메뉴 건너뛰기




Volumn 1350, Issue 1, 2015, Pages 37-47

Mitochondrial dysfunction and Parkinson disease: a Parkin–AMPK alliance in neuroprotection

Author keywords

dopamine; LRRK2; mitophagy; neurodegeneration; PGC 1 ; PINK1

Indexed keywords

HYDROXYMETHYLGLUTARYL COENZYME A REDUCTASE KINASE; PARKIN;

EID: 84933557447     PISSN: 00778923     EISSN: 17496632     Source Type: Journal    
DOI: 10.1111/nyas.12820     Document Type: Article
Times cited : (77)

References (73)
  • 1
    • 33846572874 scopus 로고    scopus 로고
    • Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030
    • Dorsey, E.R. et al. 2007. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 68: 384–386.
    • (2007) Neurology , vol.68 , pp. 384-386
    • Dorsey, E.R.1
  • 2
    • 0037333666 scopus 로고    scopus 로고
    • Staging of brain pathology related to sporadic Parkinson's disease
    • Braak, H. et al. 2003. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol. Aging. 24: 197–211.
    • (2003) Neurobiol. Aging , vol.24 , pp. 197-211
    • Braak, H.1
  • 3
    • 41149163183 scopus 로고    scopus 로고
    • Parkinson's disease: clinical features and diagnosis
    • Jankovic, J. 2008. Parkinson's disease: clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 79: 368–376.
    • (2008) J. Neurol. Neurosurg. Psychiatry , vol.79 , pp. 368-376
    • Jankovic, J.1
  • 4
    • 0020680904 scopus 로고
    • Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis
    • Langston, J.W. et al. 1983. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219: 979–980.
    • (1983) Science , vol.219 , pp. 979-980
    • Langston, J.W.1
  • 5
    • 0024390719 scopus 로고
    • Mitochondrial complex I deficiency in Parkinson's disease
    • Schapira, A.H. et al. 1989. Mitochondrial complex I deficiency in Parkinson's disease. Lancet 1: 1269.
    • (1989) Lancet , vol.1 , pp. 1269
    • Schapira, A.H.1
  • 6
    • 0030612117 scopus 로고    scopus 로고
    • Coenzyme Q10 levels correlate with the activities of complexes I and II/III in mitochondria from parkinsonian and nonparkinsonian subjects
    • Shults, C.W. et al. 1997. Coenzyme Q10 levels correlate with the activities of complexes I and II/III in mitochondria from parkinsonian and nonparkinsonian subjects. Ann. Neurol. 42: 261–264.
    • (1997) Ann. Neurol , vol.42 , pp. 261-264
    • Shults, C.W.1
  • 7
    • 0024848034 scopus 로고
    • Abnormalities of the electron transport chain in idiopathic Parkinson's disease
    • Parker, W.D., Jr., S.J. Boyson & J.K. Parks. 1989. Abnormalities of the electron transport chain in idiopathic Parkinson's disease. Ann. Neurol. 26: 719–723.
    • (1989) Ann. Neurol , vol.26 , pp. 719-723
    • Parker, W.D.1    Boyson, S.J.2    Parks, J.K.3
  • 8
    • 0141741347 scopus 로고    scopus 로고
    • Parkinson's disease: mechanisms and models
    • Dauer, W. & S. Przedborski. 2003. Parkinson's disease: mechanisms and models. Neuron 39: 889–909.
    • (2003) Neuron , vol.39 , pp. 889-909
    • Dauer, W.1    Przedborski, S.2
  • 9
    • 0033681149 scopus 로고    scopus 로고
    • Chronic systemic pesticide exposure reproduces features of Parkinson's disease
    • Betarbet, R. et al. 2000. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat. Neurosci. 3: 1301–1306.
    • (2000) Nat. Neurosci , vol.3 , pp. 1301-1306
    • Betarbet, R.1
  • 10
    • 79961239061 scopus 로고    scopus 로고
    • Impaired mitochondrial transport and Parkin-independent degeneration of respiratory chain-deficient dopamine neurons in vivo
    • Sterky, F.H. et al. 2011. Impaired mitochondrial transport and Parkin-independent degeneration of respiratory chain-deficient dopamine neurons in vivo. Proc. Natl. Acad. Sci. U.S.A. 108: 12937–12942.
