-
1
-
-
20544478265
-
-
IOS Press, The Netherlands
-
Ablameyko S., Goras L., Gori M., Piuri V. Neural Networks for Instrumentation, Measurement and Related Industrial Applications. NATO Science Series: Computer & Systems Sciences 185 2003, IOS Press, The Netherlands.
-
(2003)
Neural Networks for Instrumentation, Measurement and Related Industrial Applications. NATO Science Series: Computer & Systems Sciences 185
-
-
Ablameyko, S.1
Goras, L.2
Gori, M.3
Piuri, V.4
-
2
-
-
6344262658
-
A comparison of different methods for combining multiple neural networks models
-
IEEE Press, Piscataway, N.J
-
Ahmad Z., Zhang J. A comparison of different methods for combining multiple neural networks models. Proceedings of the 2002 World Congress on Computational Intelligence 2002, 12-117. IEEE Press, Piscataway, N.J.
-
(2002)
Proceedings of the 2002 World Congress on Computational Intelligence
, pp. 12-117
-
-
Ahmad, Z.1
Zhang, J.2
-
3
-
-
0010208262
-
Artificial neural networks technology.
-
ADACS State-of-the-Art Report, Contract Number F30602-89-C-0082, Rome Laboratory, Kaman Sciences Corporation, New York 13502-4627.
-
Anderson, D., McNeill, G., 1992. Artificial neural networks technology. ADACS State-of-the-Art Report, Contract Number F30602-89-C-0082, Rome Laboratory, Kaman Sciences Corporation, New York 13502-4627.
-
(1992)
-
-
Anderson, D.1
McNeill, G.2
-
4
-
-
0003536372
-
-
American Public Health Association, Washington, D.C., USA, L.S. Clesceri, A.E. Greenberg, R.R. Trussell (Eds.)
-
APHA Standard Methods for the Examination of Water and Wastewater 1989, American Public Health Association, Washington, D.C., USA. 17th ed. L.S. Clesceri, A.E. Greenberg, R.R. Trussell (Eds.).
-
(1989)
Standard Methods for the Examination of Water and Wastewater
-
-
-
5
-
-
54949157799
-
Distribution of fluoride in groundwater of Maku area, northwest of Iran
-
Asghari Moghaddam A., Fijani E. Distribution of fluoride in groundwater of Maku area, northwest of Iran. Environ. Geol. 2008, 56(2):281-287.
-
(2008)
Environ. Geol.
, vol.56
, Issue.2
, pp. 281-287
-
-
Asghari Moghaddam, A.1
Fijani, E.2
-
6
-
-
65749106720
-
Hydrogeologic framework of the Maku area basalts, northwestern Iran
-
Asghari Moghaddam A., Fijani E. Hydrogeologic framework of the Maku area basalts, northwestern Iran. Hydrogeol. J. 2009, 17(4):949-959.
-
(2009)
Hydrogeol. J.
, vol.17
, Issue.4
, pp. 949-959
-
-
Asghari Moghaddam, A.1
Fijani, E.2
-
8
-
-
0000025871
-
Science and statistics
-
Box G.E.P. Science and statistics. J. Am. Stat. Assoc. 1976, 71(356):791-799.
-
(1976)
J. Am. Stat. Assoc.
, vol.71
, Issue.356
, pp. 791-799
-
-
Box, G.E.P.1
-
9
-
-
33644883318
-
A committee machine with empirical formulas for permeability prediction
-
Chen C.-H., Lin Z.-S. A committee machine with empirical formulas for permeability prediction. Comput. Geosci. 2006, 32(4):485-496.
-
(2006)
Comput. Geosci.
, vol.32
, Issue.4
, pp. 485-496
-
-
Chen, C.-H.1
Lin, Z.-S.2
-
10
-
-
84923144323
-
Uncertainty segregation and comparative evaluation in groundwater remediation designs: a chance-constrained hierarchical Bayesian model averaging approach
-
Chitsazan N., Tsai F.T.-C. Uncertainty segregation and comparative evaluation in groundwater remediation designs: a chance-constrained hierarchical Bayesian model averaging approach. J. Water Resour. Plan. Manage. 2015, 141(3):04014061. 10.1061/(ASCE)WR.1943-5452.0000461.
