-
1
-
-
33846572874
-
Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030
-
Dorsey, E.R. et al. 2007. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 68: 384–386.
-
(2007)
Neurology
, vol.68
, pp. 384-386
-
-
Dorsey, E.R.1
-
2
-
-
0037333666
-
Staging of brain pathology related to sporadic Parkinson's disease
-
Braak, H. et al. 2003. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol. Aging. 24: 197–211.
-
(2003)
Neurobiol. Aging
, vol.24
, pp. 197-211
-
-
Braak, H.1
-
3
-
-
41149163183
-
Parkinson's disease: clinical features and diagnosis
-
Jankovic, J. 2008. Parkinson's disease: clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 79: 368–376.
-
(2008)
J. Neurol. Neurosurg. Psychiatry
, vol.79
, pp. 368-376
-
-
Jankovic, J.1
-
4
-
-
0020680904
-
Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis
-
Langston, J.W. et al. 1983. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219: 979–980.
-
(1983)
Science
, vol.219
, pp. 979-980
-
-
Langston, J.W.1
-
5
-
-
0024390719
-
Mitochondrial complex I deficiency in Parkinson's disease
-
Schapira, A.H. et al. 1989. Mitochondrial complex I deficiency in Parkinson's disease. Lancet 1: 1269.
-
(1989)
Lancet
, vol.1
, pp. 1269
-
-
Schapira, A.H.1
-
6
-
-
0030612117
-
Coenzyme Q10 levels correlate with the activities of complexes I and II/III in mitochondria from parkinsonian and nonparkinsonian subjects
-
Shults, C.W. et al. 1997. Coenzyme Q10 levels correlate with the activities of complexes I and II/III in mitochondria from parkinsonian and nonparkinsonian subjects. Ann. Neurol. 42: 261–264.
-
(1997)
Ann. Neurol
, vol.42
, pp. 261-264
-
-
Shults, C.W.1
-
7
-
-
0024848034
-
Abnormalities of the electron transport chain in idiopathic Parkinson's disease
-
Parker, W.D., Jr., S.J. Boyson & J.K. Parks. 1989. Abnormalities of the electron transport chain in idiopathic Parkinson's disease. Ann. Neurol. 26: 719–723.
-
(1989)
Ann. Neurol
, vol.26
, pp. 719-723
-
-
Parker, W.D.1
Boyson, S.J.2
Parks, J.K.3
-
8
-
-
0141741347
-
Parkinson's disease: mechanisms and models
-
Dauer, W. & S. Przedborski. 2003. Parkinson's disease: mechanisms and models. Neuron 39: 889–909.
-
(2003)
Neuron
, vol.39
, pp. 889-909
-
-
Dauer, W.1
Przedborski, S.2
-
9
-
-
0033681149
-
Chronic systemic pesticide exposure reproduces features of Parkinson's disease
-
Betarbet, R. et al. 2000. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat. Neurosci. 3: 1301–1306.
-
(2000)
Nat. Neurosci
, vol.3
, pp. 1301-1306
-
-
Betarbet, R.1
-
10
-
-
79961239061
-
Impaired mitochondrial transport and Parkin-independent degeneration of respiratory chain-deficient dopamine neurons in vivo
-
Sterky, F.H. et al. 2011. Impaired mitochondrial transport and Parkin-independent degeneration of respiratory chain-deficient dopamine neurons in vivo. Proc. Natl. Acad. Sci. U.S.A. 108: 12937–12942.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A
, vol.108
, pp. 12937-12942
-
-
Sterky, F.H.1
-
11
-
-
79955557808
-
Rotenone, paraquat, and Parkinson's disease
-
Tanner, C.M. et al. 2011. Rotenone, paraquat, and Parkinson's disease. Environ. Health Perspect. 119: 866–872.
-
(2011)
Environ. Health Perspect
, vol.119
, pp. 866-872
-
-
Tanner, C.M.1
-
12
-
-
0033600443
-
Possible relation of atypical parkinsonism in the French West Indies with consumption of tropical plants: a case-control study. Caribbean Parkinsonism Study Group
-
Caparros-Lefebvre, D. & A. Elbaz. 1999. Possible relation of atypical parkinsonism in the French West Indies with consumption of tropical plants: a case-control study. Caribbean Parkinsonism Study Group. Lancet 354: 281–286.