    • (2011) Proc. Natl. Acad. Sci. U.S.A , vol.108 , pp. 12937-12942
    • Sterky, F.H.1
  • 11
    • 79955557808 scopus 로고    scopus 로고
    • Rotenone, paraquat, and Parkinson's disease
    • Tanner, C.M. et al. 2011. Rotenone, paraquat, and Parkinson's disease. Environ. Health Perspect. 119: 866–872.
    • (2011) Environ. Health Perspect , vol.119 , pp. 866-872
    • Tanner, C.M.1
  • 12
    • 0033600443 scopus 로고    scopus 로고
    • Possible relation of atypical parkinsonism in the French West Indies with consumption of tropical plants: a case-control study. Caribbean Parkinsonism Study Group
    • Caparros-Lefebvre, D. & A. Elbaz. 1999. Possible relation of atypical parkinsonism in the French West Indies with consumption of tropical plants: a case-control study. Caribbean Parkinsonism Study Group. Lancet 354: 281–286.
    • (1999) Lancet , vol.354 , pp. 281-286
    • Caparros-Lefebvre, D.1    Elbaz, A.2
  • 13
    • 77951096150 scopus 로고    scopus 로고
    • Mitochondrial dynamics–fusion, fission, movement, and mitophagy–in neurodegenerative diseases
    • Chen, H. & D.C. Chan. 2009. Mitochondrial dynamics–fusion, fission, movement, and mitophagy–in neurodegenerative diseases. Hum. Mol. Genet. 18: R169–R176.
    • (2009) Hum. Mol. Genet , vol.18 , pp. R169-R176
    • Chen, H.1    Chan, D.C.2
  • 14
    • 0037386532 scopus 로고    scopus 로고
    • Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants
    • Greene, J.C. et al. 2003. Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc. Natl. Acad. Sci. U.S.A. 100: 4078–4083.
    • (2003) Proc. Natl. Acad. Sci. U.S.A , vol.100 , pp. 4078-4083
    • Greene, J.C.1
  • 15
    • 77957222311 scopus 로고    scopus 로고
    • What have we learned from Drosophila models of Parkinson's disease?
    • Guo, M. 2010. What have we learned from Drosophila models of Parkinson's disease? Prog. Brain Res. 184: 3–16.
    • (2010) Prog. Brain Res , vol.184 , pp. 3-16
    • Guo, M.1
  • 17
    • 84866072587 scopus 로고    scopus 로고
    • PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin re-cruitment to damaged mitochondria
    • Okatsu, K. et al. 2012. PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin re-cruitment to damaged mitochondria. Nat. Commun. 3: 1016.
    • (2012) Nat. Commun , vol.3 , pp. 1016
    • Okatsu, K.1
  • 18
    • 84899539731 scopus 로고    scopus 로고
    • PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity
    • Kane, L.A. et al. 2014. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J. Cell Biol. 205: 143–153.
    • (2014) J. Cell Biol , vol.205 , pp. 143-153
    • Kane, L.A.1
  • 19
    • 84901751574 scopus 로고    scopus 로고
    • Ubiquitin is phosphorylated by PINK1 to activate parkin
    • Koyano, F. et al. 2014. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510: 162–166.
    • (2014) Nature , vol.510 , pp. 162-166
    • Koyano, F.1
  • 20
    • 77951181836 scopus 로고    scopus 로고
    • PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy
    • Matsuda, N. et al. 2010. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J. Cell Biol. 189: 211–221.
    • (2010) J. Cell Biol , vol.189 , pp. 211-221
    • Matsuda, N.1
  • 21
    • 84864267876 scopus 로고    scopus 로고
    • PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65
    • Kondapalli, C. et al. 2012. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open Biol. 2: 120080.
    • (2012) Open Biol , vol.2 , pp. 120080
    • Kondapalli, C.1
  • 22
    • 84922794336 scopus 로고    scopus 로고
    • Phosphorylated ubiquitin chain is the genuine Parkin receptor
    • Okatsu, K. et al. 2015. Phosphorylated ubiquitin chain is the genuine Parkin receptor. J. Cell Biol. 209: 111–128.
    • (2015) J. Cell Biol , vol.209 , pp. 111-128
    • Okatsu, K.1
  • 23
    • 84922434418 scopus 로고    scopus 로고
    • Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis
    • Ordureau, A. et al. 2014. Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. Mol. Cell 56: 360–375.