-
(2015)
J. Water Resour. Plan. Manage.
, vol.141
, Issue.3
, pp. 04014061
-
-
Chitsazan, N.1
Tsai, F.T.-C.2
-
11
-
-
84923807268
-
A hierarchical Bayesian model averaging framework for groundwater prediction under uncertainty
-
Chitsazan N., Tsai F.T.-C. A hierarchical Bayesian model averaging framework for groundwater prediction under uncertainty. Groundwater 2015, 53(2):305-316. 10.1111/gwat.12207.
-
(2015)
Groundwater
, vol.53
, Issue.2
, pp. 305-316
-
-
Chitsazan, N.1
Tsai, F.T.-C.2
-
12
-
-
15944365544
-
A neural network model for predicting aquifer water level elevations
-
Coppola E., Rana A.J., Poulton M.M., Szidarovszky F., Uhl V.V. A neural network model for predicting aquifer water level elevations. Ground Water 2005, 43:231-241.
-
(2005)
Ground Water
, vol.43
, pp. 231-241
-
-
Coppola, E.1
Rana, A.J.2
Poulton, M.M.3
Szidarovszky, F.4
Uhl, V.V.5
-
13
-
-
0024861871
-
Approximations by superpositions of a sigmoidal function
-
Cybenko G. Approximations by superpositions of a sigmoidal function. Math. Control Signals Syst. 1989, 2:303-314.
-
(1989)
Math. Control Signals Syst.
, vol.2
, pp. 303-314
-
-
Cybenko, G.1
-
14
-
-
20344369583
-
Groundwater level forecasting using artificial neural networks
-
Daliakopoulos I.N., Coulibaly P., Tsanis I.K. Groundwater level forecasting using artificial neural networks. J. Hydrol. 2005, 309(1):229-240.
-
(2005)
J. Hydrol.
, vol.309
, Issue.1
, pp. 229-240
-
-
Daliakopoulos, I.N.1
Coulibaly, P.2
Tsanis, I.K.3
-
15
-
-
0034749335
-
Hydrological modeling using artificial neural networks
-
Dawson C., Wilby R. Hydrological modeling using artificial neural networks. Prog. Phys. Geogr. 2001, 25(1):80-108.
-
(2001)
Prog. Phys. Geogr.
, vol.25
, Issue.1
, pp. 80-108
-
-
Dawson, C.1
Wilby, R.2
-
18
-
-
0142239491
-
Recognizing changing seasonal patterns using artificial neural networks
-
Franses P.H., Draisma G. Recognizing changing seasonal patterns using artificial neural networks. J. Econometr. 1997, 81(1):273-280.
-
(1997)
J. Econometr.
, vol.81
, Issue.1
, pp. 273-280
-
-
Franses, P.H.1
Draisma, G.2
-
19
-
-
84972511893
-
Practical Markov chain Monte Carlo
-
Geyer C.J. Practical Markov chain Monte Carlo. Stat. Sci. 1992, 7(4):473-483.
-
(1992)
Stat. Sci.
, vol.7
, Issue.4
, pp. 473-483
-
-
Geyer, C.J.1
-
20
-
-
0034174280
-
Artificial neural networks in hydrology. I: Preliminary concepts
-
Govindaraju R.S. Artificial neural networks in hydrology. I: Preliminary concepts. J. Hydrol. Eng. 2000, 5(2):115-123.
-
(2000)
J. Hydrol. Eng.
, vol.5
, Issue.2
, pp. 115-123
-
-
Govindaraju, R.S.1
-
21
-
-
0034174396
-
Artificial neural networks in hydrology. II: hydrologic applications
-
Govindaraju R.S. Artificial neural networks in hydrology. II: hydrologic applications. J. Hydrol. Eng. 2000, 5(2):124-137.
