메뉴 건너뛰기




Volumn 29, Issue 5, 2015, Pages 671-691

Efficacy of neural network and genetic algorithm techniques in simulating spatio-temporal fluctuations of groundwater

Author keywords

Alluvial aquifer system; Artificial neural network (ANN); Genetic algorithm; Groundwater level prediction; Model evaluation criteria; Uncertainty analysis

Indexed keywords

AQUIFERS; ERROR STATISTICS; FORECASTING; GENETIC ALGORITHMS; GROUNDWATER; MEAN SQUARE ERROR; MULTILAYER NEURAL NETWORKS; NEURAL NETWORKS; PREDICTIVE ANALYTICS; UNCERTAINTY ANALYSIS;

EID: 84924634673     PISSN: 08856087     EISSN: 10991085     Source Type: Journal    
DOI: 10.1002/hyp.10166     Document Type: Article
Times cited : (71)

References (60)
  • 1
    • 49249105202 scopus 로고    scopus 로고
    • Application of an artificial neural network to estimate groundwater level fluctuation
    • Affandi AK, Watanabe K, Tirtomihardjo H. 2007. Application of an artificial neural network to estimate groundwater level fluctuation. Journal of Spatial Hydrology 7(2): 23-46.
    • (2007) Journal of Spatial Hydrology , vol.7 , Issue.2 , pp. 23-46
    • Affandi, A.K.1    Watanabe, K.2    Tirtomihardjo, H.3
  • 2
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology, part I: Preliminary concepts
    • ASCE (ASCE Task Committee on Application of Artificial Neural Networks in Hydrology). 2000a. Artificial neural networks in hydrology, part I: Preliminary concepts. Journal of Hydrologic Engineering 5(2): 115-123.
    • (2000) Journal of Hydrologic Engineering , vol.5 , Issue.2 , pp. 115-123
  • 3
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology, part II: Hydrologic application
    • ASCE (ASCE Task Committee on Application of Artificial Neural Networks in Hydrology). 2000b. Artificial neural networks in hydrology, part II: Hydrologic application. Journal of Hydrologic Engineering 5(2): 124-137.
    • (2000) Journal of Hydrologic Engineering , vol.5 , Issue.2 , pp. 124-137
  • 4
    • 0026836829 scopus 로고
    • A neural network approach to the determination of aquifer parameters
    • Aziz ARA, Wong KFV. 1992. A neural network approach to the determination of aquifer parameters. Ground Water 30: 164-166.
    • (1992) Ground Water , vol.30 , pp. 164-166
    • Aziz, A.R.A.1    Wong, K.F.V.2
  • 5
    • 0037199710 scopus 로고    scopus 로고
    • Aquifer parameters determination for large diameter wells using neural network approach
    • Balkhair KS. 2002. Aquifer parameters determination for large diameter wells using neural network approach. Journal of Hydrology 265(1): 118-128.
    • (2002) Journal of Hydrology , vol.265 , Issue.1 , pp. 118-128
    • Balkhair, K.S.1
  • 10
    • 0344984214 scopus 로고    scopus 로고
    • Artificial neural network approach for predicting transient water levels in a multilayered groundwater system under variable state, pumping, and climate conditions
    • Coppola EA, Szidarovszky F, Poulton MM, Charles E. 2003b. Artificial neural network approach for predicting transient water levels in a multilayered groundwater system under variable state, pumping, and climate conditions. Journal of Hydrologic Engineering 8(6): 348-360.
    • (2003) Journal of Hydrologic Engineering , vol.8 , Issue.6 , pp. 348-360
    • Coppola, E.A.1    Szidarovszky, F.2    Poulton, M.M.3    Charles, E.4
  • 12
    • 0034993945 scopus 로고    scopus 로고
    • Artificial neural network modeling of groundwater level depth fluctuations
    • Coulibaly P, Anctil F, Aravena R, Bobee B. 2001. Artificial neural network modeling of groundwater level depth fluctuations. Water Resources Research 37(4): 885-896.
    • (2001) Water Resources Research , vol.37 , Issue.4 , pp. 885-896
    • Coulibaly, P.1    Anctil, F.2    Aravena, R.3    Bobee, B.4
  • 16
    • 37549038684 scopus 로고    scopus 로고
    • Neural networks to simulate regional ground water levels affected by human activities
    • Feng S, Kang S, Huo Z, Chen S, Mao X. 2008. Neural networks to simulate regional ground water levels affected by human activities. Ground Water 46: 80-90.