    • (2014) Mol. Cell , vol.56 , pp. 360-375
    • Ordureau, A.1
  • 24
    • 84919629959 scopus 로고    scopus 로고
    • Phosphorylation of mitochondrial polyubiquitin by PINK1 promotes Parkin mitochondrial tethering
    • Shiba-Fukushima, K. et al. 2014. Phosphorylation of mitochondrial polyubiquitin by PINK1 promotes Parkin mitochondrial tethering. PLoS Genet. 10: e1004861.
    • (2014) PLoS Genet , vol.10
    • Shiba-Fukushima, K.1
  • 25
    • 77955844260 scopus 로고    scopus 로고
    • The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/parkin pathway
    • Poole, A.C. et al. 2010. The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/parkin pathway. PLoS One 5: e10054.
    • (2010) PLoS One , vol.5
    • Poole, A.C.1
  • 26
    • 77950384477 scopus 로고    scopus 로고
    • Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin
    • Ziviani, E., R.N. Tao & A.J. Whitworth. 2010. Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc. Natl. Acad. Sci. U.S.A. 107: 5018–5023.
    • (2010) Proc. Natl. Acad. Sci. U.S.A , vol.107 , pp. 5018-5023
    • Ziviani, E.1    Tao, R.N.2    Whitworth, A.J.3
  • 27
    • 81055140895 scopus 로고    scopus 로고
    • PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility
    • Wang, X. et al. 2011. PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 147: 893–906.
    • (2011) Cell , vol.147 , pp. 893-906
    • Wang, X.1
  • 28
    • 84906861963 scopus 로고    scopus 로고
    • Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin
    • Ashrafi, G. et al. 2014. Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin. J. Cell Biol. 206: 655–670.
    • (2014) J. Cell Biol , vol.206 , pp. 655-670
    • Ashrafi, G.1
  • 29
    • 79952303794 scopus 로고    scopus 로고
    • PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson's disease
    • Shin, J.H. et al. 2011. PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson's disease. Cell 144: 689–702.
    • (2011) Cell , vol.144 , pp. 689-702
    • Shin, J.H.1
  • 30
    • 57649148823 scopus 로고    scopus 로고
    • Nuclear control of respiratory chain expression by nuclear respiratory factors and PGC-1-related coactivator
    • Scarpulla, R.C. 2008. Nuclear control of respiratory chain expression by nuclear respiratory factors and PGC-1-related coactivator. Ann. N.Y. Acad. Sci. 1147: 321–334.
    • (2008) Ann. N.Y. Acad. Sci , vol.1147 , pp. 321-334
    • Scarpulla, R.C.1
  • 31
    • 13844313915 scopus 로고    scopus 로고
    • Parkin-deficient mice are not a robust model of parkinsonism
    • Perez, F.A. & R.D. Palmiter. 2005. Parkin-deficient mice are not a robust model of parkinsonism. Proc. Natl. Acad. Sci. U.S.A. 102: 2174–2179.
    • (2005) Proc. Natl. Acad. Sci. U.S.A , vol.102 , pp. 2174-2179
    • Perez, F.A.1    Palmiter, R.D.2
  • 32
    • 33751267701 scopus 로고    scopus 로고
    • Parkin: a multifaceted ubiquitin ligase
    • Moore, D.J. 2006. Parkin: a multifaceted ubiquitin ligase. Biochem. Soc. Trans. 34: 749–753.
    • (2006) Biochem. Soc. Trans , vol.34 , pp. 749-753
    • Moore, D.J.1
  • 33
    • 84858782079 scopus 로고    scopus 로고
    • AMPK: a nutrient and energy sensor that maintains energy homeostasis
    • Hardie, D.G., F.A. Ross & S.A. Hawley. 2012. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 13: 251–262.
    • (2012) Nat. Rev. Mol. Cell Biol , vol.13 , pp. 251-262
    • Hardie, D.G.1    Ross, F.A.2    Hawley, S.A.3
  • 34
    • 75749104187 scopus 로고    scopus 로고
    • AMPK as a mediator of hormonal signalling
    • Lim, C.T., B. Kola & M. Korbonits. 2010. AMPK as a mediator of hormonal signalling. J. Mol. Endocrinol. 44: 87–97.