-
(2000)
J. Hydrol. Eng.
, vol.5
, Issue.2
, pp. 124-137
-
-
Govindaraju, R.S.1
-
22
-
-
0038563932
-
An adaptive Metropolis algorithm
-
Haario Heikki, Saksman Eero, Tamminen Johanna An adaptive Metropolis algorithm. Bernoulli 2001, 7(2):223-242.
-
(2001)
Bernoulli
, vol.7
, Issue.2
, pp. 223-242
-
-
Haario, H.1
Saksman, E.2
Tamminen, J.3
-
23
-
-
0001259111
-
Bayesian model averaging: a tutorial
-
Hoeting J.A., Madigan D., Raftery A.E., Volinsky C.T. Bayesian model averaging: a tutorial. Stat. Sci. 1999, 14(4):382-401.
-
(1999)
Stat. Sci.
, vol.14
, Issue.4
, pp. 382-401
-
-
Hoeting, J.A.1
Madigan, D.2
Raftery, A.E.3
Volinsky, C.T.4
-
24
-
-
0029413797
-
Artificial neural network modeling of the rainfall-runoff process
-
Hsu K., Gupta H.V., Sorooshian S. Artificial neural network modeling of the rainfall-runoff process. Water Resour. Res. 1995, 31(10):2517-2530.
-
(1995)
Water Resour. Res.
, vol.31
, Issue.10
, pp. 2517-2530
-
-
Hsu, K.1
Gupta, H.V.2
Sorooshian, S.3
-
25
-
-
0037401696
-
Explaining consumer choice through neural networks: the stacked generalization approach
-
Hu M.Y., Tsoukalas C. Explaining consumer choice through neural networks: the stacked generalization approach. Eur. J. Oper. Res. 2003, 146(3):650-660.
-
(2003)
Eur. J. Oper. Res.
, vol.146
, Issue.3
, pp. 650-660
-
-
Hu, M.Y.1
Tsoukalas, C.2
-
26
-
-
84924634673
-
Efficacy of neural network and genetic algorithm techniques in simulating spatio-temporal fluctuations of groundwater
-
Jha M.K., Sahoo S. Efficacy of neural network and genetic algorithm techniques in simulating spatio-temporal fluctuations of groundwater. Hydrol. Process. 2015, 29(5):671-691.
-
(2015)
Hydrol. Process.
, vol.29
, Issue.5
, pp. 671-691
-
-
Jha, M.K.1
Sahoo, S.2
-
27
-
-
60249096354
-
A committee machine with intelligent systems for estimation of total organic carbon content from petrophysical data: an example from Kangan and Dalan reservoirs in South Pars Gas Field, Iran
-
Kadkhodaie-Ilkhchi A., Rahimpour-Bonab H., Rezaee M. A committee machine with intelligent systems for estimation of total organic carbon content from petrophysical data: an example from Kangan and Dalan reservoirs in South Pars Gas Field, Iran. Computat. Geosci. 2009, 35(3):459-474.
-
(2009)
Computat. Geosci.
, vol.35
, Issue.3
, pp. 459-474
-
-
Kadkhodaie-Ilkhchi, A.1
Rahimpour-Bonab, H.2
Rezaee, M.3
-
28
-
-
33748029144
-
Bayesian neural network for rainfall-runoff modeling
-
Khan M.S., Coulibaly P. Bayesian neural network for rainfall-runoff modeling. Water Resour. Res. 2006, 42(7):W07409.
-
(2006)
Water Resour. Res.
, vol.42
, Issue.7
, pp. W07409
-
-
Khan, M.S.1
Coulibaly, P.2
-
29
-
-
31444455186
-
Bayesian training of artificial neural networks used for water resources modeling
-
Kingston G.B., Lambert M.F., Maier H.R. Bayesian training of artificial neural networks used for water resources modeling. Water Resour. Res. 2005, 41(12):W12409.
-
(2005)
Water Resour. Res.
