-
1
-
-
0014116254
-
Minimization of polypeptide energy. I. Preliminary structures of bovine pancreatic ribonuclease S-peptide
-
Gibson, K. D. & Scheraga, H. A. Minimization of polypeptide energy. I. Preliminary structures of bovine pancreatic ribonuclease S-peptide. Proc Natl Acad Sci USA 58, 420-427 (1967).
-
(1967)
Proc Natl Acad Sci USA
, vol.58
, pp. 420-427
-
-
Gibson, K.D.1
Scheraga, H.A.2
-
2
-
-
79251601609
-
Trends in template/fragment-free protein structure prediction
-
Zhou, Y. Q., Duan, Y., Yang, Y. D., Faraggi, E. & Lei, H. X. Trends in template/fragment-free protein structure prediction. Theor Chem Acc 128, 3-16 (2011).
-
(2011)
Theor Chem Acc
, vol.128
, pp. 3-16
-
-
Zhou, Y.Q.1
Duan, Y.2
Yang, Y.D.3
Faraggi, E.4
Lei, H.X.5
-
3
-
-
0035782925
-
Review: Protein secondary structure prediction continues to rise
-
Rost, B. Review: Protein secondary structure prediction continues to rise. J Struct Biol 134, 204-218 (2001).
-
(2001)
J Struct Biol
, vol.134
, pp. 204-218
-
-
Rost, B.1
-
4
-
-
83855162773
-
SPINE X: Improving protein secondary structure prediction by multi-step learning coupled with prediction of solvent accessible surface area and backbone torsion angles
-
Faraggi, E., Zhang, T., Yang, Y., Kurgan, L. & Zhou, Y. SPINE X: Improving protein secondary structure prediction by multi-step learning coupled with prediction of solvent accessible surface area and backbone torsion angles. J Computational Chemistry 33, 259-263 (2011).
-
(2011)
J Computational Chemistry
, vol.33
, pp. 259-263
-
-
Faraggi, E.1
Zhang, T.2
Yang, Y.3
Kurgan, L.4
Zhou, Y.5
-
5
-
-
84896921968
-
Context-based features enhance protein secondary structure prediction accuracy
-
Yaseen, A. & Li, Y. H. Context-Based Features Enhance Protein Secondary Structure Prediction Accuracy. J Chem Inf Model 54, 992-1002 (2014).
-
(2014)
J Chem Inf Model
, vol.54
, pp. 992-1002
-
-
Yaseen, A.1
Li, Y.H.2
-
6
-
-
25144432549
-
HYPROSP II - A knowledge-based hybrid method for protein secondary structure prediction based on local prediction confidence
-
Lin, H. N., Chang, J. M., Wu, K. P., Sung, T. Y. & Hsu, W. L. HYPROSP II - A knowledge-based hybrid method for protein secondary structure prediction based on local prediction confidence. Bioinformatics 21, 3227-3233 (2005).
-
(2005)
Bioinformatics
, vol.21
, pp. 3227-3233
-
-
Lin, H.N.1
Chang, J.M.2
Wu, K.P.3
Sung, T.Y.4
Hsu, W.L.5
-
7
-
-
33846249595
-
MUPRED: A tool for bridging the gap between template based methods and sequence profile based methods for protein secondary structure prediction
-
Bondugula, R. & Xu, D. MUPRED: a tool for bridging the gap between template based methods and sequence profile based methods for protein secondary structure prediction. Proteins 66, 664-670 (2007).
-
(2007)
Proteins
, vol.66
, pp. 664-670
-
-
Bondugula, R.1
Xu, D.2
-
8
-
-
35748978197
-
Consensus data mining (CDM) Protein secondary structure prediction server: Combining GOR v and Fragment database mining (FDM)
-
Cheng, H., Sen, T. Z., Jernigan, R. L. & Kloczkowski, A. Consensus Data Mining (CDM) Protein Secondary Structure Prediction Server: combining GOR V and Fragment Database Mining (FDM). Bioinformatics 23, 2628-2630 (2007).