    • (2010) J. Mol. Endocrinol. , vol.44 , pp. 87-97
    • Lim, C.T.1    Kola, B.2    Korbonits, M.3
  • 35
    • 0034773404 scopus 로고    scopus 로고
    • Role of AMP-activated protein kinase in mechanism of metformin action
    • Zhou, G. et al. 2001. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108: 1167–1174.
    • (2001) J. Clin. Invest , vol.108 , pp. 1167-1174
    • Zhou, G.1
  • 36
    • 33751072349 scopus 로고    scopus 로고
    • Resveratrol improves health and survival of mice on a high-calorie diet
    • Baur, J.A. et al. 2006. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444: 337–342.
    • (2006) Nature , vol.444 , pp. 337-342
    • Baur, J.A.1
  • 37
    • 35648944317 scopus 로고    scopus 로고
    • Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, suppresses hepatic gluconeogenesis through 5′-AMP-activated protein kinase
    • Collins, Q.F. et al. 2007. Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, suppresses hepatic gluconeogenesis through 5′-AMP-activated protein kinase. J. Biol. Chem. 282: 30143–30149.
    • (2007) J. Biol. Chem. , vol.282 , pp. 30143-30149
    • Collins, Q.F.1
  • 38
    • 0037058977 scopus 로고    scopus 로고
    • AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation
    • Zong, H. et al. 2002. AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc. Natl. Acad. Sci. U.S.A. 99: 15983–15987.
    • (2002) Proc. Natl. Acad. Sci. U.S.A , vol.99 , pp. 15983-15987
    • Zong, H.1
  • 39
    • 34547545892 scopus 로고    scopus 로고
    • AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha
    • Jager, S. et al. 2007. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc. Natl. Acad. Sci. U.S.A. 104: 12017–12022.
    • (2007) Proc. Natl. Acad. Sci. U.S.A , vol.104 , pp. 12017-12022
    • Jager, S.1
  • 40
    • 77249156847 scopus 로고    scopus 로고
    • Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle
    • Canto, C. et al. 2010. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab. 11: 213–219.
    • (2010) Cell Metab , vol.11 , pp. 213-219
    • Canto, C.1
  • 41
    • 79551598347 scopus 로고    scopus 로고
    • AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
    • Kim, J. et al. 2011. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13: 132–141.
    • (2011) Nat. Cell Biol , vol.13 , pp. 132-141
    • Kim, J.1
  • 42
    • 79251587803 scopus 로고    scopus 로고
    • Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy
    • Egan, D.F. et al. 2011. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331: 456–461.
    • (2011) Science , vol.331 , pp. 456-461
    • Egan, D.F.1
  • 43
    • 84855886083 scopus 로고    scopus 로고
    • CCCP induces autophagy in an AMPK-independent manner
    • Kwon, K.Y., B. Viollet & O.J. Yoo. 2011. CCCP induces autophagy in an AMPK-independent manner. Biochem. Biophys. Res. Commun. 416: 343–348.
    • (2011) Biochem. Biophys. Res. Commun , vol.416 , pp. 343-348
    • Kwon, K.Y.1    Viollet, B.2    Yoo, O.J.3
  • 44
    • 0037431172 scopus 로고    scopus 로고
    • Parkin: a multipurpose neuroprotective agent?
    • Feany, M.B. & L.J. Pallanck. 2003. Parkin: a multipurpose neuroprotective agent? Neuron 38: 13–16.
    • (2003) Neuron , vol.38 , pp. 13-16
    • Feany, M.B.1    Pallanck, L.J.2
  • 45
    • 37349129281 scopus 로고    scopus 로고
    • The parkin protein as a therapeutic target in Parkinson's disease
    • Winklhofer, K.F. 2007. The parkin protein as a therapeutic target in Parkinson's disease. Expert Opin. Ther. Targets 11: 1543–1552.
    • (2007) Expert Opin. Ther. Targets , vol.11 , pp. 1543-1552
    • Winklhofer, K.F.1
  • 46
    • 34547885021 scopus 로고    scopus 로고
    • Drosophila overexpressing parkin R275W mutant exhibits dopaminergic neuron degeneration and mitochondrial abnormalities
    • Wang, C. et al. 2007. Drosophila overexpressing parkin R275W mutant exhibits dopaminergic neuron degeneration and mitochondrial abnormalities. J. Neurosci. 27: 8563–8570.
