메뉴 건너뛰기




Volumn 528, Issue , 2015, Pages 52-62

Prediction and structural uncertainty analyses of artificial neural networks using hierarchical Bayesian model averaging

Author keywords

Artificial neural network; Bayesian model averaging; Ensemble method; Uncertainty

Indexed keywords

AQUIFERS; BAYESIAN NETWORKS; CHEMICAL ACTIVATION; FORECASTING; HYDROGEOLOGY; NEURAL NETWORKS;

EID: 84934905634     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2015.06.007     Document Type: Article
Times cited : (74)

References (64)
  • 2
    • 6344262658 scopus 로고    scopus 로고
    • A comparison of different methods for combining multiple neural networks models
    • IEEE Press, Piscataway, N.J
    • Ahmad Z., Zhang J. A comparison of different methods for combining multiple neural networks models. Proceedings of the 2002 World Congress on Computational Intelligence 2002, 12-117. IEEE Press, Piscataway, N.J.
    • (2002) Proceedings of the 2002 World Congress on Computational Intelligence , pp. 12-117
    • Ahmad, Z.1    Zhang, J.2
  • 3
    • 0010208262 scopus 로고
    • Artificial neural networks technology.
    • ADACS State-of-the-Art Report, Contract Number F30602-89-C-0082, Rome Laboratory, Kaman Sciences Corporation, New York 13502-4627.
    • Anderson, D., McNeill, G., 1992. Artificial neural networks technology. ADACS State-of-the-Art Report, Contract Number F30602-89-C-0082, Rome Laboratory, Kaman Sciences Corporation, New York 13502-4627.
    • (1992)
    • Anderson, D.1    McNeill, G.2
  • 4
    • 0003536372 scopus 로고
    • American Public Health Association, Washington, D.C., USA, L.S. Clesceri, A.E. Greenberg, R.R. Trussell (Eds.)
    • APHA Standard Methods for the Examination of Water and Wastewater 1989, American Public Health Association, Washington, D.C., USA. 17th ed. L.S. Clesceri, A.E. Greenberg, R.R. Trussell (Eds.).
    • (1989) Standard Methods for the Examination of Water and Wastewater
  • 5
    • 54949157799 scopus 로고    scopus 로고
    • Distribution of fluoride in groundwater of Maku area, northwest of Iran
    • Asghari Moghaddam A., Fijani E. Distribution of fluoride in groundwater of Maku area, northwest of Iran. Environ. Geol. 2008, 56(2):281-287.
    • (2008) Environ. Geol. , vol.56 , Issue.2 , pp. 281-287
    • Asghari Moghaddam, A.1    Fijani, E.2
  • 6
    • 65749106720 scopus 로고    scopus 로고
    • Hydrogeologic framework of the Maku area basalts, northwestern Iran
    • Asghari Moghaddam A., Fijani E. Hydrogeologic framework of the Maku area basalts, northwestern Iran. Hydrogeol. J. 2009, 17(4):949-959.
    • (2009) Hydrogeol. J. , vol.17 , Issue.4 , pp. 949-959
    • Asghari Moghaddam, A.1    Fijani, E.2
  • 8
    • 0000025871 scopus 로고
    • Science and statistics
    • Box G.E.P. Science and statistics. J. Am. Stat. Assoc. 1976, 71(356):791-799.
    • (1976) J. Am. Stat. Assoc. , vol.71 , Issue.356 , pp. 791-799
    • Box, G.E.P.1
  • 9
    • 33644883318 scopus 로고    scopus 로고
    • A committee machine with empirical formulas for permeability prediction
    • Chen C.-H., Lin Z.-S. A committee machine with empirical formulas for permeability prediction. Comput. Geosci. 2006, 32(4):485-496.
    • (2006) Comput. Geosci. , vol.32 , Issue.4 , pp. 485-496
    • Chen, C.-H.1    Lin, Z.-S.2
  • 10
    • 84923144323 scopus 로고    scopus 로고
    • Uncertainty segregation and comparative evaluation in groundwater remediation designs: a chance-constrained hierarchical Bayesian model averaging approach
    • Chitsazan N., Tsai F.T.-C. Uncertainty segregation and comparative evaluation in groundwater remediation designs: a chance-constrained hierarchical Bayesian model averaging approach. J. Water Resour. Plan. Manage. 2015, 141(3):04014061. 10.1061/(ASCE)WR.1943-5452.0000461.