-
(2007)
Bioinformatics
, vol.23
, pp. 2628-2630
-
-
Cheng, H.1
Sen, T.Z.2
Jernigan, R.L.3
Kloczkowski, A.4
-
9
-
-
4043050047
-
Combining evolutionary and structural information for local protein structure prediction
-
Pei, J. & Grishin, N. V. Combining evolutionary and structural information for local protein structure prediction. Proteins 56, 782-794 (2004).
-
(2004)
Proteins
, vol.56
, pp. 782-794
-
-
Pei, J.1
Grishin, N.V.2
-
10
-
-
40549104155
-
Assessing secondary structure assignment of protein structures by using pairwise sequence-alignment benchmarks
-
Zhang, W., Dunker, A. K. & Zhou, Y. Q. Assessing secondary structure assignment of protein structures by using pairwise sequence-alignment benchmarks. Proteins 71, 61-67 (2008).
-
(2008)
Proteins
, vol.71
, pp. 61-67
-
-
Zhang, W.1
Dunker, A.K.2
Zhou, Y.Q.3
-
11
-
-
3543101355
-
Protein backbone angle prediction with machine learning approaches
-
Kuang, R., Leslie, C. S. & Yang, A. S. Protein backbone angle prediction with machine learning approaches. Bioinformatics 20, 1612-1621 (2004).
-
(2004)
Bioinformatics
, vol.20
, pp. 1612-1621
-
-
Kuang, R.1
Leslie, C.S.2
Yang, A.S.3
-
12
-
-
0027407722
-
Estimation and use of protein backbone angle probabilities
-
Kang, H. S., Kurochkina, N. A. & Lee, B. Estimation and Use of Protein Backbone Angle Probabilities. J Mol Biol 229, 448-460 (1993).
-
(1993)
J Mol Biol
, vol.229
, pp. 448-460
-
-
Kang, H.S.1
Kurochkina, N.A.2
Lee, B.3
-
13
-
-
17844373552
-
Protein secondary structure prediction with dihedral angles
-
Wood, M. J. & Hirst, J. D. Protein secondary structure prediction with dihedral angles. Proteins 59, 476-481 (2005).
-
(2005)
Proteins
, vol.59
, pp. 476-481
-
-
Wood, M.J.1
Hirst, J.D.2
-
14
-
-
34249914807
-
Real-SPINE: An integrated system of neural networks for real-value prediction of protein structural properties
-
Dor, O. & Zhou, Y. Real-SPINE: an integrated system of neural networks for real-value prediction of protein structural properties. Proteins 68, 76-81 (2007).
-
(2007)
Proteins
, vol.68
, pp. 76-81
-
-
Dor, O.1
Zhou, Y.2
-
15
-
-
44949201613
-
Real-value prediction of backbone torsion angles
-
Xue, B., Dor, O., Faraggi, E. & Zhou, Y. Real-value prediction of backbone torsion angles. Proteins 72, 427-433 (2008).
-
(2008)
Proteins
, vol.72
, pp. 427-433
-
-
Xue, B.1
Dor, O.2
Faraggi, E.3
Zhou, Y.4
-
16
-
-
84927770389
-
Predicting backbone Calpha angles and dihedrals from protein sequences by stacked sparse auto-encoder deep neural network
-
Lyons, J. et al. Predicting backbone Calpha angles and dihedrals from protein sequences by stacked sparse auto-encoder deep neural network. J Comput Chem 35, 2040-2046 (2014).
-
(2014)
J Comput Chem
, vol.35
, pp. 2040-2046
-
-
Lyons, J.1
-
17
-
-
0025039476
-
Predicting surface exposure of amino acids from protein sequence
-
Holbrook, S. R., Muskal, S. M. & Kim, S. H. Predicting surface exposure of amino acids from protein sequence. Protein Eng 3, 659-665 (1990).
-
(1990)
Protein Eng
, vol.3
, pp. 659-665
-
-
Holbrook, S.R.1
Muskal, S.M.2
Kim, S.H.3
-
18
-
-
0028109886
-
Conservation and prediction of solvent accessibility in protein families
-
Rost, B. & Sander, C. Conservation and prediction of solvent accessibility in protein families. Proteins 20, 216-226 (1994).