-
(1999)
Lancet
, vol.354
, pp. 281-286
-
-
Caparros-Lefebvre, D.1
Elbaz, A.2
-
13
-
-
77951096150
-
Mitochondrial dynamics–fusion, fission, movement, and mitophagy–in neurodegenerative diseases
-
Chen, H. & D.C. Chan. 2009. Mitochondrial dynamics–fusion, fission, movement, and mitophagy–in neurodegenerative diseases. Hum. Mol. Genet. 18: R169–R176.
-
(2009)
Hum. Mol. Genet
, vol.18
, pp. R169-R176
-
-
Chen, H.1
Chan, D.C.2
-
14
-
-
0037386532
-
Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants
-
Greene, J.C. et al. 2003. Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc. Natl. Acad. Sci. U.S.A. 100: 4078–4083.
-
(2003)
Proc. Natl. Acad. Sci. U.S.A
, vol.100
, pp. 4078-4083
-
-
Greene, J.C.1
-
15
-
-
77957222311
-
What have we learned from Drosophila models of Parkinson's disease?
-
Guo, M. 2010. What have we learned from Drosophila models of Parkinson's disease? Prog. Brain Res. 184: 3–16.
-
(2010)
Prog. Brain Res
, vol.184
, pp. 3-16
-
-
Guo, M.1
-
17
-
-
84866072587
-
PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin re-cruitment to damaged mitochondria
-
Okatsu, K. et al. 2012. PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin re-cruitment to damaged mitochondria. Nat. Commun. 3: 1016.
-
(2012)
Nat. Commun
, vol.3
, pp. 1016
-
-
Okatsu, K.1
-
18
-
-
84899539731
-
PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity
-
Kane, L.A. et al. 2014. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J. Cell Biol. 205: 143–153.
-
(2014)
J. Cell Biol
, vol.205
, pp. 143-153
-
-
Kane, L.A.1
-
19
-
-
84901751574
-
Ubiquitin is phosphorylated by PINK1 to activate parkin
-
Koyano, F. et al. 2014. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510: 162–166.
-
(2014)
Nature
, vol.510
, pp. 162-166
-
-
Koyano, F.1
-
20
-
-
77951181836
-
PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy
-
Matsuda, N. et al. 2010. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J. Cell Biol. 189: 211–221.
-
(2010)
J. Cell Biol
, vol.189
, pp. 211-221
-
-
Matsuda, N.1
-
21
-
-
84864267876
-
PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65
-
Kondapalli, C. et al. 2012. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open Biol. 2: 120080.
-
(2012)
Open Biol
, vol.2
, pp. 120080
-
-
Kondapalli, C.1
-
22
-
-
84922794336
-
Phosphorylated ubiquitin chain is the genuine Parkin receptor
-
Okatsu, K. et al. 2015. Phosphorylated ubiquitin chain is the genuine Parkin receptor. J. Cell Biol. 209: 111–128.
-
(2015)
J. Cell Biol
, vol.209
, pp. 111-128
-
-
Okatsu, K.1
-
23
-
-
84922434418
-
Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis
-
Ordureau, A. et al. 2014. Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. Mol. Cell 56: 360–375.
-
(2014)
Mol. Cell
, vol.56
, pp. 360-375
-
-
Ordureau, A.1
-
24
-
-
84919629959
-
Phosphorylation of mitochondrial polyubiquitin by PINK1 promotes Parkin mitochondrial tethering
-
Shiba-Fukushima, K. et al. 2014. Phosphorylation of mitochondrial polyubiquitin by PINK1 promotes Parkin mitochondrial tethering. PLoS Genet. 10: e1004861.
-
(2014)
PLoS Genet
, vol.10
-
-
Shiba-Fukushima, K.1
-
25
-
-
77955844260
-
The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/parkin pathway
-
Poole, A.C. et al. 2010. The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/parkin pathway. PLoS One 5: e10054.
-
(2010)
PLoS One
, vol.5
-
-
Poole, A.C.1
-
26
-
-
77950384477
-
Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin
-
Ziviani, E., R.N. Tao & A.J. Whitworth. 2010. Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc. Natl. Acad. Sci. U.S.A. 107: 5018–5023.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A
, vol.107
, pp. 5018-5023
-
-
Ziviani, E.1
Tao, R.N.2
Whitworth, A.J.3
-
27
-
-
81055140895
-
PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility
-
Wang, X. et al. 2011. PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 147: 893–906.
-
(2011)
Cell
, vol.147
, pp. 893-906
-
-
Wang, X.1
-
28
-
-
84906861963
-
Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin
-
Ashrafi, G. et al. 2014. Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin. J. Cell Biol. 206: 655–670.