, vol.41
, Issue.12
, pp. W12409
-
-
Kingston, G.B.1
Lambert, M.F.2
Maier, H.R.3
-
30
-
-
44349171685
-
Bayesian model selection applied to artificial neural networks used for water resources modeling
-
Kingston G.B., Maier H.R., Lambert M.F. Bayesian model selection applied to artificial neural networks used for water resources modeling. Water Resour. Res. 2008, 44(4):W04419.
-
(2008)
Water Resour. Res.
, vol.44
, Issue.4
, pp. W04419
-
-
Kingston, G.B.1
Maier, H.R.2
Lambert, M.F.3
-
31
-
-
16444365723
-
Rainfall-runoff modelling using artificial neural networks: comparison of network types
-
Kumar A.R.S., Sudheer K.P., Jain S.K., Agarwal P.K. Rainfall-runoff modelling using artificial neural networks: comparison of network types. Hydrol. Process. 2005, 19(6):1277-1291.
-
(2005)
Hydrol. Process.
, vol.19
, Issue.6
, pp. 1277-1291
-
-
Kumar, A.R.S.1
Sudheer, K.P.2
Jain, S.K.3
Agarwal, P.K.4
-
32
-
-
77954817308
-
Estimation of NMR log parameters from conventional well log data using a committee machine with intelligent systems: a case study from the Iranian part of the South Pars gas field, Persian Gulf Basin
-
Labani M.M., Kadkhodaie-Ilkhchi A., Salahshoor K. Estimation of NMR log parameters from conventional well log data using a committee machine with intelligent systems: a case study from the Iranian part of the South Pars gas field, Persian Gulf Basin. J. Petrol. Sci. Eng. 2010, 72(1-2):175-185.
-
(2010)
J. Petrol. Sci. Eng.
, vol.72
, Issue.1-2
, pp. 175-185
-
-
Labani, M.M.1
Kadkhodaie-Ilkhchi, A.2
Salahshoor, K.3
-
33
-
-
72149111968
-
Bayesian model averaging for groundwater head prediction and uncertainty analysis using multimodel and multimethod
-
Li X., Tsai F.T.-C. Bayesian model averaging for groundwater head prediction and uncertainty analysis using multimodel and multimethod. Water Resour. Res. 2009, 45(9):W09403.
-
(2009)
Water Resour. Res.
, vol.45
, Issue.9
, pp. W09403
-
-
Li, X.1
Tsai, F.T.-C.2
-
34
-
-
0033957764
-
Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications
-
Maier H.R., Dandy G.C. Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications. Environ. Model. Softw. 2000, 15(1):101-124.
-
(2000)
Environ. Model. Softw.
, vol.15
, Issue.1
, pp. 101-124
-
-
Maier, H.R.1
Dandy, G.C.2
-
35
-
-
0347128520
-
Issues in Bayesian analysis of neural network models
-
Müller P., Insua D.R. Issues in Bayesian analysis of neural network models. Neural Comput. 1998, 10(3):749-770.
-
(1998)
Neural Comput.
, vol.10
, Issue.3
, pp. 749-770
-
-
Müller, P.1
Insua, D.R.2
-
36
-
-
84884375203
-
Supervised committee machine with artificial intelligence for prediction of fluoride concentration
-
Nadiri A.A., Fijani E., Tsai F.T.-C., Asghari Moghaddam A. Supervised committee machine with artificial intelligence for prediction of fluoride concentration. J. Hydroinform. 2013, 15(4):1474-1490.
-
(2013)
J. Hydroinform.
, vol.15
, Issue.4
, pp. 1474-1490
-
-
Nadiri, A.A.1
Fijani, E.2
Tsai, F.T.-C.3
Asghari Moghaddam, A.4
-
37
-
-
84894032966
-
Bayesian artificial intelligence model averaging for hydraulic conductivity estimation
-
Nadiri A.A., Chitsazan N., Tsai F.T.-C., Moghaddam A.A. Bayesian artificial intelligence model averaging for hydraulic conductivity estimation. J. Hydrol. Eng. 2014, 19(3):520-532.