    • (2008) Ground Water , vol.46 , pp. 80-90
    • Feng, S.1    Kang, S.2    Huo, Z.3    Chen, S.4    Mao, X.5
  • 17
    • 31044452344 scopus 로고    scopus 로고
    • Using neural networks for parameter estimation in ground water
    • Garcia LA, Shigdi A. 2006. Using neural networks for parameter estimation in ground water. Journal of Hydrology 318(1-4): 215-231.
    • (2006) Journal of Hydrology , vol.318 , Issue.1-4 , pp. 215-231
    • Garcia, L.A.1    Shigdi, A.2
  • 18
    • 61749091397 scopus 로고    scopus 로고
    • Spatial prediction of nitrate pollution in groundwaters using neural networks and GIS: An application to South Rhodope aquifer (Thrace, Greece)
    • Gemitzi A, Petalas C, Pisinaras V, Tsihrintzis VA. 2009. Spatial prediction of nitrate pollution in groundwaters using neural networks and GIS: An application to South Rhodope aquifer (Thrace, Greece). Hydrological Processes 23: 372-383.
    • (2009) Hydrological Processes , vol.23 , pp. 372-383
    • Gemitzi, A.1    Petalas, C.2    Pisinaras, V.3    Tsihrintzis, V.A.4
  • 19
    • 33646112635 scopus 로고    scopus 로고
    • Genetic algorithm for optimization and specification of a neuron model
    • Gerken WC, Purvis LK, Butera RJ. 2006. Genetic algorithm for optimization and specification of a neuron model. Neurocomputing 69: 1039-1042.
    • (2006) Neurocomputing , vol.69 , pp. 1039-1042
    • Gerken, W.C.1    Purvis, L.K.2    Butera, R.J.3
  • 21
    • 33845892754 scopus 로고    scopus 로고
    • On the use of finite difference and neural-network models to evaluate the impact of underground water overexploitation
    • Hani A, Lallahem S, Mania J, Djabri L. 2006. On the use of finite difference and neural-network models to evaluate the impact of underground water overexploitation. Hydrological Processes 20: 4381-4390.
    • (2006) Hydrological Processes , vol.20 , pp. 4381-4390
    • Hani, A.1    Lallahem, S.2    Mania, J.3    Djabri, L.4
  • 22
    • 0004063090 scopus 로고
    • Macmillan College Publishing Company Inc.: New York.
    • Haykin S. 1994. Neural Networks. Macmillan College Publishing Company Inc.: New York.
    • (1994) Neural Networks
    • Haykin, S.1
  • 24
    • 0035166902 scopus 로고    scopus 로고
    • Intelligent characterization and diagnosis of the groundwater quality in an urban fractured-rock aquifer using an artificial neural network
    • Hong YS, Rosen MR. 2001. Intelligent characterization and diagnosis of the groundwater quality in an urban fractured-rock aquifer using an artificial neural network. Urban Water 3(3): 193-204.
    • (2001) Urban Water , vol.3 , Issue.3 , pp. 193-204
    • Hong, Y.S.1    Rosen, M.R.2
  • 25
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • Hsu K, Gupta, HV, Sorooshian S. 1995. Artificial neural network modeling of the rainfall-runoff process. Water Resources Research 31(10): 2517-2530.
    • (1995) Water Resources Research , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.1    Gupta, H.V.2    Sorooshian, S.3
  • 26
    • 40049099428 scopus 로고    scopus 로고
    • Simulation of spring flows from a karst aquifer with an artificial neural network
    • Hu C, Hao Y, Yeh TJ, Pang B, Wu Z. 2008. Simulation of spring flows from a karst aquifer with an artificial neural network. Hydrological Processes 22: 596-604.
    • (2008) Hydrological Processes , vol.22 , pp. 596-604
    • Hu, C.1    Hao, Y.2    Yeh, T.J.3    Pang, B.4    Wu, Z.5
  • 27
    • 1542287371 scopus 로고    scopus 로고
    • Identification of physical processes inherent in artificial neural network rainfall-runoff models
    • Jain A, Sudheer KP, Srinivasulu S. 2004. Identification of physical processes inherent in artificial neural network rainfall-runoff models. Hydrological Processes 18(3): 571-581.
    • (2004) Hydrological Processes , vol.18 , Issue.3 , pp. 571-581
    • Jain, A.1    Sudheer, K.P.2    Srinivasulu, S.3
  • 28
    • 81355135745 scopus 로고    scopus 로고
    • Groundwater modeling using hybrid of artificial neural network with genetic algorithm
    • Jalalkamali A, Jalalkamali N. 2011. Groundwater modeling using hybrid of artificial neural network with genetic algorithm. African Journal of Agricultural Research 6(26): 5775-5784.
