메뉴 건너뛰기




Volumn 15, Issue 4, 2013, Pages 1474-1490

Supervised committee machine with artificial intelligence for prediction of fluoride concentration

Author keywords

Artificial intelligence; Artificial neural network; Committee machine; Fuzzy logic; Ground water quality; Neuro fuzzy

Indexed keywords


EID: 84884375203     PISSN: 14647141     EISSN: None     Source Type: Journal    
DOI: 10.2166/hydro.2013.008     Document Type: Conference Paper
Times cited : (65)

References (78)
  • 1
    • 15944366613 scopus 로고    scopus 로고
    • Modular neural networks to predict the nitrate distribution in ground water using the on-ground nitrogen loading and recharge data
    • Almasri, M. N. & Kaluarachchi, J. J. 2005 Modular neural networks to predict the nitrate distribution in ground water using the on-ground nitrogen loading and recharge data. Environ. Model. Softw. 20 (7), 851-871.
    • (2005) Environ. Model. Softw. , vol.20 , Issue.7 , pp. 851-871
    • Almasri, M.N.1    Kaluarachchi, J.J.2
  • 2
    • 79960435554 scopus 로고    scopus 로고
    • Fuzzy logic-driven and SVM-driven hybrid computational intelligence models applied to oil and gas reservoir characterization
    • Anifowose, F. & Abdulraheem, A. 2011 Fuzzy logic-driven and SVM-driven hybrid computational intelligence models applied to oil and gas reservoir characterization. J. Nat. Gas Sci. Eng. 3 (3), 505-517.
    • (2011) J. Nat. Gas Sci. Eng. , vol.3 , Issue.3 , pp. 505-517
    • Anifowose, F.1    Abdulraheem, A.2
  • 4
    • 34547131556 scopus 로고    scopus 로고
    • Analysis and prediction of flow from local source in a river basin using a neuro-fuzzymodeling tool
    • Aqil, M., Kita, I., Yano, A. & Nishiyama, S. 2007 Analysis and prediction of flow from local source in a river basin using a neuro-fuzzymodeling tool. J. Environ. Manage. 85 (1), 215-223.
    • (2007) J. Environ. Manage. , vol.85 , Issue.1 , pp. 215-223
    • Aqil, M.1    Kita, I.2    Yano, A.3    Nishiyama, S.4
  • 5
    • 0034174280 scopus 로고    scopus 로고
    • Task Committee on Application of Artificial Neural Networks in Hydrology, Artificial neural network in hydrology. I: Preliminary concepts
    • ASCE
    • ASCE 2000a Task Committee on Application of Artificial Neural Networks in Hydrology, Artificial neural network in hydrology. I: preliminary concepts. J. Hydro. Eng. 5 (2), 115-123.
    • (2000) J. Hydro. Eng. , vol.5 , Issue.2 , pp. 115-123
  • 6
    • 0034174396 scopus 로고    scopus 로고
    • Task Committee on Application of Artificial Neural Networks in Hydrology, Artificial neural network in hydrology. II: Hydrologic applications
    • ASCE
    • ASCE 2000b Task Committee on Application of Artificial Neural Networks in Hydrology, Artificial neural network in hydrology. II: Hydrologic applications. J. Hydro. Eng. 5 (2), 124-137.
    • (2000) J. Hydro. Eng. , vol.5 , Issue.2 , pp. 124-137
  • 7
    • 54949157799 scopus 로고    scopus 로고
    • Distribution of fluoride in groundwater of Maku area, northwest of Iran
    • Asghari Moghaddam, A. & Fijani, E. 2008 Distribution of fluoride in groundwater of Maku area, northwest of Iran. Environ. Geol. 56 (2), 281-287.
    • (2008) Environ. Geol. , vol.56 , Issue.2 , pp. 281-287
    • Asghari Moghaddam, A.1    Fijani, E.2
  • 8
    • 65749106720 scopus 로고    scopus 로고
    • Hydrogeologic framework of the Maku area basalts, northwestern Iran
    • Asghari Moghaddam, A. & Fijani, E. 2009 Hydrogeologic framework of the Maku area basalts, northwestern Iran. Hydrogeol. J. 17 (4), 949-959.