    • (2015) J. Water Resour. Plan. Manage. , vol.141 , Issue.3 , pp. 04014061
    • Chitsazan, N.1    Tsai, F.T.-C.2
  • 11
    • 84923807268 scopus 로고    scopus 로고
    • A hierarchical Bayesian model averaging framework for groundwater prediction under uncertainty
    • Chitsazan N., Tsai F.T.-C. A hierarchical Bayesian model averaging framework for groundwater prediction under uncertainty. Groundwater 2015, 53(2):305-316. 10.1111/gwat.12207.
    • (2015) Groundwater , vol.53 , Issue.2 , pp. 305-316
    • Chitsazan, N.1    Tsai, F.T.-C.2
  • 13
    • 0024861871 scopus 로고
    • Approximations by superpositions of a sigmoidal function
    • Cybenko G. Approximations by superpositions of a sigmoidal function. Math. Control Signals Syst. 1989, 2:303-314.
    • (1989) Math. Control Signals Syst. , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 14
    • 20344369583 scopus 로고    scopus 로고
    • Groundwater level forecasting using artificial neural networks
    • Daliakopoulos I.N., Coulibaly P., Tsanis I.K. Groundwater level forecasting using artificial neural networks. J. Hydrol. 2005, 309(1):229-240.
    • (2005) J. Hydrol. , vol.309 , Issue.1 , pp. 229-240
    • Daliakopoulos, I.N.1    Coulibaly, P.2    Tsanis, I.K.3
  • 15
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modeling using artificial neural networks
    • Dawson C., Wilby R. Hydrological modeling using artificial neural networks. Prog. Phys. Geogr. 2001, 25(1):80-108.
    • (2001) Prog. Phys. Geogr. , vol.25 , Issue.1 , pp. 80-108
    • Dawson, C.1    Wilby, R.2
  • 18
    • 0142239491 scopus 로고    scopus 로고
    • Recognizing changing seasonal patterns using artificial neural networks
    • Franses P.H., Draisma G. Recognizing changing seasonal patterns using artificial neural networks. J. Econometr. 1997, 81(1):273-280.
    • (1997) J. Econometr. , vol.81 , Issue.1 , pp. 273-280
    • Franses, P.H.1    Draisma, G.2
  • 19
    • 84972511893 scopus 로고
    • Practical Markov chain Monte Carlo
    • Geyer C.J. Practical Markov chain Monte Carlo. Stat. Sci. 1992, 7(4):473-483.
    • (1992) Stat. Sci. , vol.7 , Issue.4 , pp. 473-483
    • Geyer, C.J.1
  • 20
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. I: Preliminary concepts
    • Govindaraju R.S. Artificial neural networks in hydrology. I: Preliminary concepts. J. Hydrol. Eng. 2000, 5(2):115-123.
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 115-123
    • Govindaraju, R.S.1
  • 21
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. II: hydrologic applications
    • Govindaraju R.S. Artificial neural networks in hydrology. II: hydrologic applications. J. Hydrol. Eng. 2000, 5(2):124-137.
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 124-137
    • Govindaraju, R.S.1
  • 22
    • 0038563932 scopus 로고    scopus 로고
    • An adaptive Metropolis algorithm
    • Haario Heikki, Saksman Eero, Tamminen Johanna An adaptive Metropolis algorithm. Bernoulli 2001, 7(2):223-242.
    • (2001) Bernoulli , vol.7 , Issue.2 , pp. 223-242
    • Haario, H.1    Saksman, E.2    Tamminen, J.3
  • 24
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • Hsu K., Gupta H.V., Sorooshian S. Artificial neural network modeling of the rainfall-runoff process. Water Resour. Res. 1995, 31(10):2517-2530.
    • (1995) Water Resour. Res. , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.1    Gupta, H.V.2    Sorooshian, S.3
  • 25
    • 0037401696 scopus 로고    scopus 로고
    • Explaining consumer choice through neural networks: the stacked generalization approach
    • Hu M.Y., Tsoukalas C. Explaining consumer choice through neural networks: the stacked generalization approach. Eur. J. Oper. Res. 2003, 146(3):650-660.
    • (2003) Eur. J. Oper. Res. , vol.146 , Issue.3 , pp. 650-660
    • Hu, M.Y.1    Tsoukalas, C.2
  • 26
    • 84924634673 scopus 로고    scopus 로고
    • Efficacy of neural network and genetic algorithm techniques in simulating spatio-temporal fluctuations of groundwater
    • Jha M.K., Sahoo S. Efficacy of neural network and genetic algorithm techniques in simulating spatio-temporal fluctuations of groundwater. Hydrol. Process. 2015, 29(5):671-691.