    • (2011) African Journal of Agricultural Research , vol.6 , Issue.26 , pp. 5775-5784
    • Jalalkamali, A.1    Jalalkamali, N.2
  • 29
    • 33846685256 scopus 로고    scopus 로고
    • Challenges of using remote sensing and GIS in developing nations
    • Jha MK, Chowdary VM. 2007. Challenges of using remote sensing and GIS in developing nations. Hydrogeology Journal 15(1): 197-200.
    • (2007) Hydrogeology Journal , vol.15 , Issue.1 , pp. 197-200
    • Jha, M.K.1    Chowdary, V.M.2
  • 30
    • 0033511598 scopus 로고    scopus 로고
    • Field investigations for sustainable groundwater utilization in the Konan basin
    • Jha MK, Chikamori K, Kamii Y, Yamasaki Y. 1999. Field investigations for sustainable groundwater utilization in the Konan basin. Water Resources Management 13: 443-470.
    • (1999) Water Resources Management , vol.13 , pp. 443-470
    • Jha, M.K.1    Chikamori, K.2    Kamii, Y.3    Yamasaki, Y.4
  • 31
    • 0002593198 scopus 로고
    • Genetic algorithms and their applications to the design of neural networks
    • Jones AJ. 1993. Genetic algorithms and their applications to the design of neural networks. Neural Computing and Applications 1: 32-45.
    • (1993) Neural Computing and Applications , vol.1 , pp. 32-45
    • Jones, A.J.1
  • 32
    • 48449101338 scopus 로고    scopus 로고
    • Simultaneous parameter identification of a heterogeneous aquifer system using artificial neural networks
    • Karahan H, Ayvaz MT. 2008. Simultaneous parameter identification of a heterogeneous aquifer system using artificial neural networks. Hydrogeology Journal 16: 817-827.
    • (2008) Hydrogeology Journal , vol.16 , pp. 817-827
    • Karahan, H.1    Ayvaz, M.T.2
  • 33
    • 31444439227 scopus 로고    scopus 로고
    • Artificial neural network models of daily pan evaporation
    • Keskin ME, Terzi O. 2006. Artificial neural network models of daily pan evaporation. Journal of Hydrologic Engineering 11(1): 65-70.
    • (2006) Journal of Hydrologic Engineering , vol.11 , Issue.1 , pp. 65-70
    • Keskin, M.E.1    Terzi, O.2
  • 34
    • 54849427050 scopus 로고    scopus 로고
    • Artificial neural network estimation of reference evapotranspiration from pan evaporation in a semi-arid environment
    • Khoob AR. 2008. Artificial neural network estimation of reference evapotranspiration from pan evaporation in a semi-arid environment. Irrigation Science 27: 35-39.
    • (2008) Irrigation Science , vol.27 , pp. 35-39
    • Khoob, A.R.1
  • 35
    • 42149163573 scopus 로고    scopus 로고
    • Modeling groundwater levels in an urban coastal aquifer using artificial neural networks
    • Krishna B, Rao YRS, Vijaya T. 2008. Modeling groundwater levels in an urban coastal aquifer using artificial neural networks. Hydrological Processes 22: 1180-1188.
    • (2008) Hydrological Processes , vol.22 , pp. 1180-1188
    • Krishna, B.1    Rao, Y.R.S.2    Vijaya, T.3
  • 36
    • 68049125343 scopus 로고    scopus 로고
    • Evaluation of the ability of an artificial neural network model to simulate the input-output responses of a large karstic aquifer: The La Rochefoucauld aquifer, Charente, France
    • Kurtulus B, Razack M. 2007. Evaluation of the ability of an artificial neural network model to simulate the input-output responses of a large karstic aquifer: The La Rochefoucauld aquifer, Charente, France. Hydrogeology Journal 15: 241-254.
    • (2007) Hydrogeology Journal , vol.15 , pp. 241-254
    • Kurtulus, B.1    Razack, M.2
  • 37
    • 19744366167 scopus 로고    scopus 로고
    • On the use of neural networks to evaluate groundwater levels in fractured media
    • Lallahem S, Mania J, Hani A, Najjar Y. 2005. On the use of neural networks to evaluate groundwater levels in fractured media. Journal of Hydrology 307: 92-111.