    • (2009) Hydrogeol. J. , vol.17 , Issue.4 , pp. 949-959
    • Asghari Moghaddam, A.1    Fijani, E.2
  • 9
    • 84903631346 scopus 로고    scopus 로고
    • Spatial prediction of fluoride concentration using artificial neural networks and geostatistics models
    • Asghari Moghaddam, A., Nadiri, A. A. & Fijani, E. 2010 Spatial prediction of fluoride concentration using artificial neural networks and geostatistics models. Water Soil Sci. (Agric. Sci.) 19.1 (2), 129-145.
    • (2010) Water Soil Sci. (Agric. Sci.) , vol.191 , Issue.2 , pp. 129-145
    • Asghari Moghaddam, A.1    Nadiri, A.A.2    Fijani, E.3
  • 10
    • 0027444434 scopus 로고
    • Fuzzy rule-based models for infiltration
    • Bárdossy, A. & Disse, M. 1993 Fuzzy rule-based models for infiltration. Water Resour. Res. 29 (2), 373-382.
    • (1993) Water Resour. Res. , vol.29 , Issue.2 , pp. 373-382
    • Bárdossy, A.1    Disse, M.2
  • 11
    • 0030331855 scopus 로고    scopus 로고
    • Variability in fluoride content of subsurface water reservoirs
    • Bårdsen, A., Bjorvatn, K. & Selvig, K. A. 1996 Variability in fluoride content of subsurface water reservoirs. Acta Odontol. Scand. 54 (6), 343-347.
    • (1996) Acta Odontol. Scand. , vol.54 , Issue.6 , pp. 343-347
    • Bårdsen, A.1    Bjorvatn, K.2    Selvig, K.A.3
  • 13
    • 28444489651 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system for prediction of water level in reservoir
    • Chang, F.-J. & Chang, Y.-T. 2006 Adaptive neuro-fuzzy inference system for prediction of water level in reservoir. Adv. Water Resour. 29 (1), 1-10.
    • (2006) Adv. Water Resour. , vol.29 , Issue.1 , pp. 1-10
    • Chang, F.-J.1    Chang, Y.-T.2
  • 14
    • 33644883318 scopus 로고    scopus 로고
    • A committee machine with empirical formulas for permeability prediction
    • Chen, C.-H. & Lin, Z.-S. 2006 A committee machine with empirical formulas for permeability prediction. Comput. Geosci. 32 (4), 485-496.
    • (2006) Comput. Geosci. , vol.32 , Issue.4 , pp. 485-496
    • Chen, C.-H.1    Lin, Z.-S.2
  • 15
    • 0000810783 scopus 로고    scopus 로고
    • Fuzzy clustering analysis for optimizing fuzzy membership functions
    • Chen, M.-S. & Wang, S.-W. 1999 Fuzzy clustering analysis for optimizing fuzzy membership functions. Fuzzy Sets Syst. 103 (2), 239-254.
    • (1999) Fuzzy Sets Syst. , vol.103 , Issue.2 , pp. 239-254
    • Chen, M.-S.1    Wang, S.-W.2
  • 16
    • 84974743850 scopus 로고
    • Fuzzy model identification based on cluster estimation
    • Chiu, S. L. 1994 Fuzzy model identification based on cluster estimation. J. Intell. Fuzzy Syst. 2, 267-278.
    • (1994) J. Intell. Fuzzy Syst. , vol.2 , pp. 267-278
    • Chiu, S.L.1
  • 17
    • 20344369583 scopus 로고    scopus 로고
    • Groundwater level forecasting using artificial neural networks
    • Daliakopoulos, I. N., Coulibaly, P. & Tsanis, I. K. 2005 Groundwater level forecasting using artificial neural networks. J. Hydrol. 309 (1-4), 229-240.
    • (2005) J. Hydrol. , vol.309 , Issue.1-4 , pp. 229-240
    • Daliakopoulos, I.N.1    Coulibaly, P.2    Tsanis, I.K.3
  • 18
    • 0018200565 scopus 로고
    • Interpretation of hydrochemical facies by factor analysis
    • Dalton, M.G. & Upchurch, S.B. 1978 Interpretation of hydrochemical facies by factor analysis. Ground Water 16 (4), 228-233.
