메뉴 건너뛰기




Volumn 7, Issue 3, 2012, Pages

A unified multitask architecture for predicting local protein properties

Author keywords

[No Author keywords available]

Indexed keywords

SIGNAL PEPTIDE; SOLVENT; MEMBRANE PROTEIN; PROTEIN;

EID: 84858841519     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0032235     Document Type: Article
Times cited : (50)

References (58)
  • 2
    • 0031189914 scopus 로고    scopus 로고
    • Multitask learning
    • Caruana R, (1997) Multitask learning. Machine Learning 28: 41-75.
    • (1997) Machine Learning , vol.28 , pp. 41-75
    • Caruana, R.1
  • 5
    • 0023803244 scopus 로고
    • Predicting the secondary structure of globular proteins using neural network models
    • Qian N, Sejnowski TJ, (1988) Predicting the secondary structure of globular proteins using neural network models. Journal of Molecular Biology 202: 865-884.
    • (1988) Journal of Molecular Biology , vol.202 , pp. 865-884
    • Qian, N.1    Sejnowski, T.J.2
  • 6
    • 0035910270 scopus 로고    scopus 로고
    • Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes
    • Krogh A, Larsson B, von Heijne G, Sonnhammer EL, (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. Journal of Molecular Biology 305: 567-80.
    • (2001) Journal of Molecular Biology , vol.305 , pp. 567-580
    • Krogh, A.1    Larsson, B.2    von Heijne, G.3    Sonnhammer, E.L.4
  • 7
    • 34547852238 scopus 로고    scopus 로고
    • Prediction of DNA-binding residues from sequence
    • Ofran Y, Rost B, (2007) Prediction of DNA-binding residues from sequence. Bioinformatics 23: i347-i353.
    • (2007) Bioinformatics , vol.23
    • Ofran, Y.1    Rost, B.2
  • 8
    • 17844392864 scopus 로고    scopus 로고
    • Combining prediction of secondary structure and solvent accessibility in proteins
    • Adamczak R, Porollo A, Meller J, (2005) Combining prediction of secondary structure and solvent accessibility in proteins. Proteins 59: 467-475.
    • (2005) Proteins , vol.59 , pp. 467-475
    • Adamczak, R.1    Porollo, A.2    Meller, J.3
  • 9
    • 0027291015 scopus 로고
    • Prediction of protein secondary structure at better than 70% accuracy
    • Rost B, Sander C, (1993) Prediction of protein secondary structure at better than 70% accuracy. Journal of Molecular Biology 232: 584-99.
    • (1993) Journal of Molecular Biology , vol.232 , pp. 584-599
    • Rost, B.1    Sander, C.2
  • 10
    • 0034663597 scopus 로고    scopus 로고
    • Application of multiple sequence alignment profiles to improve protein secondary structure prediction
    • Cuff JA, Barton GJ, (2000) Application of multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins: Structure, Function, and Bioinformatics 40: 502-511.
    • (2000) Proteins: Structure, Function, and Bioinformatics , vol.40 , pp. 502-511
    • Cuff, J.A.1    Barton, G.J.2
  • 12
    • 0033578684 scopus 로고    scopus 로고
    • Protein secondary structure prediction based on position-specific scoring matrices
    • Jones DT, (1999) Protein secondary structure prediction based on position-specific scoring matrices. Journal of Molecular Biology 292: 195-202.
    • (1999) Journal of Molecular Biology , vol.292 , pp. 195-202
    • Jones, D.T.1
  • 13
    • 54949103617 scopus 로고    scopus 로고
    • PREDICT-2ND: a tool for generalized protein local structure prediction
    • Katzman S, Barrett C, Thiltgen G, Karchin R, Karplus K, (2008) PREDICT-2ND: a tool for generalized protein local structure prediction. Bioinformatics 24: 2453-2459.
    • (2008) Bioinformatics , vol.24 , pp. 2453-2459
    • Katzman, S.1    Barrett, C.2    Thiltgen, G.3    Karchin, R.4    Karplus, K.5
  • 15
    • 40549143077 scopus 로고    scopus 로고
    • A dynamic bayesian network approach to protein secondary structure prediction