-
(2014)
J. Cell Biol
, vol.206
, pp. 655-670
-
-
Ashrafi, G.1
-
29
-
-
79952303794
-
PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson's disease
-
Shin, J.H. et al. 2011. PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson's disease. Cell 144: 689–702.
-
(2011)
Cell
, vol.144
, pp. 689-702
-
-
Shin, J.H.1
-
30
-
-
57649148823
-
Nuclear control of respiratory chain expression by nuclear respiratory factors and PGC-1-related coactivator
-
Scarpulla, R.C. 2008. Nuclear control of respiratory chain expression by nuclear respiratory factors and PGC-1-related coactivator. Ann. N.Y. Acad. Sci. 1147: 321–334.
-
(2008)
Ann. N.Y. Acad. Sci
, vol.1147
, pp. 321-334
-
-
Scarpulla, R.C.1
-
31
-
-
13844313915
-
Parkin-deficient mice are not a robust model of parkinsonism
-
Perez, F.A. & R.D. Palmiter. 2005. Parkin-deficient mice are not a robust model of parkinsonism. Proc. Natl. Acad. Sci. U.S.A. 102: 2174–2179.
-
(2005)
Proc. Natl. Acad. Sci. U.S.A
, vol.102
, pp. 2174-2179
-
-
Perez, F.A.1
Palmiter, R.D.2
-
32
-
-
33751267701
-
Parkin: a multifaceted ubiquitin ligase
-
Moore, D.J. 2006. Parkin: a multifaceted ubiquitin ligase. Biochem. Soc. Trans. 34: 749–753.
-
(2006)
Biochem. Soc. Trans
, vol.34
, pp. 749-753
-
-
Moore, D.J.1
-
33
-
-
84858782079
-
AMPK: a nutrient and energy sensor that maintains energy homeostasis
-
Hardie, D.G., F.A. Ross & S.A. Hawley. 2012. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 13: 251–262.
-
(2012)
Nat. Rev. Mol. Cell Biol
, vol.13
, pp. 251-262
-
-
Hardie, D.G.1
Ross, F.A.2
Hawley, S.A.3
-
35
-
-
0034773404
-
Role of AMP-activated protein kinase in mechanism of metformin action
-
Zhou, G. et al. 2001. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108: 1167–1174.
-
(2001)
J. Clin. Invest
, vol.108
, pp. 1167-1174
-
-
Zhou, G.1
-
36
-
-
33751072349
-
Resveratrol improves health and survival of mice on a high-calorie diet
-
Baur, J.A. et al. 2006. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444: 337–342.
-
(2006)
Nature
, vol.444
, pp. 337-342
-
-
Baur, J.A.1
-
37
-
-
35648944317
-
Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, suppresses hepatic gluconeogenesis through 5′-AMP-activated protein kinase
-
Collins, Q.F. et al. 2007. Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, suppresses hepatic gluconeogenesis through 5′-AMP-activated protein kinase. J. Biol. Chem. 282: 30143–30149.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 30143-30149
-
-
Collins, Q.F.1
-
38
-
-
0037058977
-
AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation
-
Zong, H. et al. 2002. AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc. Natl. Acad. Sci. U.S.A. 99: 15983–15987.
-
(2002)
Proc. Natl. Acad. Sci. U.S.A
, vol.99
, pp. 15983-15987
-
-
Zong, H.1
-
39
-
-
34547545892
-
AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha
-
Jager, S. et al. 2007. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc. Natl. Acad. Sci. U.S.A. 104: 12017–12022.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A
, vol.104
, pp. 12017-12022
-
-
Jager, S.1
-
40
-
-
77249156847
-
Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle
-
Canto, C. et al. 2010. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab. 11: 213–219.
-
(2010)
Cell Metab
, vol.11
, pp. 213-219
-
-
Canto, C.1
-
41
-
-
79551598347
-
AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
-
Kim, J. et al. 2011. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13: 132–141.
-
(2011)
Nat. Cell Biol
, vol.13
, pp. 132-141
-
-
Kim, J.1
-
42
-
-
79251587803
-
Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy
-
Egan, D.F. et al. 2011. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331: 456–461.
-
(2011)
Science
, vol.331
, pp. 456-461
-
-
Egan, D.F.1
-
44
-
-
0037431172
-
Parkin: a multipurpose neuroprotective agent?