    • (1978) Ground Water , vol.16 , Issue.4 , pp. 228-233
    • Dalton, M.G.1    Upchurch, S.B.2
  • 20
    • 0008804575 scopus 로고
    • The fluoride problem in the groundwater of Sri Lanka - Environmental management and health
    • Dissanayake, C. B. 1991 The fluoride problem in the groundwater of Sri Lanka - environmental management and health. Int. J. Environ. Stud. 38 (2-3), 137-155.
    • (1991) Int. J. Environ. Stud. , vol.38 , Issue.2-3 , pp. 137-155
    • Dissanayake, C.B.1
  • 21
    • 20344385052 scopus 로고    scopus 로고
    • Applicability of neuro-fuzzy techniques in predicting ground-water vulnerability: A GIS-based sensitivity analysis
    • Dixon, B. 2005 Applicability of neuro-fuzzy techniques in predicting ground-water vulnerability: a GIS-based sensitivity analysis. J. Hydrol. 309 (1-4), 17-38.
    • (2005) J. Hydrol. , vol.309 , Issue.1-4 , pp. 17-38
    • Dixon, B.1
  • 22
    • 33750464090 scopus 로고    scopus 로고
    • Application of factor analysis to study contamination of a semi-confined aquifer (Wielkopolska Buried Valley aquifer, Poland)
    • Dragon, K. 2006 Application of factor analysis to study contamination of a semi-confined aquifer (Wielkopolska Buried Valley aquifer, Poland). J. Hydrol. 331 (1-2), 272-279.
    • (2006) J. Hydrol. , vol.331 , Issue.1-2 , pp. 272-279
    • Dragon, K.1
  • 23
    • 31044452344 scopus 로고    scopus 로고
    • Using neural networks for parameter estimation in ground water
    • Garcia,L.A. & Shigidi, A. 2006 Using neural networks for parameter estimation in ground water. J. Hydrol. 318 (1-4), 215-231.
    • (2006) J. Hydrol. , vol.318 , Issue.1-4 , pp. 215-231
    • Garcia, L.A.1    Shigidi, A.2
  • 24
    • 0030454728 scopus 로고    scopus 로고
    • The origin of high bicarbonate and fluoride concentrations in waters of the Main Ethiopian Rift Valley, East African Rift system
    • Gizaw, B. 1996 The origin of high bicarbonate and fluoride concentrations in waters of the Main Ethiopian Rift Valley, East African Rift system. J. Afr. Earth Sci. 22 (4), 391-402.
    • (1996) J. Afr. Earth Sci. , vol.22 , Issue.4 , pp. 391-402
    • Gizaw, B.1
  • 27
    • 0007177111 scopus 로고    scopus 로고
    • Application of factor analysis to the study of contamination in the aquifer system of Ayamonte-Huelva (Spain)
    • Grande, J. A., González, A., Beltrán, R. & Sánchez-Rodas, D. 1996 Application of factor analysis to the study of contamination in the aquifer system of Ayamonte-Huelva (Spain). Ground Water 34 (1), 155-161.
    • (1996) Ground Water , vol.34 , Issue.1 , pp. 155-161
    • Grande, J.A.1    González, A.2    Beltrán, R.3    Sánchez-Rodas, D.4
  • 28
    • 33847718158 scopus 로고    scopus 로고
    • Geochemical processes controlling the elevated fluoride concentrations in groundwaters of the Taiyuan Basin, Northern China
    • Guo, Q., Wang, Y., Ma, T. & Ma, R. 2007 Geochemical processes controlling the elevated fluoride concentrations in groundwaters of the Taiyuan Basin, Northern China. J. Geochem. Explor. 93 (1), 1-12.
    • (2007) J. Geochem. Explor. , vol.93 , Issue.1 , pp. 1-12
    • Guo, Q.1    Wang, Y.2    Ma, T.3    Ma, R.4
  • 29
    • 24944511090 scopus 로고    scopus 로고
    • Origin of high fluoride in groundwater in the North Gujarat-Cambay region, India
    • Gupta, S. K., Deshpande, R. D., Agarwal, M. & Raval, B. R. 2005 Origin of high fluoride in groundwater in the North Gujarat-Cambay region, India. Hydrogeol. J. 13 (4), 596-605.