    • Yao XQ, Zhu H, She ZS, (2008) A dynamic bayesian network approach to protein secondary structure prediction. BMC Bioinformatics 9.
    • (2008) BMC Bioinformatics , vol.9
    • Yao, X.Q.1    Zhu, H.2    She, Z.S.3
  • 16
    • 0033106244 scopus 로고    scopus 로고
    • Evaluation and improvement of multiple sequence methods for protein secondary structure prediction
    • Cuff JA, Barton GJ, (1999) Evaluation and improvement of multiple sequence methods for protein secondary structure prediction. Proteins 34: 508-519.
    • (1999) Proteins , vol.34 , pp. 508-519
    • Cuff, J.A.1    Barton, G.J.2
  • 17
    • 0020997912 scopus 로고
    • Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features
    • Kabsch W, Sander C, (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22: 2577-2637.
    • (1983) Biopolymers , vol.22 , pp. 2577-2637
    • Kabsch, W.1    Sander, C.2
  • 18
    • 75649083757 scopus 로고    scopus 로고
    • Prediction of backbone dihedral angles and protein secondary structure using support vector machines
    • Kountouris P, Hirst JD, (2009) Prediction of backbone dihedral angles and protein secondary structure using support vector machines. BMC Bioinformatics 10.
    • (2009) BMC Bioinformatics , vol.10
    • Kountouris, P.1    Hirst, J.D.2
  • 19
    • 80052949950 scopus 로고    scopus 로고
    • Association classification algorithm based on structure sequence in protein secondary structure prediction
    • Zhou Z, Yang B, Hou W, (2010) Association classification algorithm based on structure sequence in protein secondary structure prediction. Expert Systems with Applications.
    • (2010) Expert Systems with Applications
    • Zhou, Z.1    Yang, B.2    Hou, W.3
  • 21
    • 73449099306 scopus 로고    scopus 로고
    • The membrane proteome of the mouse lens fiber cell
    • Bassnett S, Wilmarth PA, David LL, (2009) The membrane proteome of the mouse lens fiber cell. Mol Vis 15: 2448-63.
    • (2009) Mol Vis , vol.15 , pp. 2448-2463
    • Bassnett, S.1    Wilmarth, P.A.2    David, L.L.3
  • 22
    • 77951982956 scopus 로고    scopus 로고
    • Towards a membrane proteome in drosophila: a method for the isolation of plasma membrane
    • Khanna MR, Stanley BA, Thomas GH, (2010) Towards a membrane proteome in drosophila: a method for the isolation of plasma membrane. BMC Genomics 11: 302.
    • (2010) BMC Genomics , vol.11 , pp. 302
    • Khanna, M.R.1    Stanley, B.A.2    Thomas, G.H.3
  • 23
    • 0030614959 scopus 로고    scopus 로고
    • Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites
    • Nielsen H, Engelbrecht J, Brunak S, von Heijne G, (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Engineering 10: 1-6.
    • (1997) Protein Engineering , vol.10 , pp. 1-6
    • Nielsen, H.1    Engelbrecht, J.2    Brunak, S.3    von Heijne, G.4
  • 24
    • 0031603460 scopus 로고    scopus 로고
    • Prediction of signal peptides and signal anchors by a hidden Markov model
    • Nielsen H, Krogh A, (1998) Prediction of signal peptides and signal anchors by a hidden Markov model. Proc Int Conf Intell Syst Mol Biol 6: 122-130.
    • (1998) Proc Int Conf Intell Syst Mol Biol , vol.6 , pp. 122-130
    • Nielsen, H.1    Krogh, A.2
  • 25
    • 2142657817 scopus 로고    scopus 로고
    • A combined transmembrane topology and signal peptide prediction method
    • Käll L, Krogh A, Sonnhammer ELL, (2004) A combined transmembrane topology and signal peptide prediction method. Journal of Molecular Biology 338: 1027-1036.
    • (2004) Journal of Molecular Biology , vol.338 , pp. 1027-1036
    • Käll, L.1    Krogh, A.2    Sonnhammer, E.L.L.3
  • 29
    • 0028109886 scopus 로고
    • Conservation and prediction of solvent accesibility in protein families
    • Rost B, Sander C, (1994) Conservation and prediction of solvent accesibility in protein families. Proteins: Structure, Function and Genetics 20: 216-226.