-
Feany, M.B. & L.J. Pallanck. 2003. Parkin: a multipurpose neuroprotective agent? Neuron 38: 13–16.
-
(2003)
Neuron
, vol.38
, pp. 13-16
-
-
Feany, M.B.1
Pallanck, L.J.2
-
45
-
-
37349129281
-
The parkin protein as a therapeutic target in Parkinson's disease
-
Winklhofer, K.F. 2007. The parkin protein as a therapeutic target in Parkinson's disease. Expert Opin. Ther. Targets 11: 1543–1552.
-
(2007)
Expert Opin. Ther. Targets
, vol.11
, pp. 1543-1552
-
-
Winklhofer, K.F.1
-
46
-
-
34547885021
-
Drosophila overexpressing parkin R275W mutant exhibits dopaminergic neuron degeneration and mitochondrial abnormalities
-
Wang, C. et al. 2007. Drosophila overexpressing parkin R275W mutant exhibits dopaminergic neuron degeneration and mitochondrial abnormalities. J. Neurosci. 27: 8563–8570.
-
(2007)
J. Neurosci
, vol.27
, pp. 8563-8570
-
-
Wang, C.1
-
47
-
-
77952326081
-
Disease-causing mutations in Parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy
-
Lee, J.Y. et al. 2010. Disease-causing mutations in Parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy. J. Cell Biol. 189: 671–679.
-
(2010)
J. Cell Biol
, vol.189
, pp. 671-679
-
-
Lee, J.Y.1
-
48
-
-
80055042897
-
Mitochondrial dynamics and Parkinson's disease: focus on parkin
-
Lim, K.L. et al. 2012. Mitochondrial dynamics and Parkinson's disease: focus on parkin. Antioxid. Redox Signal. 16: 935–949.
-
(2012)
Antioxid. Redox Signal
, vol.16
, pp. 935-949
-
-
Lim, K.L.1
-
49
-
-
0023856479
-
A histochemical study of the regional distribution in the rat brain of enzymatic activity hydrolyzing glucose-and 2-deoxyglucose-6-phosphate
-
Pertsch, M. et al. 1988. A histochemical study of the regional distribution in the rat brain of enzymatic activity hydrolyzing glucose-and 2-deoxyglucose-6-phosphate. Histochemistry 88: 257–262.
-
(1988)
Histochemistry
, vol.88
, pp. 257-262
-
-
Pertsch, M.1
-
50
-
-
20144368904
-
Pharmacological inhibition of AMP-activated protein kinase provides neuroprotection in stroke
-
McCullough, L.D. et al. 2005. Pharmacological inhibition of AMP-activated protein kinase provides neuroprotection in stroke. J. Biol. Chem. 280: 20493–20502.
-
(2005)
J. Biol. Chem
, vol.280
, pp. 20493-20502
-
-
McCullough, L.D.1
-
51
-
-
79961116788
-
Nuclear translocation of AMPK-alpha1 potentiates striatal neurodegeneration in Huntington's disease
-
Ju, T.C. et al. 2011. Nuclear translocation of AMPK-alpha1 potentiates striatal neurodegeneration in Huntington's disease. J. Cell Biol. 194: 209–227.
-
(2011)
J. Cell Biol
, vol.194
, pp. 209-227
-
-
Ju, T.C.1
-
52
-
-
34548095002
-
Metformin therapy in a transgenic mouse model of Huntington's disease
-
Ma, T.C. et al. 2007. Metformin therapy in a transgenic mouse model of Huntington's disease. Neurosci. Lett. 411: 98–103.
-
(2007)
Neurosci. Lett
, vol.411
, pp. 98-103
-
-
Ma, T.C.1
-
53
-
-
84881347302
-
Metformin improves healthspan and lifespan in mice
-
Martin-Montalvo, A. et al. 2013. Metformin improves healthspan and lifespan in mice. Nat. Commun. 4: 2192.
-
(2013)
Nat. Commun
, vol.4
, pp. 2192
-
-
Martin-Montalvo, A.1
-
54
-
-
0034803430
-
AMP-activated protein kinase is highly expressed in neurons in the developing rat brain and promotes neuronal survival following glucose deprivation
-
Culmsee, C. et al. 2001. AMP-activated protein kinase is highly expressed in neurons in the developing rat brain and promotes neuronal survival following glucose deprivation. J. Mol. Neurosci. 17: 45–58.