    • (2005) Hydrogeol. J. , vol.13 , Issue.4 , pp. 596-605
    • Gupta, S.K.1    Deshpande, R.D.2    Agarwal, M.3    Raval, B.R.4
  • 30
    • 4143070227 scopus 로고    scopus 로고
    • Comparison between traditional methods and artificial neural networks for ammonia concentration forecasting in an eel (Anguilla anguilla L.) intensive rearing system
    • Gutiérrez-Estrada, J. C., de Pedro-Sanz, E., López-Luque, R. & Pulido-Calvo, I. 2004 Comparison between traditional methods and artificial neural networks for ammonia concentration forecasting in an eel (Anguilla anguilla L.) intensive rearing system. Aquacult. Eng. 31, 183-203.
    • (2004) Aquacult. Eng. , vol.31 , pp. 183-203
    • Gutiérrez-Estrada, J.C.1    De Pedro-Sanz, E.2    López-Luque, R.3    Pulido-Calvo, I.4
  • 31
    • 0016510977 scopus 로고
    • Geochemistry and genesis of fluoride-containing ground waters in India
    • Handa, B. K. 1975 Geochemistry and genesis of fluoride-containing ground waters in India. Ground Water 13 (3), 275-281.
    • (1975) Ground Water , vol.13 , Issue.3 , pp. 275-281
    • Handa, B.K.1
  • 33
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik, K., Stinchcombe, M. & White, H. 1989 Multilayer feedforward networks are universal approximators. Neural Netw. 2 (5), 359-366.
    • (1989) Neural Netw. , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 34
    • 0037366394 scopus 로고    scopus 로고
    • Spatial patterns of nitrate, chloride, sulfate, and fluoride concentrations in the Woodbine Aquifer of North-Central Texas
    • Hudak, P. F. & Sanmanee, S. 2003 Spatial patterns of nitrate, chloride, sulfate, and fluoride concentrations in the Woodbine Aquifer of North-Central Texas. Environ. Monit. Assess. 82 (3), 311-320.
    • (2003) Environ. Monit. Assess. , vol.82 , Issue.3 , pp. 311-320
    • Hudak, P.F.1    Sanmanee, S.2
  • 35
    • 33749517168 scopus 로고    scopus 로고
    • Another look at measures of forecast accuracy
    • Hyndman, R. J. & Koehler, A. B. 2006 Another look at measures of forecast accuracy. Int. J. Forecast. 22 (4), 679-688.
    • (2006) Int. J. Forecast. , vol.22 , Issue.4 , pp. 679-688
    • Hyndman, R.J.1    Koehler, A.B.2
  • 36
    • 12344289643 scopus 로고    scopus 로고
    • Controls on the genesis of some high-fluoride groundwaters in India
    • Jacks, G., Bhattacharya, P., Chaudhary, V. & Singh, K. P. 2005 Controls on the genesis of some high-fluoride groundwaters in India. Appl. Geochem. 20 (2), 221-228.
    • (2005) Appl. Geochem. , vol.20 , Issue.2 , pp. 221-228
    • Jacks, G.1    Bhattacharya, P.2    Chaudhary, V.3    Singh, K.P.4
  • 37
    • 58049177940 scopus 로고    scopus 로고
    • A fuzzy logic approach to estimating hydraulic flow units from well log data: A case study from the Ahwaz oilfield, South Iran
    • Kadkhodaie-Ilkhchi, A. & Amini, A. 2009 A fuzzy logic approach to estimating hydraulic flow units from well log data: a case study from the Ahwaz oilfield, South Iran. J. Petrol. Geol. 32 (1), 67-78.
    • (2009) J. Petrol. Geol. , vol.32 , Issue.1 , pp. 67-78
    • Kadkhodaie-Ilkhchi, A.1    Amini, A.2
  • 38
    • 60249096354 scopus 로고    scopus 로고
    • A committee machine with intelligent systems for estimation of total organic carbon content from petrophysical data: An example from Kangan and Dalan reservoirs in South Pars Gas Field, Iran
    • Kadkhodaie-Ilkhchi, A., Rahimpour-Bonab, H. & Rezaee, M. 2009 A committee machine with intelligent systems for estimation of total organic carbon content from petrophysical data: an example from Kangan and Dalan reservoirs in South Pars Gas Field, Iran. Comput. Geosci. 35 (3), 459-474.