-
(1994)
Proteins
, vol.20
, pp. 216-226
-
-
Rost, B.1
Sander, C.2
-
19
-
-
0036568293
-
Prediction of coordination number and relative solvent accessibility in proteins
-
Pollastri, G., Baldi, P., Fariselli, P. & Casadio, R. Prediction of coordination number and relative solvent accessibility in proteins. Proteins 47, 142-153 (2002).
-
(2002)
Proteins
, vol.47
, pp. 142-153
-
-
Pollastri, G.1
Baldi, P.2
Fariselli, P.3
Casadio, R.4
-
20
-
-
26444473604
-
Real value prediction of solvent accessibility in proteins using multiple sequence alignment and secondary structure
-
Garg, A., Kaur, H. & Raghava, G. P. Real value prediction of solvent accessibility in proteins using multiple sequence alignment and secondary structure. Proteins 61, 318-324 (2005).
-
(2005)
Proteins
, vol.61
, pp. 318-324
-
-
Garg, A.1
Kaur, H.2
Raghava, G.P.3
-
21
-
-
6344258643
-
Prediction of protein accessible surface areas by support vector regression
-
Yuan, Z. & Huang, B. Prediction of protein accessible surface areas by support vector regression. Proteins 57, 558-564 (2004).
-
(2004)
Proteins
, vol.57
, pp. 558-564
-
-
Yuan, Z.1
Huang, B.2
-
22
-
-
0037340834
-
Real value prediction of solvent accessibility from amino acid sequence
-
Ahmad, S., Gromiha, M. M. & Sarai, A. Real value prediction of solvent accessibility from amino acid sequence. Proteins 50, 629-635 (2003).
-
(2003)
Proteins
, vol.50
, pp. 629-635
-
-
Ahmad, S.1
Gromiha, M.M.2
Sarai, A.3
-
23
-
-
4043052866
-
Accurate prediction of solvent accessibility using neural networks-based regression
-
Adamczak, R., Porollo, A. & Meller, J. Accurate prediction of solvent accessibility using neural networks-based regression. Proteins 56, 753-767 (2004).
-
(2004)
Proteins
, vol.56
, pp. 753-767
-
-
Adamczak, R.1
Porollo, A.2
Meller, J.3
-
24
-
-
17844392864
-
Combining prediction of secondary structure and solvent accessibility in proteins
-
Adamczak, R., Porollo, A. & Meller, J. Combining prediction of secondary structure and solvent accessibility in proteins. Proteins 59, 467-475 (2005).
-
(2005)
Proteins
, vol.59
, pp. 467-475
-
-
Adamczak, R.1
Porollo, A.2
Meller, J.3
-
25
-
-
84878372856
-
Prediction of one-dimensional structural properties of proteins by integrated neural network
-
((ed^(eds Rangwala H., Karypis G.). Wiley
-
Zhou, Y. & Faraggi, E. Prediction of one-dimensional structural properties of proteins by integrated neural network. In: Protein Structure Prediction: Method and Algorithms ((ed^(eds Rangwala H., Karypis G.). Wiley (2010).
-
(2010)
In: Protein Structure Prediction: Method and Algorithms
-
-
Zhou, Y.1
Faraggi, E.2
-
26
-
-
35348818718
-
Learning multiple layers of representation
-
Hinton, G. E. Learning multiple layers of representation. Trends Cogn Sci 11, 428-434 (2007).
-
(2007)
Trends Cogn Sci
, vol.11
, pp. 428-434
-
-
Hinton, G.E.1
-
27
-
-
84867316765
-
Deep architectures for protein contact map prediction
-
Di Lena, P., Nagata, K. & Baldi, P. Deep architectures for protein contact map prediction. Bioinformatics 28, 2449-2457 (2012).
-
(2012)
Bioinformatics
, vol.28
, pp. 2449-2457
-
-
Di Lena, P.1
Nagata, K.2
Baldi, P.3
-
28
-
-
84874545393
-
DNdisorder: Predicting protein disorder using boosting and deep networks
-
Eickholt, J. & Cheng, J. L. DNdisorder: predicting protein disorder using boosting and deep networks. Bmc Bioinformatics 14, 88 (2013).