    • (2005) Journal of Hydrology , vol.307 , pp. 92-111
    • Lallahem, S.1    Mania, J.2    Hani, A.3    Najjar, Y.4
  • 38
    • 0032920124 scopus 로고    scopus 로고
    • Evaluating the use of goodness-of-fit measures in hydrologic and hydroclimatic model validation
    • Legates DR, McCabe GJ. 1999. Evaluating the use of goodness-of-fit measures in hydrologic and hydroclimatic model validation. Water Resources Research 35(1): 233-241.
    • (1999) Water Resources Research , vol.35 , Issue.1 , pp. 233-241
    • Legates, D.R.1    McCabe, G.J.2
  • 39
    • 84924631811 scopus 로고    scopus 로고
    • An improved neural network approach to the determination of aquifer parameter
    • Lin G, Chen G. 2005. An improved neural network approach to the determination of aquifer parameter. Journal of Hydrology 20: 1-9.
    • (2005) Journal of Hydrology , vol.20 , pp. 1-9
    • Lin, G.1    Chen, G.2
  • 40
    • 0032034197 scopus 로고    scopus 로고
    • Understanding the behaviour and optimising the performance of back-propagation neural networks: An empirical study
    • Maier HR, Dandy GC. 1998. Understanding the behaviour and optimising the performance of back-propagation neural networks: An empirical study. Environmental Modelling and Software 13(2): 179-191.
    • (1998) Environmental Modelling and Software , vol.13 , Issue.2 , pp. 179-191
    • Maier, H.R.1    Dandy, G.C.2
  • 41
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications
    • Maier HR, Dandy GC. 2000. Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications. Environmental Modeling and Software 15: 101-124.
    • (2000) Environmental Modeling and Software , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 43
    • 77953325250 scopus 로고    scopus 로고
    • Artificial neural network modeling for groundwater level forecasting in a river island of eastern India
    • Mohanty S, Jha MK, Kumar A, Sudheer KP. 2009. Artificial neural network modeling for groundwater level forecasting in a river island of eastern India. Water Resources Management 24(9): 1845-1865.
    • (2009) Water Resources Management , vol.24 , Issue.9 , pp. 1845-1865
    • Mohanty, S.1    Jha, M.K.2    Kumar, A.3    Sudheer, K.P.4
  • 44
    • 32044458602 scopus 로고    scopus 로고
    • Groundwater level forecasting in a shallow aquifer using artificial neural network approach
    • Nayak PC, Rao YRS, Sudheer KP. 2006. Groundwater level forecasting in a shallow aquifer using artificial neural network approach. Water Resources Management 20: 77-90.
    • (2006) Water Resources Management , vol.20 , pp. 77-90
    • Nayak, P.C.1    Rao, Y.R.S.2    Sudheer, K.P.3
  • 45
    • 50449094792 scopus 로고    scopus 로고
    • Artificial neural networks as an alternative approach to groundwater numerical modeling and environmental design
    • Nikolos IK, Stergiadi M, Papadopoulou MP, Karatzas GP. 2008. Artificial neural networks as an alternative approach to groundwater numerical modeling and environmental design. Hydrological Processes 22(17): 3337-3348.
    • (2008) Hydrological Processes , vol.22 , Issue.17 , pp. 3337-3348
    • Nikolos, I.K.1    Stergiadi, M.2    Papadopoulou, M.P.3    Karatzas, G.P.4
  • 46
    • 67649122251 scopus 로고    scopus 로고
    • An ANN-based model for spatiotemporal groundwater level forecasting
    • Nourani V, Mogaddam AA, Nadiri AO. 2008. An ANN-based model for spatiotemporal groundwater level forecasting. Hydrological Processes 22: 5054-5066.
    • (2008) Hydrological Processes , vol.22 , pp. 5054-5066
    • Nourani, V.1    Mogaddam, A.A.2    Nadiri, A.O.3
  • 48
    • 0027464578 scopus 로고
    • Neural network based screening for groundwater reclamation under uncertainty
    • Ranjithan SJ, Eheart JW, Garrett JH. 1993. Neural network based screening for groundwater reclamation under uncertainty. Water Resources Research 29(3): 563-574.
    • (1993) Water Resources Research , vol.29 , Issue.3 , pp. 563-574
    • Ranjithan, S.J.1    Eheart, J.W.2    Garrett, J.H.3
  • 49
    • 0001566822 scopus 로고    scopus 로고
    • The use of neural networks and genetic algorithms for design of groundwater remediation schemes
    • Rao Z, Jamieson DG. 1997. The use of neural networks and genetic algorithms for design of groundwater remediation schemes. Hydrology and Earth System Sciences 1(2): 345-356.