    • (2015) Hydrol. Process. , vol.29 , Issue.5 , pp. 671-691
    • Jha, M.K.1    Sahoo, S.2
  • 27
    • 60249096354 scopus 로고    scopus 로고
    • A committee machine with intelligent systems for estimation of total organic carbon content from petrophysical data: an example from Kangan and Dalan reservoirs in South Pars Gas Field, Iran
    • Kadkhodaie-Ilkhchi A., Rahimpour-Bonab H., Rezaee M. A committee machine with intelligent systems for estimation of total organic carbon content from petrophysical data: an example from Kangan and Dalan reservoirs in South Pars Gas Field, Iran. Computat. Geosci. 2009, 35(3):459-474.
    • (2009) Computat. Geosci. , vol.35 , Issue.3 , pp. 459-474
    • Kadkhodaie-Ilkhchi, A.1    Rahimpour-Bonab, H.2    Rezaee, M.3
  • 28
    • 33748029144 scopus 로고    scopus 로고
    • Bayesian neural network for rainfall-runoff modeling
    • Khan M.S., Coulibaly P. Bayesian neural network for rainfall-runoff modeling. Water Resour. Res. 2006, 42(7):W07409.
    • (2006) Water Resour. Res. , vol.42 , Issue.7 , pp. W07409
    • Khan, M.S.1    Coulibaly, P.2
  • 29
    • 31444455186 scopus 로고    scopus 로고
    • Bayesian training of artificial neural networks used for water resources modeling
    • Kingston G.B., Lambert M.F., Maier H.R. Bayesian training of artificial neural networks used for water resources modeling. Water Resour. Res. 2005, 41(12):W12409.
    • (2005) Water Resour. Res. , vol.41 , Issue.12 , pp. W12409
    • Kingston, G.B.1    Lambert, M.F.2    Maier, H.R.3
  • 30
    • 44349171685 scopus 로고    scopus 로고
    • Bayesian model selection applied to artificial neural networks used for water resources modeling
    • Kingston G.B., Maier H.R., Lambert M.F. Bayesian model selection applied to artificial neural networks used for water resources modeling. Water Resour. Res. 2008, 44(4):W04419.
    • (2008) Water Resour. Res. , vol.44 , Issue.4 , pp. W04419
    • Kingston, G.B.1    Maier, H.R.2    Lambert, M.F.3
  • 31
    • 16444365723 scopus 로고    scopus 로고
    • Rainfall-runoff modelling using artificial neural networks: comparison of network types
    • Kumar A.R.S., Sudheer K.P., Jain S.K., Agarwal P.K. Rainfall-runoff modelling using artificial neural networks: comparison of network types. Hydrol. Process. 2005, 19(6):1277-1291.
    • (2005) Hydrol. Process. , vol.19 , Issue.6 , pp. 1277-1291
    • Kumar, A.R.S.1    Sudheer, K.P.2    Jain, S.K.3    Agarwal, P.K.4
  • 32
    • 77954817308 scopus 로고    scopus 로고
    • Estimation of NMR log parameters from conventional well log data using a committee machine with intelligent systems: a case study from the Iranian part of the South Pars gas field, Persian Gulf Basin
    • Labani M.M., Kadkhodaie-Ilkhchi A., Salahshoor K. Estimation of NMR log parameters from conventional well log data using a committee machine with intelligent systems: a case study from the Iranian part of the South Pars gas field, Persian Gulf Basin. J. Petrol. Sci. Eng. 2010, 72(1-2):175-185.
    • (2010) J. Petrol. Sci. Eng. , vol.72 , Issue.1-2 , pp. 175-185
    • Labani, M.M.1    Kadkhodaie-Ilkhchi, A.2    Salahshoor, K.3
  • 33
    • 72149111968 scopus 로고    scopus 로고
    • Bayesian model averaging for groundwater head prediction and uncertainty analysis using multimodel and multimethod
    • Li X., Tsai F.T.-C. Bayesian model averaging for groundwater head prediction and uncertainty analysis using multimodel and multimethod. Water Resour. Res. 2009, 45(9):W09403.
    • (2009) Water Resour. Res. , vol.45 , Issue.9 , pp. W09403
    • Li, X.1    Tsai, F.T.-C.2
  • 34
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications
    • Maier H.R., Dandy G.C. Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications. Environ. Model. Softw. 2000, 15(1):101-124.