-
(2013)
Bmc Bioinformatics
, vol.14
, pp. 88
-
-
Eickholt, J.1
Cheng, J.L.2
-
29
-
-
84858841519
-
A unified multitask architecture for predicting local protein properties
-
Qi, Y. J., Oja, M., Weston, J. & Noble, W. S. A Unified Multitask Architecture for Predicting Local Protein Properties. Plos One 7, e32235 (2012).
-
(2012)
Plos One
, vol.7
, pp. e32235
-
-
Qi, Y.J.1
Oja, M.2
Weston, J.3
Noble, W.S.4
-
30
-
-
84923265167
-
A deep learning network approach to ab initio protein secondary structure prediction
-
Spencer, M., Eickholt, J. & Cheng, J. L. A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction. Ieee Acm T Comput Bi 12, 103-112 (2015).
-
(2015)
Ieee Acm T Comput Bi
, vol.12
, pp. 103-112
-
-
Spencer, M.1
Eickholt, J.2
Cheng, J.L.3
-
31
-
-
23144438711
-
PISCES: Recent improvements to a PDB sequence culling server
-
Wang, G. & Dunbrack, R. L., Jr. PISCES: recent improvements to a PDB sequence culling server. Nucleic Acids Res 33, W94-98 (2005).
-
(2005)
Nucleic Acids Res
, vol.33
, pp. W94-98
-
-
Wang, G.1
Dunbrack, R.L.2
-
32
-
-
84864073449
-
Greedy layer-wise training of deep networks
-
Bengio, Y., Lamblin, P., Popovici, D. & Larochelle, H. Greedy layer-wise training of deep networks. Advances in neural information processing systems 19, 153 (2007).
-
(2007)
Advances in Neural Information Processing Systems
, vol.19
, pp. 153
-
-
Bengio, Y.1
Lamblin, P.2
Popovici, D.3
Larochelle, H.4
-
34
-
-
0035789525
-
Generation and evaluation of dimension-reduced amino acid parameter representations by artificial neural networks
-
Meiler, J., Müller, M., Zeidler, A. & Schmäschke, F. Generation and evaluation of dimension-reduced amino acid parameter representations by artificial neural networks. J Mol Model 7, 360-369 (2001).
-
(2001)
J Mol Model
, vol.7
, pp. 360-369
-
-
Meiler, J.1
Müller, M.2
Zeidler, A.3
Schmäschke, F.4
-
35
-
-
0030801002
-
Gapped BLAST and PSI-BLAST: A new generation of protein database search programs
-
Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25, 3389-3402 (1997).
-
(1997)
Nucleic Acids Research
, vol.25
, pp. 3389-3402
-
-
Altschul, S.F.1
-
36
-
-
70350738241
-
Predicting continuous local structure and the effect of its substitution for secondary structure in fragment-free protein structure prediction
-
Faraggi, E., Yang, Y. D., Zhang, S. S. & Zhou, Y. Predicting Continuous Local Structure and the Effect of Its Substitution for Secondary Structure in Fragment-Free Protein Structure Prediction. Structure 17, 1515-1527 (2009).
-
(2009)
Structure
, vol.17
, pp. 1515-1527
-
-
Faraggi, E.1
Yang, Y.D.2
Zhang, S.S.3
Zhou, Y.4
-
37
-
-
0033578684
-
Protein secondary structure prediction based on position-specific scoring matrices
-
Jones, D. T. Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292, 195-202 (1999).
-
(1999)
J Mol Biol
, vol.292
, pp. 195-202
-
-
Jones, D.T.1
-
38
-
-
84896921968
-
Context-based features enhance protein secondary structure prediction accuracy
-
Yaseen, A. & Li, Y. Context-based features enhance protein secondary structure prediction accuracy. J Chem Inf Model 54, 992-1002 (2014).
-
(2014)
J Chem Inf Model
, vol.54
, pp. 992-1002
-
-
Yaseen, A.1
Li, Y.2
-
39
-
-
77954065271
-
I-TASSER: A unified platform for automated protein structure and function prediction
-
Roy, A., Kucukural, A. & Zhang, Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5, 725-738 (2010).