-
(2001)
J. Mol. Neurosci
, vol.17
, pp. 45-58
-
-
Culmsee, C.1
-
55
-
-
77950575506
-
AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-beta peptide metabolism
-
Vingtdeux, V. et al. 2010. AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-beta peptide metabolism. J. Biol. Chem. 285: 9100–9113.
-
(2010)
J. Biol. Chem
, vol.285
, pp. 9100-9113
-
-
Vingtdeux, V.1
-
56
-
-
0037011118
-
The neurodegeneration mutant lochrig interferes with cholesterol homeostasis and Appl processing
-
Tschape, J.A. et al. 2002. The neurodegeneration mutant lochrig interferes with cholesterol homeostasis and Appl processing. EMBO J. 21: 6367–6376.
-
(2002)
EMBO J
, vol.21
, pp. 6367-6376
-
-
Tschape, J.A.1
-
57
-
-
46749133868
-
Drosophila alicorn is a neuronal maintenance factor protecting against activity-induced retinal degeneration
-
Spasic, M.R., P. Callaerts & K.K. Norga. 2008. Drosophila alicorn is a neuronal maintenance factor protecting against activity-induced retinal degeneration. J. Neurosci. 28: 6419–6429.
-
(2008)
J. Neurosci
, vol.28
, pp. 6419-6429
-
-
Spasic, M.R.1
Callaerts, P.2
Norga, K.K.3
-
58
-
-
72949122084
-
AMP-activated protein kinase is activated in Parkinson's disease models mediated by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
-
Choi, J.S., C. Park & J.W. Jeong. 2010. AMP-activated protein kinase is activated in Parkinson's disease models mediated by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Biochem. Biophys. Res. Commun. 391: 147–151.
-
(2010)
Biochem. Biophys. Res. Commun
, vol.391
, pp. 147-151
-
-
Choi, J.S.1
Park, C.2
Jeong, J.W.3
-
59
-
-
80052359850
-
Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson's disease
-
Wu, Y. et al. 2011. Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson's disease. Neurosignals 19: 163–174.
-
(2011)
Neurosignals
, vol.19
, pp. 163-174
-
-
Wu, Y.1
-
60
-
-
84889561434
-
(ADP-ribose) polymerase 1 and AMP-activated protein kinase mediate progressive dopaminergic neuronal degeneration in a mouse model of Parkinson's disease
-
Kim, T.W. et al. 2013. (ADP-ribose) polymerase 1 and AMP-activated protein kinase mediate progressive dopaminergic neuronal degeneration in a mouse model of Parkinson's disease. Cell Death Dis. 4: e919.
-
(2013)
Cell Death Dis
, vol.4
, pp. 919
-
-
Kim, T.W.1
-
61
-
-
84899984684
-
Activation of AMPK and inactivation of Akt result in suppression of mTOR-mediated S6K1 and 4E-BP1 pathways leading to neuronal cell death in in vitro models of Parkinson's disease
-
Xu, Y. et al. 2014. Activation of AMPK and inactivation of Akt result in suppression of mTOR-mediated S6K1 and 4E-BP1 pathways leading to neuronal cell death in in vitro models of Parkinson's disease. Cell Signal. 26: 1680–1689.
-
(2014)
Cell Signal
, vol.26
, pp. 1680-1689
-
-
Xu, Y.1
-
62
-
-
84862199583
-
Metformin-inclusive sulfonylurea therapy reduces the risk of Parkinson's disease occurring with Type 2 diabetes in a Taiwanese population cohort
-
Wahlqvist, M.L. et al. 2012. Metformin-inclusive sulfonylurea therapy reduces the risk of Parkinson's disease occurring with Type 2 diabetes in a Taiwanese population cohort. Parkinsonism Relat. Disord. 18: 753–758.
-
(2012)
Parkinsonism Relat. Disord
, vol.18
, pp. 753-758
-
-
Wahlqvist, M.L.1
-
63
-
-
84867269951
-
AMP kinase activation mitigates dopaminergic dysfunction and mitochondrial abnormalities in Drosophila models of Parkinson's disease
-
Ng, C.H. et al. 2012. AMP kinase activation mitigates dopaminergic dysfunction and mitochondrial abnormalities in Drosophila models of Parkinson's disease. J. Neurosci. 32: 14311–14317.