    • (2007) J. Neurosci , vol.27 , pp. 8563-8570
    • Wang, C.1
  • 47
    • 77952326081 scopus 로고    scopus 로고
    • Disease-causing mutations in Parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy
    • Lee, J.Y. et al. 2010. Disease-causing mutations in Parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy. J. Cell Biol. 189: 671–679.
    • (2010) J. Cell Biol , vol.189 , pp. 671-679
    • Lee, J.Y.1
  • 48
    • 80055042897 scopus 로고    scopus 로고
    • Mitochondrial dynamics and Parkinson's disease: focus on parkin
    • Lim, K.L. et al. 2012. Mitochondrial dynamics and Parkinson's disease: focus on parkin. Antioxid. Redox Signal. 16: 935–949.
    • (2012) Antioxid. Redox Signal , vol.16 , pp. 935-949
    • Lim, K.L.1
  • 49
    • 0023856479 scopus 로고
    • A histochemical study of the regional distribution in the rat brain of enzymatic activity hydrolyzing glucose-and 2-deoxyglucose-6-phosphate
    • Pertsch, M. et al. 1988. A histochemical study of the regional distribution in the rat brain of enzymatic activity hydrolyzing glucose-and 2-deoxyglucose-6-phosphate. Histochemistry 88: 257–262.
    • (1988) Histochemistry , vol.88 , pp. 257-262
    • Pertsch, M.1
  • 50
    • 20144368904 scopus 로고    scopus 로고
    • Pharmacological inhibition of AMP-activated protein kinase provides neuroprotection in stroke
    • McCullough, L.D. et al. 2005. Pharmacological inhibition of AMP-activated protein kinase provides neuroprotection in stroke. J. Biol. Chem. 280: 20493–20502.
    • (2005) J. Biol. Chem , vol.280 , pp. 20493-20502
    • McCullough, L.D.1
  • 51
    • 79961116788 scopus 로고    scopus 로고
    • Nuclear translocation of AMPK-alpha1 potentiates striatal neurodegeneration in Huntington's disease
    • Ju, T.C. et al. 2011. Nuclear translocation of AMPK-alpha1 potentiates striatal neurodegeneration in Huntington's disease. J. Cell Biol. 194: 209–227.
    • (2011) J. Cell Biol , vol.194 , pp. 209-227
    • Ju, T.C.1
  • 52
    • 34548095002 scopus 로고    scopus 로고
    • Metformin therapy in a transgenic mouse model of Huntington's disease
    • Ma, T.C. et al. 2007. Metformin therapy in a transgenic mouse model of Huntington's disease. Neurosci. Lett. 411: 98–103.
    • (2007) Neurosci. Lett , vol.411 , pp. 98-103
    • Ma, T.C.1
  • 53
    • 84881347302 scopus 로고    scopus 로고
    • Metformin improves healthspan and lifespan in mice
    • Martin-Montalvo, A. et al. 2013. Metformin improves healthspan and lifespan in mice. Nat. Commun. 4: 2192.
    • (2013) Nat. Commun , vol.4 , pp. 2192
    • Martin-Montalvo, A.1
  • 54
    • 0034803430 scopus 로고    scopus 로고
    • AMP-activated protein kinase is highly expressed in neurons in the developing rat brain and promotes neuronal survival following glucose deprivation
    • Culmsee, C. et al. 2001. AMP-activated protein kinase is highly expressed in neurons in the developing rat brain and promotes neuronal survival following glucose deprivation. J. Mol. Neurosci. 17: 45–58.
    • (2001) J. Mol. Neurosci , vol.17 , pp. 45-58
    • Culmsee, C.1
  • 55
    • 77950575506 scopus 로고    scopus 로고
    • AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-beta peptide metabolism
    • Vingtdeux, V. et al. 2010. AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-beta peptide metabolism. J. Biol. Chem. 285: 9100–9113.
    • (2010) J. Biol. Chem , vol.285 , pp. 9100-9113
    • Vingtdeux, V.1
  • 56
    • 0037011118 scopus 로고    scopus 로고
    • The neurodegeneration mutant lochrig interferes with cholesterol homeostasis and Appl processing
    • Tschape, J.A. et al. 2002. The neurodegeneration mutant lochrig interferes with cholesterol homeostasis and Appl processing. EMBO J. 21: 6367–6376.