-
(2014)
J. Hydrol. Eng.
, vol.19
, Issue.3
, pp. 520-532
-
-
Nadiri, A.A.1
Chitsazan, N.2
Tsai, F.T.-C.3
Moghaddam, A.A.4
-
38
-
-
0003611509
-
Bayesian Learning for Neural Networks.
-
Doctoral dissertation, University of Toronto.
-
Neal, R.M., 1995. Bayesian Learning for Neural Networks. Doctoral dissertation, University of Toronto.
-
(1995)
-
-
Neal, R.M.1
-
39
-
-
84874279964
-
Forecasting spatiotemporal water levels of Tabriz aquifer
-
Nourani V., Mogaddam A.A., Nadiri A.O., Singh V.P. Forecasting spatiotemporal water levels of Tabriz aquifer. Trends Appl. Sci. Res. 2008, 3(4):319-329.
-
(2008)
Trends Appl. Sci. Res.
, vol.3
, Issue.4
, pp. 319-329
-
-
Nourani, V.1
Mogaddam, A.A.2
Nadiri, A.O.3
Singh, V.P.4
-
40
-
-
67649122251
-
An ANN-based model for spatiotemporal groundwater level forecasting
-
Nourani V., Mogaddam A.A., Nadiri A.O. An ANN-based model for spatiotemporal groundwater level forecasting. Hydrol. Process. 2008, 22(26):5054-5066.
-
(2008)
Hydrol. Process.
, vol.22
, Issue.26
, pp. 5054-5066
-
-
Nourani, V.1
Mogaddam, A.A.2
Nadiri, A.O.3
-
41
-
-
0000926506
-
When networks disagree: ensemble methods for hybrid neural networks
-
Chapman and Hall, New York, R.J. Mammone (Ed.)
-
Perrone M.P., Cooper L.N. When networks disagree: ensemble methods for hybrid neural networks. Artificial Neural Networks for Speech and Vision 1993, 126-142. Chapman and Hall, New York. R.J. Mammone (Ed.).
-
(1993)
Artificial Neural Networks for Speech and Vision
, pp. 126-142
-
-
Perrone, M.P.1
Cooper, L.N.2
-
42
-
-
0035427685
-
An investigation of model selection criteria for neural network time series forecasting
-
Qi M., Zhang G.P. An investigation of model selection criteria for neural network time series forecasting. Eur. J. Oper. Res. 2001, 132:666-680.
-
(2001)
Eur. J. Oper. Res.
, vol.132
, pp. 666-680
-
-
Qi, M.1
Zhang, G.P.2
-
43
-
-
0028174533
-
Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling
-
Rogers L.L., Dowla F.U. Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling. Water Resour. Res. 1994, 30(2):457-481.
-
(1994)
Water Resour. Res.
, vol.30
, Issue.2
, pp. 457-481
-
-
Rogers, L.L.1
Dowla, F.U.2
-
44
-
-
28844470729
-
Flow forecasting for a Hawaii stream using rating curves and neural networks
-
Sahoo G.B., Ray C. Flow forecasting for a Hawaii stream using rating curves and neural networks. J. Hydrol. 2006, 317:63-80.
-
(2006)
J. Hydrol.
, vol.317
, pp. 63-80
-
-
Sahoo, G.B.1
Ray, C.2
-
45
-
-
33745982644
-
Application of artificial neural networks to assess pesticide contamination in shallow groundwater
-
Sahoo G.B., Ray C., Mehnert E., Keefer D.A. Application of artificial neural networks to assess pesticide contamination in shallow groundwater. Sci. Total Environ. 2006, 367(1):234-251.
-
(2006)
Sci. Total Environ.
, vol.367
, Issue.1
, pp. 234-251
-
-
Sahoo, G.B.1
Ray, C.2
Mehnert, E.3
Keefer, D.A.4
-
47
-
-
0742323231
-
Neural networks for predicting nitrate-nitrogen in drainage water
-
Sharma V., Negi S., Rudra R., Yang S. Neural networks for predicting nitrate-nitrogen in drainage water. Agric. Water Manage. 2003, 63(3):169-183.