    • (2000) Environ. Model. Softw. , vol.15 , Issue.1 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 35
    • 0347128520 scopus 로고    scopus 로고
    • Issues in Bayesian analysis of neural network models
    • Müller P., Insua D.R. Issues in Bayesian analysis of neural network models. Neural Comput. 1998, 10(3):749-770.
    • (1998) Neural Comput. , vol.10 , Issue.3 , pp. 749-770
    • Müller, P.1    Insua, D.R.2
  • 36
    • 84884375203 scopus 로고    scopus 로고
    • Supervised committee machine with artificial intelligence for prediction of fluoride concentration
    • Nadiri A.A., Fijani E., Tsai F.T.-C., Asghari Moghaddam A. Supervised committee machine with artificial intelligence for prediction of fluoride concentration. J. Hydroinform. 2013, 15(4):1474-1490.
    • (2013) J. Hydroinform. , vol.15 , Issue.4 , pp. 1474-1490
    • Nadiri, A.A.1    Fijani, E.2    Tsai, F.T.-C.3    Asghari Moghaddam, A.4
  • 37
    • 84894032966 scopus 로고    scopus 로고
    • Bayesian artificial intelligence model averaging for hydraulic conductivity estimation
    • Nadiri A.A., Chitsazan N., Tsai F.T.-C., Moghaddam A.A. Bayesian artificial intelligence model averaging for hydraulic conductivity estimation. J. Hydrol. Eng. 2014, 19(3):520-532.
    • (2014) J. Hydrol. Eng. , vol.19 , Issue.3 , pp. 520-532
    • Nadiri, A.A.1    Chitsazan, N.2    Tsai, F.T.-C.3    Moghaddam, A.A.4
  • 38
    • 0003611509 scopus 로고
    • Bayesian Learning for Neural Networks.
    • Doctoral dissertation, University of Toronto.
    • Neal, R.M., 1995. Bayesian Learning for Neural Networks. Doctoral dissertation, University of Toronto.
    • (1995)
    • Neal, R.M.1
  • 40
    • 67649122251 scopus 로고    scopus 로고
    • An ANN-based model for spatiotemporal groundwater level forecasting
    • Nourani V., Mogaddam A.A., Nadiri A.O. An ANN-based model for spatiotemporal groundwater level forecasting. Hydrol. Process. 2008, 22(26):5054-5066.
    • (2008) Hydrol. Process. , vol.22 , Issue.26 , pp. 5054-5066
    • Nourani, V.1    Mogaddam, A.A.2    Nadiri, A.O.3
  • 41
    • 0000926506 scopus 로고
    • When networks disagree: ensemble methods for hybrid neural networks
    • Chapman and Hall, New York, R.J. Mammone (Ed.)
    • Perrone M.P., Cooper L.N. When networks disagree: ensemble methods for hybrid neural networks. Artificial Neural Networks for Speech and Vision 1993, 126-142. Chapman and Hall, New York. R.J. Mammone (Ed.).
    • (1993) Artificial Neural Networks for Speech and Vision , pp. 126-142
    • Perrone, M.P.1    Cooper, L.N.2
  • 42
    • 0035427685 scopus 로고    scopus 로고
    • An investigation of model selection criteria for neural network time series forecasting
    • Qi M., Zhang G.P. An investigation of model selection criteria for neural network time series forecasting. Eur. J. Oper. Res. 2001, 132:666-680.
    • (2001) Eur. J. Oper. Res. , vol.132 , pp. 666-680
    • Qi, M.1    Zhang, G.P.2
  • 43
    • 0028174533 scopus 로고
    • Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling
    • Rogers L.L., Dowla F.U. Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling. Water Resour. Res. 1994, 30(2):457-481.
    • (1994) Water Resour. Res. , vol.30 , Issue.2 , pp. 457-481
    • Rogers, L.L.1    Dowla, F.U.2
  • 44
    • 28844470729 scopus 로고    scopus 로고
    • Flow forecasting for a Hawaii stream using rating curves and neural networks
    • Sahoo G.B., Ray C. Flow forecasting for a Hawaii stream using rating curves and neural networks. J. Hydrol. 2006, 317:63-80.