    • (1994) Proteins: Structure, Function and Genetics , vol.20 , pp. 216-226
    • Rost, B.1    Sander, C.2
  • 30
    • 0036568293 scopus 로고    scopus 로고
    • Prediction of coordination number and relative solvent accessibility in proteins
    • Pollastri G, Baldi P, Fariselli P, Casadio R, (2002) Prediction of coordination number and relative solvent accessibility in proteins. Proteins 47: 142-153.
    • (2002) Proteins , vol.47 , pp. 142-153
    • Pollastri, G.1    Baldi, P.2    Fariselli, P.3    Casadio, R.4
  • 32
  • 33
    • 33645312366 scopus 로고    scopus 로고
    • A consensus procedure improving solvent accessibility prediction
    • Gianese G, Pascarella S, (2006) A consensus procedure improving solvent accessibility prediction. Journal of Computational Chemistry 27: 621-626.
    • (2006) Journal of Computational Chemistry , vol.27 , pp. 621-626
    • Gianese, G.1    Pascarella, S.2
  • 34
    • 0028109886 scopus 로고
    • Conservation and prediction of solvent accessibility in protein families
    • Rost B, Sander C, (1994) Conservation and prediction of solvent accessibility in protein families. Proteins-Structure Function and Genetics 20: 216-226.
    • (1994) Proteins-Structure Function and Genetics , vol.20 , pp. 216-226
    • Rost, B.1    Sander, C.2
  • 35
    • 0026356891 scopus 로고
    • Predicting coiled coils from protein sequences
    • Lupas A, Van Dyke M, Stock J, (1991) Predicting coiled coils from protein sequences. Science 252: 1162-4.
    • (1991) Science , vol.252 , pp. 1162-1164
    • Lupas, A.1    Van Dyke, M.2    Stock, J.3
  • 37
    • 0030987407 scopus 로고    scopus 로고
    • MultiCoil: a program for predicting two-and three-stranded coiled coils
    • Wolf E, Kim P, Berger B, (1997) MultiCoil: a program for predicting two-and three-stranded coiled coils. Protein Science 6: 1179.
    • (1997) Protein Science , vol.6 , pp. 1179
    • Wolf, E.1    Kim, P.2    Berger, B.3
  • 38
    • 32144456009 scopus 로고    scopus 로고
    • Paircoil2: improved prediction of coiled coils from sequence
    • McDonnell AV, Jiang T, Keating AE, Berger B, (2006) Paircoil2: improved prediction of coiled coils from sequence. Bioinformatics 22: 356-358.
    • (2006) Bioinformatics , vol.22 , pp. 356-358
    • McDonnell, A.V.1    Jiang, T.2    Keating, A.E.3    Berger, B.4
  • 39
    • 0035999986 scopus 로고    scopus 로고
    • An HMM model for coiled-coil domains and a comparison with PSSM-based predictions
    • Delorenzi M, Speed T, (2002) An HMM model for coiled-coil domains and a comparison with PSSM-based predictions. Bioinformatics 18: 617-625.
    • (2002) Bioinformatics , vol.18 , pp. 617-625
    • Delorenzi, M.1    Speed, T.2
  • 40
    • 70350683807 scopus 로고    scopus 로고
    • CCHMM PROF: a HMM-based coiled-coil predictor with evolutionary information
    • Bartoli L, Fariselli P, Krogh A, Casadio R, (2009) CCHMM PROF: a HMM-based coiled-coil predictor with evolutionary information. Bioinformatics 25: 2757-2763.
    • (2009) Bioinformatics , vol.25 , pp. 2757-2763
    • Bartoli, L.1    Fariselli, P.2    Krogh, A.3    Casadio, R.4
  • 42
    • 1542400269 scopus 로고    scopus 로고
    • Analysis and prediction of DNA-binding proteins and their binding residues based on composition, sequence and structural information
    • Ahmad S, Gromiha MM, Sarai A, (2004) Analysis and prediction of DNA-binding proteins and their binding residues based on composition, sequence and structural information. Bioinformatics 20: 477-486.
    • (2004) Bioinformatics , vol.20 , pp. 477-486
    • Ahmad, S.1    Gromiha, M.M.2    Sarai, A.3
  • 43
    • 25444524842 scopus 로고    scopus 로고
    • PSSM-based prediction of DNA binding sites in proteins
    • Ahmad S, Sarai A, (2005) PSSM-based prediction of DNA binding sites in proteins. BMC Bioinformatics 6: 33.
