메뉴 건너뛰기




Volumn 309, Issue 1-4, 2005, Pages 229-240

Groundwater level forecasting using artificial neural networks

Author keywords

Aquifer overexploitation; Artificial neural networks; Groundwater level forecasting; Messara valley; Non linear modeling

Indexed keywords

ALGORITHMS; FEEDFORWARD NEURAL NETWORKS; FORECASTING; WATER LEVELS; WATER RESOURCES;

EID: 20344369583     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2004.12.001     Document Type: Article
Times cited : (568)

References (17)
  • 1
    • 1442291113 scopus 로고    scopus 로고
    • Impact of the length of observed records on the performance of ANN and of conceptual parsimonious rainfall-runoff forecasting models
    • F. Anctil, C. Perrin, and V. Andreassian Impact of the length of observed records on the performance of ANN and of conceptual parsimonious rainfall-runoff forecasting models Environ. Modeling Software 19 4 2004 357 368
    • (2004) Environ. Modeling Software , vol.19 , Issue.4 , pp. 357-368
    • Anctil, F.1    Perrin, C.2    Andreassian, V.3
  • 2
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology, parts I and II
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology Artificial neural networks in hydrology, parts I and II J. Hydrol. Eng. 5 2 2000 115 137
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 115-137
  • 3
    • 0034621379 scopus 로고    scopus 로고
    • Daily reservoir inflow forecasting using artificial neural networks with stopped training approach
    • P. Coulibaly, F. Anctil, and B. Bobee Daily reservoir inflow forecasting using artificial neural networks with stopped training approach J. Hydrol. 230 2000 244 257
    • (2000) J. Hydrol. , vol.230 , pp. 244-257
    • Coulibaly, P.1    Anctil, F.2    Bobee, B.3
  • 4
    • 0034993945 scopus 로고    scopus 로고
    • Artificial neural network modeling of water table depth fluctuations
    • P. Coulibaly, F. Anctil, R. Aravena, and B. Bobée Artificial neural network modeling of water table depth fluctuations Water Resour. Res. 37 4 2001 885 896
    • (2001) Water Resour. Res. , vol.37 , Issue.4 , pp. 885-896
    • Coulibaly, P.1    Anctil, F.2    Aravena, R.3    Bobée, B.4
  • 5
    • 0035450182 scopus 로고    scopus 로고
    • Multivariate reservoir inflow forecasting using temporal neural networks
    • P. Coulibaly, F. Anctil, and B. Bobée Multivariate reservoir inflow forecasting using temporal neural networks J. Hydrol. Eng. 9-10 2001 367 376
    • (2001) J. Hydrol. Eng. , vol.9-10 , pp. 367-376
    • Coulibaly, P.1    Anctil, F.2    Bobée, B.3
  • 6
    • 0035876630 scopus 로고    scopus 로고
    • Improving extreme hydrologic events forecasting using a new criterion for artificial neural network selection
    • P. Coulibaly, B. Bobee, and F. Anctil Improving extreme hydrologic events forecasting using a new criterion for artificial neural network selection Hydrol. Process. 15 2001 1533 1536
    • (2001) Hydrol. Process. , vol.15 , pp. 1533-1536
    • Coulibaly, P.1    Bobee, B.2    Anctil, F.3
  • 7
    • 0034083815 scopus 로고    scopus 로고
    • Water resources in the desertification-threatened Messara valley of Crete: Estimation of the annual water budget using a rainfall-runoff model
    • B. Croke, N. Cleridou, A. Kolovos, I. Vardavas, and J. Papamastorakis Water resources in the desertification-threatened Messara valley of Crete: estimation of the annual water budget using a rainfall-runoff model Environ. Modeling Software 15 2000 387 402
    • (2000) Environ. Modeling Software , vol.15 , pp. 387-402
    • Croke, B.1    Cleridou, N.2    Kolovos, A.3    Vardavas, I.4    Papamastorakis, J.5
  • 8
    • 26444565569 scopus 로고
    • Finding structure in time
    • J.L. Elman Finding structure in time Cognitive Sci. 14 1990 179 211
    • (1990) Cognitive Sci. , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 9
    • 0027007868 scopus 로고
    • Rainfall forecasting in space and time using a neural network
    • M.N. French, W.F. Krajewski, and R.R. Cuykendall Rainfall forecasting in space and time using a neural network J. Hydrol. 137 1992 1 31
    • (1992) J. Hydrol. , vol.137 , pp. 1-31
    • French, M.N.1    Krajewski, W.F.2    Cuykendall, R.R.3
  • 12
    • 0024880831 scopus 로고
    • Multilayer feed forward networks are universal approximators
    • K. Hornik, M. Stinchcombe, and M. White Multilayer feed forward networks are universal approximators Neural Networks 2 1989 359 366
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, M.3
  • 13
    • 0032034197 scopus 로고    scopus 로고
    • Understanding the behavior and optimizing the performance of back-propagation neural networks: An empirical study
    • H.R. Maier, and G.C. Dandy Understanding the behavior and optimizing the performance of back-propagation neural networks: an empirical study Environ. Modeling Software 13 1998 179 191
    • (1998) Environ. Modeling Software , vol.13 , pp. 179-191
    • Maier, H.R.1    Dandy, G.C.2
  • 14
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications
    • H.R. Maier, and G.C. Dandy Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications Environ. Modeling Software 15 2000 101 124
    • (2000) Environ. Modeling Software , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 16
    • 0034694775 scopus 로고    scopus 로고
    • Comparison of short-term rainfall prediction models for real-time flood forecasting
    • E. Toth, A. Brath, and A. Montanari Comparison of short-term rainfall prediction models for real-time flood forecasting J. Hydrol. 239 2000 132 147
    • (2000) J. Hydrol. , vol.239 , pp. 132-147
    • Toth, E.1    Brath, A.2    Montanari, A.3
  • 17
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial neural networks: The state of the art
    • G. Zhang, B.E. Patuwo, and M.Y. Hu Forecasting with artificial neural networks: the state of the art Int. J. Forecasting 14 1998 35 62
    • (1998) Int. J. Forecasting , vol.14 , pp. 35-62
    • Zhang, G.1    Patuwo, B.E.2    Hu, M.Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.