    • (2006) J. Hydrol. , vol.317 , pp. 63-80
    • Sahoo, G.B.1    Ray, C.2
  • 45
    • 33745982644 scopus 로고    scopus 로고
    • Application of artificial neural networks to assess pesticide contamination in shallow groundwater
    • Sahoo G.B., Ray C., Mehnert E., Keefer D.A. Application of artificial neural networks to assess pesticide contamination in shallow groundwater. Sci. Total Environ. 2006, 367(1):234-251.
    • (2006) Sci. Total Environ. , vol.367 , Issue.1 , pp. 234-251
    • Sahoo, G.B.1    Ray, C.2    Mehnert, E.3    Keefer, D.A.4
  • 47
    • 0742323231 scopus 로고    scopus 로고
    • Neural networks for predicting nitrate-nitrogen in drainage water
    • Sharma V., Negi S., Rudra R., Yang S. Neural networks for predicting nitrate-nitrogen in drainage water. Agric. Water Manage. 2003, 63(3):169-183.
    • (2003) Agric. Water Manage. , vol.63 , Issue.3 , pp. 169-183
    • Sharma, V.1    Negi, S.2    Rudra, R.3    Yang, S.4
  • 48
    • 6344243351 scopus 로고    scopus 로고
    • Artificial neural network ensembles and their application in pooled flood frequency analysis
    • Shu C., Burn D.H. Artificial neural network ensembles and their application in pooled flood frequency analysis. Water Resour. Res. 2004, 40(9):W09301.
    • (2004) Water Resour. Res. , vol.40 , Issue.9 , pp. W09301
    • Shu, C.1    Burn, D.H.2
  • 49
    • 77954973403 scopus 로고    scopus 로고
    • Model averaging techniques for quantifying conceptual model uncertainty
    • Singh A., Mishra S., Ruskauff G. Model averaging techniques for quantifying conceptual model uncertainty. Ground Water 2010, 48(5):701-715.
    • (2010) Ground Water , vol.48 , Issue.5 , pp. 701-715
    • Singh, A.1    Mishra, S.2    Ruskauff, G.3
  • 50
    • 0002032880 scopus 로고
    • Admissible selection of an accurate and parsimonious normal linear regression model
    • Stone C.J. Admissible selection of an accurate and parsimonious normal linear regression model. Ann. Stat. 1981, 9(3):475-485.
    • (1981) Ann. Stat. , vol.9 , Issue.3 , pp. 475-485
    • Stone, C.J.1
  • 51
    • 0036843660 scopus 로고    scopus 로고
    • Modelling evaporation using an artificial neural network algorithm
    • Sudheer K.P., Gosain A., Mohana Rangan D., Saheb S. Modelling evaporation using an artificial neural network algorithm. Hydrol. Process. 2002, 16(16):3189-3202.
    • (2002) Hydrol. Process. , vol.16 , Issue.16 , pp. 3189-3202
    • Sudheer, K.P.1    Gosain, A.2    Mohana Rangan, D.3    Saheb, S.4
  • 52
    • 0037470339 scopus 로고    scopus 로고
    • Improving peak flow estimates in artificial neural network river flow models
    • Sudheer K.P., Nayak P.C., Saheb K.S. Improving peak flow estimates in artificial neural network river flow models. Hydrol. Process. 2003, 17(3):677-686.
    • (2003) Hydrol. Process. , vol.17 , Issue.3 , pp. 677-686
    • Sudheer, K.P.1    Nayak, P.C.2    Saheb, K.S.3
  • 53
    • 0001447184 scopus 로고
    • Neural network studies. 1. Comparison of overfitting and overtraining
    • Tetko I.V., Livingstone D.J., Luik A.I. Neural network studies. 1. Comparison of overfitting and overtraining. J. Chem. Inform. Comput. Sci. 1995, 35(5):826-833.
    • (1995) J. Chem. Inform. Comput. Sci. , vol.35 , Issue.5 , pp. 826-833
    • Tetko, I.V.1    Livingstone, D.J.2    Luik, A.I.3
  • 54
    • 84950871099 scopus 로고
    • Accurate approximations for posterior moments and marginal densities
    • Tierney L., Kadane J.B. Accurate approximations for posterior moments and marginal densities. J. Am. Stat. Assoc. 1986, 81(393):82-86.
    • (1986) J. Am. Stat. Assoc. , vol.81 , Issue.393 , pp. 82-86
    • Tierney, L.1    Kadane, J.B.2
  • 55
    • 84883516453 scopus 로고    scopus 로고
    • Hierarchical Bayesian model averaging for hydrostratigraphic modeling: uncertainty segregation and comparative evaluation
    • Tsai F.T.-C., Elshall A.S. Hierarchical Bayesian model averaging for hydrostratigraphic modeling: uncertainty segregation and comparative evaluation. Water Resour. Res. 2013, 49:5520-5536.