    • (2009) Comput. Geosci. , vol.35 , Issue.3 , pp. 459-474
    • Kadkhodaie-Ilkhchi, A.1    Rahimpour-Bonab, H.2    Rezaee, M.3
  • 39
    • 34250922831 scopus 로고
    • The Varimax criterion for analytic rotation in factor analysis
    • Kaiser, H. F. 1958 The Varimax criterion for analytic rotation in factor analysis. Psychometrika 23 (3), 187-200.
    • (1958) Psychometrika , vol.23 , Issue.3 , pp. 187-200
    • Kaiser, H.F.1
  • 41
    • 0028147423 scopus 로고
    • Fluoride ingestion in excess and its effects on organic and certain inorganic constituents of soft tissues
    • Kharb, P. & Susheela, A. K. 1994 Fluoride ingestion in excess and its effects on organic and certain inorganic constituents of soft tissues. Med. Res. Soc. 22, 43-44.
    • (1994) Med. Res. Soc. , vol.22 , pp. 43-44
    • Kharb, P.1    Susheela, A.K.2
  • 42
    • 77954817308 scopus 로고    scopus 로고
    • Estimation of NMR log parameters from conventional well log data using a committee machine with intelligent systems: A case study from the Iranian part of the South Pars gas field, Persian Gulf Basin
    • Labani, M. M., Kadkhodaie-Ilkhchi, A. & Salahshoor, K. 2010 Estimation of NMR log parameters from conventional well log data using a committee machine with intelligent systems: a case study from the Iranian part of the South Pars gas field, Persian Gulf Basin. J. Petrol. Sci. Eng. 72 (1-2), 175-185.
    • (2010) J. Petrol. Sci. Eng. , vol.72 , Issue.1-2 , pp. 175-185
    • Labani, M.M.1    Kadkhodaie-Ilkhchi, A.2    Salahshoor, K.3
  • 45
    • 29544449323 scopus 로고    scopus 로고
    • Reservoir properties determination using fuzzy logic and neural networks from well data in offshore Korea
    • Lim, J.-S. 2005 Reservoir properties determination using fuzzy logic and neural networks from well data in offshore Korea. J. Petrol. Sci. Eng. 49 (3-4), 182-192.
    • (2005) J. Petrol. Sci. Eng. , vol.49 , Issue.3-4 , pp. 182-192
    • Lim, J.-S.1
  • 46
    • 84963342677 scopus 로고
    • Advances in the linguistic synthesis of fuzzy controllers
    • Mamdani, E. H. 1976 Advances in the linguistic synthesis of fuzzy controllers. Int. J. Man-Machine Stud. 8 (6), 669-678.
    • (1976) Int. J. Man-Machine Stud. , vol.8 , Issue.6 , pp. 669-678
    • Mamdani, E.H.1
  • 47
    • 0017703889 scopus 로고
    • Application of fuzzy logic to approximate reasoning using linguistic synthesis
    • Mamdani, E. H. 1977 Application of fuzzy logic to approximate reasoning using linguistic synthesis. IEEE Trans. Comput. C-26 (12), 1182-1191.
    • (1977) IEEE Trans. Comput. , vol.C26 , Issue.12 , pp. 1182-1191
    • Mamdani, E.H.1
  • 48
    • 0016451032 scopus 로고
    • An experiment in linguistic synthesis with a fuzzy logic controller
    • Mamdani, E. H. & Assilian, S. 1975 An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man-Machine Stud. 7 (1), 1-13.
    • (1975) Int. J. Man-Machine Stud. , vol.7 , Issue.1 , pp. 1-13
    • Mamdani, E.H.1    Assilian, S.2
  • 49
    • 77951554647 scopus 로고    scopus 로고
    • Application of hydroinformatics tools for water quality modeling and management: Case study of Vientiane, Lao P.D.R
    • Mark, O., Lacoursière, J. O., Vought, L. B.-M., Amena, Z. & Babel, M. S. 2010 Application of hydroinformatics tools for water quality modeling and management: case study of Vientiane, Lao P.D.R. J. Hydroinform. 12 (2), 161-171.