-
(2012)
J. Neurosci
, vol.32
, pp. 14311-14317
-
-
Ng, C.H.1
-
64
-
-
71749100220
-
AMP-activated protein kinase: a potential target for the diseases prevention by natural occurring polyphenols
-
Hwang, J.T., D.Y. Kwon & S.H. Yoon. 2009. AMP-activated protein kinase: a potential target for the diseases prevention by natural occurring polyphenols. N. Biotechnol. 26: 17–22.
-
(2009)
N. Biotechnol
, vol.26
, pp. 17-22
-
-
Hwang, J.T.1
Kwon, D.Y.2
Yoon, S.H.3
-
65
-
-
68949107216
-
AMP-activated protein kinase (AMPK) molecular crossroad for metabolic control and survival of neurons
-
Spasic, M.R., P. Callaerts & K.K. Norga. 2009. AMP-activated protein kinase (AMPK) molecular crossroad for metabolic control and survival of neurons. Neuroscientist 15: 309–316.
-
(2009)
Neuroscientist
, vol.15
, pp. 309-316
-
-
Spasic, M.R.1
Callaerts, P.2
Norga, K.K.3
-
66
-
-
0033794615
-
Antioxidant and free radical scavenging effects of baicalein, baicalin and wogonin
-
Shieh, D.E., L.T. Liu & C.C. Lin. 2000. Antioxidant and free radical scavenging effects of baicalein, baicalin and wogonin. Anticancer Res. 20: 2861–2865.
-
(2000)
Anticancer Res
, vol.20
, pp. 2861-2865
-
-
Shieh, D.E.1
Liu, L.T.2
Lin, C.C.3
-
67
-
-
70349103837
-
Parkin protects against LRRK2 G2019S mutant-induced dopaminergic neurodegeneration in Drosophila
-
Ng, C.H. et al. 2009. Parkin protects against LRRK2 G2019S mutant-induced dopaminergic neurodegeneration in Drosophila. J. Neurosci. 29: 11257–11262.
-
(2009)
J. Neurosci
, vol.29
, pp. 11257-11262
-
-
Ng, C.H.1
-
69
-
-
84897429184
-
Effect of resveratrol on mitochondrial function: implications in Parkin-associated familiar Parkinson's disease
-
Ferretta, A. et al. 2014. Effect of resveratrol on mitochondrial function: implications in Parkin-associated familiar Parkinson's disease. Biochim. Biophys. Acta. 1842: 902–915.
-
(2014)
Biochim. Biophys. Acta
, vol.1842
, pp. 902-915
-
-
Ferretta, A.1
-
70
-
-
84897018170
-
Long-term overexpression of human wild-type and T240R mutant Parkin in rat substantia nigra induces progressive dopaminergic neurodegeneration
-
VanRompuy, A.S. et al. 2014. Long-term overexpression of human wild-type and T240R mutant Parkin in rat substantia nigra induces progressive dopaminergic neurodegeneration. J. Neuropathol. Exp. Neurol. 73: 159–174.
-
(2014)
J. Neuropathol. Exp. Neurol
, vol.73
, pp. 159-174
-
-
Van Rompuy, A.S.1
-
71
-
-
84912123834
-
Parkin sensitizes toward apoptosis induced by mitochondrial depolarization through promoting degradation of Mcl-1
-
Carroll, R.G., E. Hollville & S.J. Martin. 2014. Parkin sensitizes toward apoptosis induced by mitochondrial depolarization through promoting degradation of Mcl-1. Cell Rep. 9: 1538–1553.
-
(2014)
Cell Rep
, vol.9
, pp. 1538-1553
-
-
Carroll, R.G.1
Hollville, E.2
Martin, S.J.3
-
72
-
-
84878678105
-
Molecular events underlying Parkinson's disease—an interwoven tapestry
-
Lim, K.L. & C.W. Zhang. 2013. Molecular events underlying Parkinson's disease—an interwoven tapestry. Front Neurol. 4: 33.
-
(2013)
Front Neurol
, vol.4
, pp. 33
-
-
Lim, K.L.1
Zhang, C.W.2
-
73
-
-
84878118233
-
Parkin overexpression during aging reduces proteotoxicity, alters mitochondrial dynamics, and extends lifespan
-
Rana, A., M. Rera & D.W. Walker. 2013. Parkin overexpression during aging reduces proteotoxicity, alters mitochondrial dynamics, and extends lifespan. Proc. Natl. Acad. Sci. U.S.A. 110: 8638–8643.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A
, vol.110
, pp. 8638-8643
-
-
Rana, A.1
Rera, M.2
Walker, D.W.3
|