    • (2005) BMC Bioinformatics , vol.6 , pp. 33
    • Ahmad, S.1    Sarai, A.2
  • 44
    • 0043122933 scopus 로고    scopus 로고
    • Uniqueprot: Creating representative protein sequence sets
    • Mika S, Rost B, (2003) Uniqueprot: Creating representative protein sequence sets. Nucleic Acids Res 31: 3789-91.
    • (2003) Nucleic Acids Res , vol.31 , pp. 3789-3791
    • Mika, S.1    Rost, B.2
  • 45
    • 0026030641 scopus 로고
    • Database of homology-derived protein structures and the structural meaning of sequence alignment
    • Sander C, Schneider R, (1991) Database of homology-derived protein structures and the structural meaning of sequence alignment. Proteins 9: 56-68.
    • (1991) Proteins , vol.9 , pp. 56-68
    • Sander, C.1    Schneider, R.2
  • 48
    • 13244292990 scopus 로고    scopus 로고
    • A two-stage classifier for identification of protein-protein interface residues
    • Yan C, Dobbs D, Honavar V, (2004) A two-stage classifier for identification of protein-protein interface residues. Bioinformatics 20 (Suppl 1): i371-i378.
    • (2004) Bioinformatics , vol.20 , Issue.SUPPL. 1
    • Yan, C.1    Dobbs, D.2    Honavar, V.3
  • 49
    • 33747150197 scopus 로고    scopus 로고
    • Protein binding site prediction using an empirical scoring function
    • Liang S, Zhang C, Liu S, Zhou Y, (2006) Protein binding site prediction using an empirical scoring function. Nucleic Acids Research 34: 3698-3707.
    • (2006) Nucleic Acids Research , vol.34 , pp. 3698-3707
    • Liang, S.1    Zhang, C.2    Liu, S.3    Zhou, Y.4
  • 50
    • 33846662784 scopus 로고    scopus 로고
    • ISIS: interaction sites identified from sequence
    • Ofran Y, Rost B, (2007) ISIS: interaction sites identified from sequence. Bioinformatics 23: e13-e16.
    • (2007) Bioinformatics , vol.23
    • Ofran, Y.1    Rost, B.2
  • 52
    • 0029984070 scopus 로고    scopus 로고
    • Improving prediction of protein secondary structure using structured neural networks and multiple sequence alignments
    • Riis SK, Krogh A, (1996) Improving prediction of protein secondary structure using structured neural networks and multiple sequence alignments. Journal of Computational Biology 3: 163-183.
    • (1996) Journal of Computational Biology , vol.3 , pp. 163-183
    • Riis, S.K.1    Krogh, A.2
  • 53
    • 0001969496 scopus 로고
    • Learning sets of filters using back-propagation* 1
    • Plaut D, Hinton G, (1987) Learning sets of filters using back-propagation* 1. Computer Speech & Language 2: 35-61.
    • (1987) Computer Speech & Language , vol.2 , pp. 35-61
    • Plaut, D.1    Hinton, G.2
  • 54
    • 0141593924 scopus 로고    scopus 로고
    • Protein secondary structure prediction based on an improved support vector machines approach
    • Kim H, Park H, (2003) Protein secondary structure prediction based on an improved support vector machines approach. Protein Eng 16: 553-560.
    • (2003) Protein Eng , vol.16 , pp. 553-560
    • Kim, H.1    Park, H.2
  • 55
    • 84862277874 scopus 로고    scopus 로고
    • Understanding the difficulty of training deep feedforward neural networks
    • volume 9
    • Bengio Y, Glorot X, (2010) Understanding the difficulty of training deep feedforward neural networks. Proceedings of AISTATS 2010 pp. 249-256 volume 9.
    • (2010) Proceedings of AISTATS 2010 , pp. 249-256
    • Bengio, Y.1    Glorot, X.2
  • 58
    • 34547584314 scopus 로고    scopus 로고
    • Advantages of combined transmembrane topology and signal peptide prediction-the Phobius web server
    • Käll L, Krogh A, Sonnhammer ELL, (2007) Advantages of combined transmembrane topology and signal peptide prediction-the Phobius web server. Nucleic Acids Research 35: W429.
    • (2007) Nucleic Acids Research , vol.35
    • Käll, L.1    Krogh, A.2    Sonnhammer, E.L.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.