    • (2010) J. Hydroinform. , vol.12 , Issue.2 , pp. 161-171
    • Mark, O.1    Lacoursière, J.O.2    Vought, L.B.-M.3    Amena, Z.4    Babel, M.S.5
  • 50
    • 0035153145 scopus 로고    scopus 로고
    • Inverse reactive transport simulator (INVERTS): An inverse model for contaminant transport with nonlinear adsorption and source terms
    • McGrail, B. P. 2001 Inverse reactive transport simulator (INVERTS): an inverse model for contaminant transport with nonlinear adsorption and source terms. Environ. Model. Softw. 16 (8), 711-723.
    • (2001) Environ. Model. Softw. , vol.16 , Issue.8 , pp. 711-723
    • McGrail, B.P.1
  • 51
    • 33746893825 scopus 로고    scopus 로고
    • Comparison of artificial neural network and regression pedotransfer functions for prediction of soil water retention and saturated hydraulic conductivity
    • Merdun, H., Çinar, Ö., Meral, R. & Apan, M. 2006 Comparison of artificial neural network and regression pedotransfer functions for prediction of soil water retention and saturated hydraulic conductivity. Soil Till. Res. 90 (1-2), 108-116.
    • (2006) Soil Till. Res. , vol.90 , Issue.1-2 , pp. 108-116
    • Merdun, H.1    Çinar, O.2    Meral, R.3    Apan, M.4
  • 53
    • 84891799813 scopus 로고    scopus 로고
    • Bayesian artificial intelligence model averaging for hydraulic conductivity estimation
    • (in press)
    • Nadiri, A. A., Chitsazan, N., Tsai, F. T.-C. & Asghari Moghaddam, A. 2013a Bayesian artificial intelligence model averaging for hydraulic conductivity estimation. J. Hydro. Eng. (in press).
    • (2013) J. Hydro. Eng.
    • Nadiri, A.A.1    Chitsazan, N.2    Tsai, F.T.-C.3    Asghari Moghaddam, A.4
  • 55
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models part I: A discussion of principles
    • Nash, J. E. & Sutcliffe, J. V. 1970 River flow forecasting through conceptual models part I: a discussion of principles. J. Hydrol. 10 (3), 282-290.
    • (1970) J. Hydrol. , vol.10 , Issue.3 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 56
    • 1942490118 scopus 로고    scopus 로고
    • A neuro-fuzzy computing technique for modeling hydrological time series
    • Nayak, P. C., Sudheer, K. P., Rangan, D. M. & Ramasastri, K. S. 2004 A neuro-fuzzy computing technique for modeling hydrological time series. J. Hydrol. 291 (1-2), 52-66.
    • (2004) J. Hydrol. , vol.291 , Issue.1-2 , pp. 52-66
    • Nayak, P.C.1    Sudheer, K.P.2    Rangan, D.M.3    Ramasastri, K.S.4
  • 57
    • 0026925618 scopus 로고
    • Adaptive fuzzy leader clustering of complex data sets in pattern recognition
    • Newton, S. C., Pemmaraju, S. & Mitra, S. 1992 Adaptive fuzzy leader clustering of complex data sets in pattern recognition. IEEE Trans. Neural Netw. 3 (5), 794-800.
    • (1992) IEEE Trans. Neural Netw. , vol.3 , Issue.5 , pp. 794-800
    • Newton, S.C.1    Pemmaraju, S.2    Mitra, S.3
  • 58
    • 84862139051 scopus 로고    scopus 로고
    • Hybrid waveletgenetic programming approach to optimize ANN modeling of rainfall-runoff process
    • Nourani, V., Komasi, M. & Alami, M. T. 2012 Hybrid waveletgenetic programming approach to optimize ANN modeling of rainfall-runoff process. J. Hydrol. Eng. 17 (6), 724-741.
    • (2012) J. Hydrol. Eng. , vol.17 , Issue.6 , pp. 724-741
    • Nourani, V.1    Komasi, M.2    Alami, M.T.3
  • 59
    • 67649122251 scopus 로고    scopus 로고
    • An ANNbased model for spatiotemporal groundwater level forecasting
    • Nourani, V., Moghaddam, A. A. & Nadiri, A. O. 2008 An ANNbased model for spatiotemporal groundwater level forecasting. Hydrol. Proc. 22 (26), 5054-5066.