    • (2002) EMBO J , vol.21 , pp. 6367-6376
    • Tschape, J.A.1
  • 57
    • 46749133868 scopus 로고    scopus 로고
    • Drosophila alicorn is a neuronal maintenance factor protecting against activity-induced retinal degeneration
    • Spasic, M.R., P. Callaerts & K.K. Norga. 2008. Drosophila alicorn is a neuronal maintenance factor protecting against activity-induced retinal degeneration. J. Neurosci. 28: 6419–6429.
    • (2008) J. Neurosci , vol.28 , pp. 6419-6429
    • Spasic, M.R.1    Callaerts, P.2    Norga, K.K.3
  • 58
    • 72949122084 scopus 로고    scopus 로고
    • AMP-activated protein kinase is activated in Parkinson's disease models mediated by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
    • Choi, J.S., C. Park & J.W. Jeong. 2010. AMP-activated protein kinase is activated in Parkinson's disease models mediated by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Biochem. Biophys. Res. Commun. 391: 147–151.
    • (2010) Biochem. Biophys. Res. Commun , vol.391 , pp. 147-151
    • Choi, J.S.1    Park, C.2    Jeong, J.W.3
  • 59
    • 80052359850 scopus 로고    scopus 로고
    • Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson's disease
    • Wu, Y. et al. 2011. Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson's disease. Neurosignals 19: 163–174.
    • (2011) Neurosignals , vol.19 , pp. 163-174
    • Wu, Y.1
  • 60
    • 84889561434 scopus 로고    scopus 로고
    • (ADP-ribose) polymerase 1 and AMP-activated protein kinase mediate progressive dopaminergic neuronal degeneration in a mouse model of Parkinson's disease
    • Kim, T.W. et al. 2013. (ADP-ribose) polymerase 1 and AMP-activated protein kinase mediate progressive dopaminergic neuronal degeneration in a mouse model of Parkinson's disease. Cell Death Dis. 4: e919.
    • (2013) Cell Death Dis , vol.4 , pp. 919
    • Kim, T.W.1
  • 61
    • 84899984684 scopus 로고    scopus 로고
    • Activation of AMPK and inactivation of Akt result in suppression of mTOR-mediated S6K1 and 4E-BP1 pathways leading to neuronal cell death in in vitro models of Parkinson's disease
    • Xu, Y. et al. 2014. Activation of AMPK and inactivation of Akt result in suppression of mTOR-mediated S6K1 and 4E-BP1 pathways leading to neuronal cell death in in vitro models of Parkinson's disease. Cell Signal. 26: 1680–1689.
    • (2014) Cell Signal , vol.26 , pp. 1680-1689
    • Xu, Y.1
  • 62
    • 84862199583 scopus 로고    scopus 로고
    • Metformin-inclusive sulfonylurea therapy reduces the risk of Parkinson's disease occurring with Type 2 diabetes in a Taiwanese population cohort
    • Wahlqvist, M.L. et al. 2012. Metformin-inclusive sulfonylurea therapy reduces the risk of Parkinson's disease occurring with Type 2 diabetes in a Taiwanese population cohort. Parkinsonism Relat. Disord. 18: 753–758.
    • (2012) Parkinsonism Relat. Disord , vol.18 , pp. 753-758
    • Wahlqvist, M.L.1
  • 63
    • 84867269951 scopus 로고    scopus 로고
    • AMP kinase activation mitigates dopaminergic dysfunction and mitochondrial abnormalities in Drosophila models of Parkinson's disease
    • Ng, C.H. et al. 2012. AMP kinase activation mitigates dopaminergic dysfunction and mitochondrial abnormalities in Drosophila models of Parkinson's disease. J. Neurosci. 32: 14311–14317.
    • (2012) J. Neurosci , vol.32 , pp. 14311-14317
    • Ng, C.H.1
  • 64
    • 71749100220 scopus 로고    scopus 로고
    • AMP-activated protein kinase: a potential target for the diseases prevention by natural occurring polyphenols
    • Hwang, J.T., D.Y. Kwon & S.H. Yoon. 2009. AMP-activated protein kinase: a potential target for the diseases prevention by natural occurring polyphenols. N. Biotechnol. 26: 17–22.