    • (1997) Hydrology and Earth System Sciences , vol.1 , Issue.2 , pp. 345-356
    • Rao, Z.1    Jamieson, D.G.2
  • 50
    • 0034174354 scopus 로고    scopus 로고
    • Neural networks for agrichemical vulnerability assessment of rural private wells
    • Ray C, Klindworth K. 2000. Neural networks for agrichemical vulnerability assessment of rural private wells. Journal of Hydrologic Engineering 5(2): 162-171.
    • (2000) Journal of Hydrologic Engineering , vol.5 , Issue.2 , pp. 162-171
    • Ray, C.1    Klindworth, K.2
  • 51
    • 0028174533 scopus 로고
    • Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling
    • Rogers LL, Dowla FU. 1994. Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling. Water Resources Research 30(2): 457-481.
    • (1994) Water Resources Research , vol.30 , Issue.2 , pp. 457-481
    • Rogers, L.L.1    Dowla, F.U.2
  • 53
    • 75149131606 scopus 로고    scopus 로고
    • Uncertainty assessment and ensemble flood forecasting using bootstrap-based artificial neural networks (BANNs)
    • Tiwari MK, Chatterjee C. 2010. Uncertainty assessment and ensemble flood forecasting using bootstrap-based artificial neural networks (BANNs). Journal of Hydrology 382(1-4): 20-33.
    • (2010) Journal of Hydrology , vol.382 , Issue.1-4 , pp. 20-33
    • Tiwari, M.K.1    Chatterjee, C.2
  • 54
    • 70349251374 scopus 로고    scopus 로고
    • Optimal selection of artificial neural network parameters for the prediction of a karstic aquifer's response
    • Trichakis IC, Nikolos IK, Karatzas GP. 2009. Optimal selection of artificial neural network parameters for the prediction of a karstic aquifer's response. Hydrological Processes 23: 2956-2969.
    • (2009) Hydrological Processes , vol.23 , pp. 2956-2969
    • Trichakis, I.C.1    Nikolos, I.K.2    Karatzas, G.P.3
  • 55
    • 33846095406 scopus 로고    scopus 로고
    • Using statistical and artificial neural network models to forecast potentiometric levels at a deep well in South Texas
    • Uddameri V 2007. Using statistical and artificial neural network models to forecast potentiometric levels at a deep well in South Texas. Environmental Geology 51: 885-895.
    • (2007) Environmental Geology , vol.51 , pp. 885-895
    • Uddameri, V.1
  • 56
    • 33745712172 scopus 로고    scopus 로고
    • Prediction of agriculture derived groundwater nitrate distribution in North China Plain with GIS-based BPNN
    • Wang MX, Liu GD, Wu WL, Bao YH, Liu WN. 2006. Prediction of agriculture derived groundwater nitrate distribution in North China Plain with GIS-based BPNN. Environmental Geology 50: 637-644.
    • (2006) Environmental Geology , vol.50 , pp. 637-644
    • Wang, M.X.1    Liu, G.D.2    Wu, W.L.3    Bao, Y.H.4    Liu, W.N.5
  • 57
    • 0019707668 scopus 로고
    • On the validation of models
    • Willmott CJ. 1981. On the validation of models. Physical Geography 2: 184-194.
    • (1981) Physical Geography , vol.2 , pp. 184-194
    • Willmott, C.J.1
  • 58
    • 54049149835 scopus 로고    scopus 로고
    • Neural network prediction of nitrate in groundwater of Harran Plain, Turkey
    • Yesilnacar MI, Sahinkaya E, Naz M, Ozkaya B. 2008. Neural network prediction of nitrate in groundwater of Harran Plain, Turkey. Environmental Geology 56: 19-25.
    • (2008) Environmental Geology , vol.56 , pp. 19-25
    • Yesilnacar, M.I.1    Sahinkaya, E.2    Naz, M.3    Ozkaya, B.4
  • 60
    • 0000251270 scopus 로고
    • Comparison between fuzzy reasoning and neural network methods to forecast runoff discharge
    • Zhu ML, Fujita M. 1994. Comparison between fuzzy reasoning and neural network methods to forecast runoff discharge. Journal of Hydroscience and Hydraulic Engineering 12(2): 131-141.
    • (1994) Journal of Hydroscience and Hydraulic Engineering , vol.12 , Issue.2 , pp. 131-141
    • Zhu, M.L.1    Fujita, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.