-
(2010)
Nat Protoc
, vol.5
, pp. 725-738
-
-
Roy, A.1
Kucukural, A.2
Zhang, Y.3
-
40
-
-
1642464839
-
Protein structure prediction using Rosetta
-
Rohl, C. A., Strauss, C. E. M., Misura, K. M. S. & Baker, D. Protein structure prediction using Rosetta. Method Enzymol 383, 66-93 (2004).
-
(2004)
Method Enzymol
, vol.383
, pp. 66-93
-
-
Rohl, C.A.1
Strauss, C.E.M.2
Misura, K.M.S.3
Baker, D.4
-
41
-
-
23144463912
-
FFAS03: A server for profile-profile sequence alignments
-
Jaroszewski, L., Rychlewski, L., Li, Z., Li, W. & Godzik, A. FFAS03: a server for profile-profile sequence alignments. Nucleic Acids Res 33, W284-288 (2005).
-
(2005)
Nucleic Acids Res
, vol.33
, pp. W284-288
-
-
Jaroszewski, L.1
Rychlewski, L.2
Li, Z.3
Li, W.4
Godzik, A.5
-
42
-
-
36749030503
-
High accuracy template based modeling by global optimization
-
Joo, K., Lee, J., Lee, S., Seo, J. H., Lee, S. J. & Lee, J. High accuracy template based modeling by global optimization. Proteins 69 Suppl 8, 83-89 (2007).
-
(2007)
Proteins
, vol.69
, pp. 83-89
-
-
Joo, K.1
Lee, J.2
Lee, S.3
Seo, J.H.4
Lee, S.J.5
Lee, J.6
-
43
-
-
50849118769
-
Alternating evolutionary pressure in a genetic algorithm facilitates protein model selection
-
Offman, M. N., Tournier, A. L. & Bates, P. A. Alternating evolutionary pressure in a genetic algorithm facilitates protein model selection. Bmc Struct Biol 8, 34 (2008).
-
(2008)
Bmc Struct Biol
, vol.8
, pp. 34
-
-
Offman, M.N.1
Tournier, A.L.2
Bates, P.A.3
-
44
-
-
84879901270
-
Protein threading using context-specific alignment potential
-
Ma, J. Z., Wang, S., Zhao, F. & Xu, J. B. Protein threading using context-specific alignment potential. Bioinformatics 29, 257-265 (2013).
-
(2013)
Bioinformatics
, vol.29
, pp. 257-265
-
-
Ma, J.Z.1
Wang, S.2
Zhao, F.3
Xu, J.B.4
-
45
-
-
84893010893
-
Interplay of I-TASSER and QUARK for template-based and ab initio protein structure prediction in CASP10
-
Zhang, Y. Interplay of I-TASSER and QUARK for template-based and ab initio protein structure prediction in CASP10. Proteins 82, 175-187 (2014).
-
(2014)
Proteins
, vol.82
, pp. 175-187
-
-
Zhang, Y.1
-
46
-
-
84855672321
-
Template-based protein structure modeling using TASSERVMT
-
Zhou, H. Y. & Skolnick, J. Template-based protein structure modeling using TASSERVMT. Proteins 80, 352-361 (2012).
-
(2012)
Proteins
, vol.80
, pp. 352-361
-
-
Zhou, H.Y.1
Skolnick, J.2
-
47
-
-
84880487307
-
I3Drefine software for protein 3D structure refinement and its assessment in CASP10
-
Bhattacharya, D. & Cheng, J. L. i3Drefine Software for Protein 3D Structure Refinement and Its Assessment in CASP10. Plos One 8, e69648 (2013).
-
(2013)
Plos One
, vol.8
, pp. e69648
-
-
Bhattacharya, D.1
Cheng, J.L.2
-
48
-
-
79960394811
-
Improving protein fold recognition and template-based modeling by employing probabilistic-based matching between predicted one-dimensional structural properties of the query and corresponding native properties of templates
-
Yang, Y., Faraggi, E., Zhao, H. & Zhou, Y. Improving protein fold recognition and template-based modeling by employing probabilistic-based matching between predicted one-dimensional structural properties of the query and corresponding native properties of templates. Bioinformatics 27, 2076-2082 (2011).
-
(2011)
Bioinformatics
, vol.27
, pp. 2076-2082
-
-
Yang, Y.1
Faraggi, E.2
Zhao, H.3
Zhou, Y.4
|