    • (2008) Hydrol. Proc. , vol.22 , Issue.26 , pp. 5054-5066
    • Nourani, V.1    Moghaddam, A.A.2    Nadiri, A.O.3
  • 60
    • 84856076556 scopus 로고    scopus 로고
    • Sensitivity analysis of the artificial neural network outputs in simulation of the evaporation process at different climatologic regimes
    • Nourani, V. & Sayyah Fard, M. 2012 Sensitivity analysis of the artificial neural network outputs in simulation of the evaporation process at different climatologic regimes. Adv. Eng. Softw. 47 (1), 127-146.
    • (2012) Adv. Eng. Softw. , vol.47 , Issue.1 , pp. 127-146
    • Nourani, V.1    Sayyah Fard, M.2
  • 61
    • 33745110367 scopus 로고    scopus 로고
    • Fluoride concentrations in a crystalline bedrock aquifer Marathon County, Wisconsin
    • Ozsvath, D. L. 2006 Fluoride concentrations in a crystalline bedrock aquifer Marathon County, Wisconsin. Environ. Geol. 50 (1), 132-138.
    • (2006) Environ. Geol. , vol.50 , Issue.1 , pp. 132-138
    • Ozsvath, D.L.1
  • 62
    • 49849106661 scopus 로고    scopus 로고
    • An ANN application for water quality forecasting
    • Palani, S., Liong, S. Y. & Tkalich, P. 2008 An ANN application for water quality forecasting. Mar. Pollut. Bull. 56 (9), 1586-1597.
    • (2008) Mar. Pollut. Bull. , vol.56 , Issue.9 , pp. 1586-1597
    • Palani, S.1    Liong, S.Y.2    Tkalich, P.3
  • 63
    • 59049088362 scopus 로고    scopus 로고
    • Improved irrigation water demand forecasting using a soft-computing hybrid model
    • Pulido-Calvo, I. & Gutiérrez-Estrada, J. C. 2009 Improved irrigation water demand forecasting using a soft-computing hybrid model. Biosyst. Eng. 102 (2), 202-218.
    • (2009) Biosyst. Eng. , vol.102 , Issue.2 , pp. 202-218
    • Pulido-Calvo, I.1    Gutiérrez-Estrada, J.C.2
  • 64
    • 84865022391 scopus 로고    scopus 로고
    • Prediction of dissolved oxygen in reservoirs using adaptive network-based fuzzy inference system
    • Ranković, V., Radulović, J., Radojević, I., Ostojić, A. & Čomić, L. 2012 Prediction of dissolved oxygen in reservoirs using adaptive network-based fuzzy inference system. J. Hydroinform. 14 (1), 167-179.
    • (2012) J. Hydroinform. , vol.14 , Issue.1 , pp. 167-179
    • Ranković, V.1    Radulović, J.2    Radojević, I.3    Ostojić, A.4    Čomić, L.5
  • 65
    • 33745095905 scopus 로고    scopus 로고
    • Fluoride and environment - A review
    • (M. J. Bunch, V. Madha Suresh & T. VasanthaKumaran, eds).Chennai, India 15-17 December 2003. Department of Geography, University of Madras and Faculty of Environmental Studies, York University
    • Rao Nagendra, C. R. 2003 Fluoride and environment - A review. In: Proceedings of the Third International Conference on Environment and Health (M. J. Bunch, V. Madha Suresh & T. VasanthaKumaran, eds).Chennai, India 15-17 December 2003. Department of Geography, University of Madras and Faculty of Environmental Studies, York University, pp. 386-399.
    • (2003) Proceedings of the Third International Conference on Environment and Health , pp. 386-399
    • Rao Nagendra, C.R.1
  • 66
    • 0034891934 scopus 로고    scopus 로고
    • Dissolution of fluoride in groundwater: A water-rock interaction study
    • Saxena, V. & Ahmed, S. A. 2001 Dissolution of fluoride in groundwater: a water-rock interaction study. Environ. Geol. 40 (9), 1084-1087.
    • (2001) Environ. Geol. , vol.40 , Issue.9 , pp. 1084-1087
    • Saxena, V.1    Ahmed, S.A.2
  • 67
    • 0037839352 scopus 로고    scopus 로고
    • Inferring the chemical parameters for the dissolution of fluoride in groundwater
    • Saxena, V. & Ahmed, S. 2003 Inferring the chemical parameters for the dissolution of fluoride in groundwater. Environ. Geol. 43 (6), 731-736.