    • (2009) N. Biotechnol , vol.26 , pp. 17-22
    • Hwang, J.T.1    Kwon, D.Y.2    Yoon, S.H.3
  • 65
    • 68949107216 scopus 로고    scopus 로고
    • AMP-activated protein kinase (AMPK) molecular crossroad for metabolic control and survival of neurons
    • Spasic, M.R., P. Callaerts & K.K. Norga. 2009. AMP-activated protein kinase (AMPK) molecular crossroad for metabolic control and survival of neurons. Neuroscientist 15: 309–316.
    • (2009) Neuroscientist , vol.15 , pp. 309-316
    • Spasic, M.R.1    Callaerts, P.2    Norga, K.K.3
  • 66
    • 0033794615 scopus 로고    scopus 로고
    • Antioxidant and free radical scavenging effects of baicalein, baicalin and wogonin
    • Shieh, D.E., L.T. Liu & C.C. Lin. 2000. Antioxidant and free radical scavenging effects of baicalein, baicalin and wogonin. Anticancer Res. 20: 2861–2865.
    • (2000) Anticancer Res , vol.20 , pp. 2861-2865
    • Shieh, D.E.1    Liu, L.T.2    Lin, C.C.3
  • 67
    • 70349103837 scopus 로고    scopus 로고
    • Parkin protects against LRRK2 G2019S mutant-induced dopaminergic neurodegeneration in Drosophila
    • Ng, C.H. et al. 2009. Parkin protects against LRRK2 G2019S mutant-induced dopaminergic neurodegeneration in Drosophila. J. Neurosci. 29: 11257–11262.
    • (2009) J. Neurosci , vol.29 , pp. 11257-11262
    • Ng, C.H.1
  • 69
    • 84897429184 scopus 로고    scopus 로고
    • Effect of resveratrol on mitochondrial function: implications in Parkin-associated familiar Parkinson's disease
    • Ferretta, A. et al. 2014. Effect of resveratrol on mitochondrial function: implications in Parkin-associated familiar Parkinson's disease. Biochim. Biophys. Acta. 1842: 902–915.
    • (2014) Biochim. Biophys. Acta , vol.1842 , pp. 902-915
    • Ferretta, A.1
  • 70
    • 84897018170 scopus 로고    scopus 로고
    • Long-term overexpression of human wild-type and T240R mutant Parkin in rat substantia nigra induces progressive dopaminergic neurodegeneration
    • VanRompuy, A.S. et al. 2014. Long-term overexpression of human wild-type and T240R mutant Parkin in rat substantia nigra induces progressive dopaminergic neurodegeneration. J. Neuropathol. Exp. Neurol. 73: 159–174.
    • (2014) J. Neuropathol. Exp. Neurol , vol.73 , pp. 159-174
    • Van Rompuy, A.S.1
  • 71
    • 84912123834 scopus 로고    scopus 로고
    • Parkin sensitizes toward apoptosis induced by mitochondrial depolarization through promoting degradation of Mcl-1
    • Carroll, R.G., E. Hollville & S.J. Martin. 2014. Parkin sensitizes toward apoptosis induced by mitochondrial depolarization through promoting degradation of Mcl-1. Cell Rep. 9: 1538–1553.
    • (2014) Cell Rep , vol.9 , pp. 1538-1553
    • Carroll, R.G.1    Hollville, E.2    Martin, S.J.3
  • 72
    • 84878678105 scopus 로고    scopus 로고
    • Molecular events underlying Parkinson's disease—an interwoven tapestry
    • Lim, K.L. & C.W. Zhang. 2013. Molecular events underlying Parkinson's disease—an interwoven tapestry. Front Neurol. 4: 33.
    • (2013) Front Neurol , vol.4 , pp. 33
    • Lim, K.L.1    Zhang, C.W.2
  • 73
    • 84878118233 scopus 로고    scopus 로고
    • Parkin overexpression during aging reduces proteotoxicity, alters mitochondrial dynamics, and extends lifespan
    • Rana, A., M. Rera & D.W. Walker. 2013. Parkin overexpression during aging reduces proteotoxicity, alters mitochondrial dynamics, and extends lifespan. Proc. Natl. Acad. Sci. U.S.A. 110: 8638–8643.
    • (2013) Proc. Natl. Acad. Sci. U.S.A , vol.110 , pp. 8638-8643
    • Rana, A.1    Rera, M.2    Walker, D.W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.