-
(2003)
Agric. Water Manage.
, vol.63
, Issue.3
, pp. 169-183
-
-
Sharma, V.1
Negi, S.2
Rudra, R.3
Yang, S.4
-
48
-
-
6344243351
-
Artificial neural network ensembles and their application in pooled flood frequency analysis
-
Shu C., Burn D.H. Artificial neural network ensembles and their application in pooled flood frequency analysis. Water Resour. Res. 2004, 40(9):W09301.
-
(2004)
Water Resour. Res.
, vol.40
, Issue.9
, pp. W09301
-
-
Shu, C.1
Burn, D.H.2
-
49
-
-
77954973403
-
Model averaging techniques for quantifying conceptual model uncertainty
-
Singh A., Mishra S., Ruskauff G. Model averaging techniques for quantifying conceptual model uncertainty. Ground Water 2010, 48(5):701-715.
-
(2010)
Ground Water
, vol.48
, Issue.5
, pp. 701-715
-
-
Singh, A.1
Mishra, S.2
Ruskauff, G.3
-
50
-
-
0002032880
-
Admissible selection of an accurate and parsimonious normal linear regression model
-
Stone C.J. Admissible selection of an accurate and parsimonious normal linear regression model. Ann. Stat. 1981, 9(3):475-485.
-
(1981)
Ann. Stat.
, vol.9
, Issue.3
, pp. 475-485
-
-
Stone, C.J.1
-
51
-
-
0036843660
-
Modelling evaporation using an artificial neural network algorithm
-
Sudheer K.P., Gosain A., Mohana Rangan D., Saheb S. Modelling evaporation using an artificial neural network algorithm. Hydrol. Process. 2002, 16(16):3189-3202.
-
(2002)
Hydrol. Process.
, vol.16
, Issue.16
, pp. 3189-3202
-
-
Sudheer, K.P.1
Gosain, A.2
Mohana Rangan, D.3
Saheb, S.4
-
52
-
-
0037470339
-
Improving peak flow estimates in artificial neural network river flow models
-
Sudheer K.P., Nayak P.C., Saheb K.S. Improving peak flow estimates in artificial neural network river flow models. Hydrol. Process. 2003, 17(3):677-686.
-
(2003)
Hydrol. Process.
, vol.17
, Issue.3
, pp. 677-686
-
-
Sudheer, K.P.1
Nayak, P.C.2
Saheb, K.S.3
-
53
-
-
0001447184
-
Neural network studies. 1. Comparison of overfitting and overtraining
-
Tetko I.V., Livingstone D.J., Luik A.I. Neural network studies. 1. Comparison of overfitting and overtraining. J. Chem. Inform. Comput. Sci. 1995, 35(5):826-833.
-
(1995)
J. Chem. Inform. Comput. Sci.
, vol.35
, Issue.5
, pp. 826-833
-
-
Tetko, I.V.1
Livingstone, D.J.2
Luik, A.I.3
-
54
-
-
84950871099
-
Accurate approximations for posterior moments and marginal densities
-
Tierney L., Kadane J.B. Accurate approximations for posterior moments and marginal densities. J. Am. Stat. Assoc. 1986, 81(393):82-86.
-
(1986)
J. Am. Stat. Assoc.
, vol.81
, Issue.393
, pp. 82-86
-
-
Tierney, L.1
Kadane, J.B.2
-
55
-
-
84883516453
-
Hierarchical Bayesian model averaging for hydrostratigraphic modeling: uncertainty segregation and comparative evaluation
-
Tsai F.T.-C., Elshall A.S. Hierarchical Bayesian model averaging for hydrostratigraphic modeling: uncertainty segregation and comparative evaluation. Water Resour. Res. 2013, 49:5520-5536.
-
(2013)
Water Resour. Res.
