Jr. PISCES: recent improvements to a PDB sequence culling server. Nucleic Acids Res 33, W94-98 (2005).
    • (2005) Nucleic Acids Res , vol.33 , pp. W94-98
    • Wang, G.1    Dunbrack, R.L.2
  • 34
    • 0035789525 scopus 로고    scopus 로고
    • Generation and evaluation of dimension-reduced amino acid parameter representations by artificial neural networks
    • Meiler, J., Müller, M., Zeidler, A. & Schmäschke, F. Generation and evaluation of dimension-reduced amino acid parameter representations by artificial neural networks. J Mol Model 7, 360-369 (2001).
    • (2001) J Mol Model , vol.7 , pp. 360-369
    • Meiler, J.1    Müller, M.2    Zeidler, A.3    Schmäschke, F.4
  • 35
    • 0030801002 scopus 로고    scopus 로고
    • Gapped BLAST and PSI-BLAST: A new generation of protein database search programs
    • Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25, 3389-3402 (1997).
    • (1997) Nucleic Acids Research , vol.25 , pp. 3389-3402
    • Altschul, S.F.1
  • 36
    • 70350738241 scopus 로고    scopus 로고
    • Predicting continuous local structure and the effect of its substitution for secondary structure in fragment-free protein structure prediction
    • Faraggi, E., Yang, Y. D., Zhang, S. S. & Zhou, Y. Predicting Continuous Local Structure and the Effect of Its Substitution for Secondary Structure in Fragment-Free Protein Structure Prediction. Structure 17, 1515-1527 (2009).
    • (2009) Structure , vol.17 , pp. 1515-1527
    • Faraggi, E.1    Yang, Y.D.2    Zhang, S.S.3    Zhou, Y.4
  • 37
    • 0033578684 scopus 로고    scopus 로고
    • Protein secondary structure prediction based on position-specific scoring matrices
    • Jones, D. T. Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292, 195-202 (1999).
    • (1999) J Mol Biol , vol.292 , pp. 195-202
    • Jones, D.T.1
  • 38
    • 84896921968 scopus 로고    scopus 로고
    • Context-based features enhance protein secondary structure prediction accuracy
    • Yaseen, A. & Li, Y. Context-based features enhance protein secondary structure prediction accuracy. J Chem Inf Model 54, 992-1002 (2014).
    • (2014) J Chem Inf Model , vol.54 , pp. 992-1002
    • Yaseen, A.1    Li, Y.2
  • 39
    • 77954065271 scopus 로고    scopus 로고
    • I-TASSER: A unified platform for automated protein structure and function prediction
    • Roy, A., Kucukural, A. & Zhang, Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5, 725-738 (2010).
    • (2010) Nat Protoc , vol.5 , pp. 725-738
    • Roy, A.1    Kucukural, A.2    Zhang, Y.3
  • 42
    • 36749030503 scopus 로고    scopus 로고
    • High accuracy template based modeling by global optimization
    • Joo, K., Lee, J., Lee, S., Seo, J. H., Lee, S. J. & Lee, J. High accuracy template based modeling by global optimization. Proteins 69 Suppl 8, 83-89 (2007).
    • (2007) Proteins , vol.69 , pp. 83-89
    • Joo, K.1    Lee, J.2    Lee, S.3    Seo, J.H.4    Lee, S.J.5    Lee, J.6
  • 43
    • 50849118769 scopus 로고    scopus 로고
    • Alternating evolutionary pressure in a genetic algorithm facilitates protein model selection
    • Offman, M. N., Tournier, A. L. & Bates, P. A. Alternating evolutionary pressure in a genetic algorithm facilitates protein model selection. Bmc Struct Biol 8, 34 (2008).
    • (2008) Bmc Struct Biol , vol.8 , pp. 34
    • Offman, M.N.1    Tournier, A.L.2    Bates, P.A.3
  • 44
    • 84879901270 scopus 로고    scopus 로고
    • Protein threading using context-specific alignment potential
    • Ma, J. Z., Wang, S., Zhao, F. & Xu, J. B. Protein threading using context-specific alignment potential. Bioinformatics 29, 257-265 (2013).
    • (2013) Bioinformatics , vol.29 , pp. 257-265
    • Ma, J.Z.1    Wang, S.2    Zhao, F.3    Xu, J.B.4
  • 45
    • 84893010893 scopus 로고    scopus 로고
    • Interplay of I-TASSER and QUARK for template-based and ab initio protein structure prediction in CASP10
    • Zhang, Y. Interplay of I-TASSER and QUARK for template-based and ab initio protein structure prediction in CASP10. Proteins 82, 175-187 (2014).
    • (2014) Proteins , vol.82 , pp. 175-187
    • Zhang, Y.1
  • 46
    • 84855672321 scopus 로고    scopus 로고
    • Template-based protein structure modeling using TASSERVMT
    • Zhou, H. Y. & Skolnick, J. Template-based protein structure modeling using TASSERVMT. Proteins 80, 352-361 (2012).
    • (2012) Proteins , vol.80 , pp. 352-361
    • Zhou, H.Y.1    Skolnick, J.2
  • 47
    • 84880487307 scopus 로고    scopus 로고
    • I3Drefine software for protein 3D structure refinement and its assessment in CASP10
    • Bhattacharya, D. & Cheng, J. L. i3Drefine Software for Protein 3D Structure Refinement and Its Assessment in CASP10. Plos One 8, e69648 (2013).
    • (2013) Plos One , vol.8 , pp. e69648
    • Bhattacharya, D.1    Cheng, J.L.2
  • 48
    • 79960394811 scopus 로고    scopus 로고
    • Improving protein fold recognition and template-based modeling by employing probabilistic-based matching between predicted one-dimensional structural properties of the query and corresponding native properties of templates
    • Yang, Y., Faraggi, E., Zhao, H. & Zhou, Y. Improving protein fold recognition and template-based modeling by employing probabilistic-based matching between predicted one-dimensional structural properties of the query and corresponding native properties of templates. Bioinformatics 27, 2076-2082 (2011).
    • (2011) Bioinformatics , vol.27 , pp. 2076-2082
    • Yang, Y.1    Faraggi, E.2    Zhao, H.3    Zhou, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.