    • (2003) Environ. Geol. , vol.43 , Issue.6 , pp. 731-736
    • Saxena, V.1    Ahmed, S.2
  • 68
    • 0742323231 scopus 로고    scopus 로고
    • Neural networks for predicting nitrate-nitrogen in drainage water
    • Sharma, V., Negi, S. C., Rudra, R. P. & Yang, S. 2003 Neural networks for predicting nitrate-nitrogen in drainage water. Agric. Water Manage. 63 (3), 169-183.
    • (2003) Agric. Water Manage. , vol.63 , Issue.3 , pp. 169-183
    • Sharma, V.1    Negi, S.C.2    Rudra, R.P.3    Yang, S.4
  • 71
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its application to modeling and control
    • Takagi, T. & Sugeno, M. 1985 Fuzzy identification of systems and its application to modeling and control. IEEE Trans. Syst. Man Cybernet. SMC-15 (1), 116-132.
    • (1985) IEEE Trans. Syst. Man Cybernet. , vol.SMC15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 72
    • 33751081243 scopus 로고    scopus 로고
    • ANN and fuzzy logic models for simulating event-based rainfall-runoff
    • Tayfur, G. & Singh, V. P. 2006 ANN and fuzzy logic models for simulating event-based rainfall-runoff. J. Hydraul. Eng. 132 (12), 1321-1330.
    • (2006) J. Hydraul. Eng. , vol.132 , Issue.12 , pp. 1321-1330
    • Tayfur, G.1    Singh, V.P.2
  • 73
    • 77954760894 scopus 로고    scopus 로고
    • Comparing two data driven interpolation methods for modeling nitrate distribution in aquifer
    • Tutmez, B. & Hatipoglu, Z. 2010 Comparing two data driven interpolation methods for modeling nitrate distribution in aquifer. Ecol. Inform. 5 (4), 311-315.
    • (2010) Ecol. Inform. , vol.5 , Issue.4 , pp. 311-315
    • Tutmez, B.1    Hatipoglu, Z.2
  • 74
    • 0012381510 scopus 로고    scopus 로고
    • USEPA. US EnvironmentalProtectionAgency,EPA816-F-09-004
    • USEPA 2009 National Primary DrinkingWater Regulations. US EnvironmentalProtectionAgency,EPA816-F-09-004.Available from: http://water.epa.gov/drink/contaminants/. May 2009.
    • (2009) National Primary DrinkingWater Regulations
  • 75
    • 84858376385 scopus 로고    scopus 로고
    • WHO. World Health Organization, First addendum to third edition, Recommendations. WHO, Geneva
    • WHO 2006 Guidelines For Drinking-Water Quality. Vol 1, World Health Organization, First addendum to third edition, Recommendations. WHO, Geneva.
    • (2006) Guidelines for Drinking-Water Quality , vol.1
  • 76
    • 34248666540 scopus 로고
    • Fuzzy sets
    • Zadeh, L. A. 1965 Fuzzy sets. Inform. Control 8 (3), 338-353.
    • (1965) Inform. Control , vol.8 , Issue.3 , pp. 338-353
    • Zadeh, L.A.1
  • 77
    • 0025717848 scopus 로고
    • Spatial variation of fluorosis and fluoride content of water in an endemic area in Bophuthatswana
    • Zietsman, S. 1991 Spatial variation of fluorosis and fluoride content of water in an endemic area in Bophuthatswana. J. Dental Assoc. SA 46 (1), 11-15.
    • (1991) J. Dental Assoc. SA , vol.46 , Issue.1 , pp. 11-15
    • Zietsman, S.1
  • 78
    • 37249083060 scopus 로고    scopus 로고
    • Using adaptive neuro-fuzzy inference system for hydrological time series prediction
    • Zounemat-Kermani, M. & Teshnehlab, M. 2008 Using adaptive neuro-fuzzy inference system for hydrological time series prediction. Appl. Soft Comput. 8 (2), 928-936.
    • (2008) Appl. Soft Comput. , vol.8 , Issue.2 , pp. 928-936
    • Zounemat-Kermani, M.1    Teshnehlab, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.