, vol.49
, pp. 5520-5536
-
-
Tsai, F.T.-C.1
Elshall, A.S.2
-
56
-
-
55249111575
-
Inverse groundwater modeling for hydraulic conductivity estimation using Bayesian model averaging and variance window
-
Tsai F.T.-C., Li X. Inverse groundwater modeling for hydraulic conductivity estimation using Bayesian model averaging and variance window. Water Resour. Res. 2008, 44(9):W09434.
-
(2008)
Water Resour. Res.
, vol.44
, Issue.9
, pp. W09434
-
-
Tsai, F.T.-C.1
Li, X.2
-
57
-
-
54849437518
-
Multiple parameterization for hydraulic conductivity identification
-
Tsai F.T.-C., Li X. Multiple parameterization for hydraulic conductivity identification. Ground Water 2008, 46(6):851-864.
-
(2008)
Ground Water
, vol.46
, Issue.6
, pp. 851-864
-
-
Tsai, F.T.-C.1
Li, X.2
-
58
-
-
10644287862
-
Artificial neural network technique for rainfall forecasting applied to the Sao Paulo region
-
Valverde Ramírez M.C., de Campos Velho H.F., Ferreira N.J. Artificial neural network technique for rainfall forecasting applied to the Sao Paulo region. J. Hydrol. 2005, 301(1):146-162.
-
(2005)
J. Hydrol.
, vol.301
, Issue.1
, pp. 146-162
-
-
Valverde Ramírez, M.C.1
de Campos Velho, H.F.2
Ferreira, N.J.3
-
59
-
-
29144451373
-
Model identification for hydrological forecasting under uncertainty
-
Wagener T., Gupta H.V. Model identification for hydrological forecasting under uncertainty. Stoch. Environ. Res. Risk Assess. 2005, 19(6):378-387.
-
(2005)
Stoch. Environ. Res. Risk Assess.
, vol.19
, Issue.6
, pp. 378-387
-
-
Wagener, T.1
Gupta, H.V.2
-
60
-
-
84855462883
-
Simulating and predicting river discharge time series using a wavelet-neural network hybrid modelling approach
-
Wei S., Song J., Khan N.I. Simulating and predicting river discharge time series using a wavelet-neural network hybrid modelling approach. Hydrol. Process. 2012, 26(2):281-296.
-
(2012)
Hydrol. Process.
, vol.26
, Issue.2
, pp. 281-296
-
-
Wei, S.1
Song, J.2
Khan, N.I.3
-
62
-
-
0002149299
-
A systematic optimization procedure for the identification of inhomogeneous aquifer parameters
-
American Resource Association, Middleburg, Virginia, Z.A. Saleen (Ed.)
-
Yeh W.W.-G., Yoon Y.S. A systematic optimization procedure for the identification of inhomogeneous aquifer parameters. Advances in Groundwater Hydrology 1976, 72-82. American Resource Association, Middleburg, Virginia. Z.A. Saleen (Ed.).
-
(1976)
Advances in Groundwater Hydrology
, pp. 72-82
-
-
Yeh, W.W.-G.1
Yoon, Y.S.2
-
63
-
-
0019727195
-
Aquifer parameter identification with optimum dimension in parameterization
-
Yeh W.W.-G., Yoon Y.S. Aquifer parameter identification with optimum dimension in parameterization. Water Resour. Res. 1981, 17(3):664-672.
-
(1981)
Water Resour. Res.
, vol.17
, Issue.3
, pp. 664-672
-
-
Yeh, W.W.-G.1
Yoon, Y.S.2
-
64
-
-
62949213977
-
Estimating uncertainty of streamflow simulation using Bayesian neural networks
-
Zhang X., Liang F., Srinivasan R., Van Liew M. Estimating uncertainty of streamflow simulation using Bayesian neural networks. Water Resour. Res. 2009, 45(2):W02403.
-
(2009)
Water Resour. Res.
, vol.45
, Issue.2
, pp. W02403
-
-
Zhang, X.1
Liang, F.2
Srinivasan, R.3
Van Liew, M.4
|