    • (2013) Water Resour. Res. , vol.49 , pp. 5520-5536
    • Tsai, F.T.-C.1    Elshall, A.S.2
  • 56
    • 55249111575 scopus 로고    scopus 로고
    • Inverse groundwater modeling for hydraulic conductivity estimation using Bayesian model averaging and variance window
    • Tsai F.T.-C., Li X. Inverse groundwater modeling for hydraulic conductivity estimation using Bayesian model averaging and variance window. Water Resour. Res. 2008, 44(9):W09434.
    • (2008) Water Resour. Res. , vol.44 , Issue.9 , pp. W09434
    • Tsai, F.T.-C.1    Li, X.2
  • 57
    • 54849437518 scopus 로고    scopus 로고
    • Multiple parameterization for hydraulic conductivity identification
    • Tsai F.T.-C., Li X. Multiple parameterization for hydraulic conductivity identification. Ground Water 2008, 46(6):851-864.
    • (2008) Ground Water , vol.46 , Issue.6 , pp. 851-864
    • Tsai, F.T.-C.1    Li, X.2
  • 58
    • 10644287862 scopus 로고    scopus 로고
    • Artificial neural network technique for rainfall forecasting applied to the Sao Paulo region
    • Valverde Ramírez M.C., de Campos Velho H.F., Ferreira N.J. Artificial neural network technique for rainfall forecasting applied to the Sao Paulo region. J. Hydrol. 2005, 301(1):146-162.
    • (2005) J. Hydrol. , vol.301 , Issue.1 , pp. 146-162
    • Valverde Ramírez, M.C.1    de Campos Velho, H.F.2    Ferreira, N.J.3
  • 59
    • 29144451373 scopus 로고    scopus 로고
    • Model identification for hydrological forecasting under uncertainty
    • Wagener T., Gupta H.V. Model identification for hydrological forecasting under uncertainty. Stoch. Environ. Res. Risk Assess. 2005, 19(6):378-387.
    • (2005) Stoch. Environ. Res. Risk Assess. , vol.19 , Issue.6 , pp. 378-387
    • Wagener, T.1    Gupta, H.V.2
  • 60
    • 84855462883 scopus 로고    scopus 로고
    • Simulating and predicting river discharge time series using a wavelet-neural network hybrid modelling approach
    • Wei S., Song J., Khan N.I. Simulating and predicting river discharge time series using a wavelet-neural network hybrid modelling approach. Hydrol. Process. 2012, 26(2):281-296.
    • (2012) Hydrol. Process. , vol.26 , Issue.2 , pp. 281-296
    • Wei, S.1    Song, J.2    Khan, N.I.3
  • 62
    • 0002149299 scopus 로고
    • A systematic optimization procedure for the identification of inhomogeneous aquifer parameters
    • American Resource Association, Middleburg, Virginia, Z.A. Saleen (Ed.)
    • Yeh W.W.-G., Yoon Y.S. A systematic optimization procedure for the identification of inhomogeneous aquifer parameters. Advances in Groundwater Hydrology 1976, 72-82. American Resource Association, Middleburg, Virginia. Z.A. Saleen (Ed.).
    • (1976) Advances in Groundwater Hydrology , pp. 72-82
    • Yeh, W.W.-G.1    Yoon, Y.S.2
  • 63
    • 0019727195 scopus 로고
    • Aquifer parameter identification with optimum dimension in parameterization
    • Yeh W.W.-G., Yoon Y.S. Aquifer parameter identification with optimum dimension in parameterization. Water Resour. Res. 1981, 17(3):664-672.
    • (1981) Water Resour. Res. , vol.17 , Issue.3 , pp. 664-672
    • Yeh, W.W.-G.1    Yoon, Y.S.2
  • 64
    • 62949213977 scopus 로고    scopus 로고
    • Estimating uncertainty of streamflow simulation using Bayesian neural networks
    • Zhang X., Liang F., Srinivasan R., Van Liew M. Estimating uncertainty of streamflow simulation using Bayesian neural networks. Water Resour. Res. 2009, 45(2):W02403.
    • (2009) Water Resour. Res. , vol.45 , Issue.2 , pp. W02403
    • Zhang, X.1    Liang, F.2    Srinivasan, R.3    Van Liew, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.