메뉴 건너뛰기




Volumn 43, Issue 4, 2015, Pages 1535-1567

Regularized estimation in sparse high-dimensional time series models

Author keywords

Covariance estimation; High dimensional time series; Lasso; Stochastic regression; Vector autoregression

Indexed keywords


EID: 84933511111     PISSN: 00905364     EISSN: 21688966     Source Type: Journal    
DOI: 10.1214/15-AOS1315     Document Type: Article
Times cited : (439)

References (47)
  • 4
    • 15544377383 scopus 로고    scopus 로고
    • Measuring the effects of monetary policy: A factor-augmented vector autoregressive (FAVAR) approach
    • BERNANKE, B. S., BOIVIN, J. and ELIASZ, P. (2005). Measuring the effects of monetary policy: A factor-augmented vector autoregressive (FAVAR) approach. Q. J. Econ. 120 387-422.
    • (2005) Q. J. Econ. , vol.120 , pp. 387-422
    • Bernanke, B.S.1    Boivin, J.2    Eliasz, P.3
  • 5
    • 62349112885 scopus 로고    scopus 로고
    • Covariance regularization by thresholding
    • MR2485008
    • BICKEL, P. J. and LEVINA, E. (2008). Covariance regularization by thresholding. Ann. Statist. 36 2577-2604. MR2485008
    • (2008) Ann. Statist. , vol.36 , pp. 2577-2604
    • Bickel, P.J.1    Levina, E.2
  • 6
    • 68649086910 scopus 로고    scopus 로고
    • Simultaneous analysis of lasso and Dantzig selector
    • MR2533469
    • BICKEL, P. J., RITOV, Y. and TSYBAKOV, A. B. (2009). Simultaneous analysis of lasso and Dantzig selector. Ann. Statist. 37 1705-1732. MR2533469
    • (2009) Ann. Statist. , vol.37 , pp. 1705-1732
    • Bickel, P.J.1    Ritov, Y.2    Tsybakov, A.B.3
  • 7
    • 84891934068 scopus 로고    scopus 로고
    • Covariance and precision matrix estimation for highdimensional time series
    • MR3161455
    • CHEN, X., XU, M. and WU, W. B. (2013). Covariance and precision matrix estimation for highdimensional time series. Ann. Statist. 41 2994-3021. MR3161455
    • (2013) Ann. Statist. , vol.41 , pp. 2994-3021
    • Chen, X.1    Xu, M.2    Wu, W.B.3
  • 8
    • 79956353136 scopus 로고    scopus 로고
    • Infinite-dimensional VARs and factor models
    • MR2803662
    • CHUDIK, A. and PESARAN, M. H. (2011). Infinite-dimensional VARs and factor models. J. Econometrics 163 4-22. MR2803662
    • (2011) J. Econometrics , vol.163 , pp. 4-22
    • Chudik, A.1    Pesaran, M.H.2
  • 10
    • 53649093540 scopus 로고    scopus 로고
    • Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components?
    • MR2465176
    • DE MOL, C., GIANNONE, D. and REICHLIN, L. (2008). Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components? J. Econometrics 146 318-328. MR2465176
    • (2008) J. Econometrics , vol.146 , pp. 318-328
    • De Mol, C.1    Giannone, D.2    Reichlin, L.3
  • 12
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • MR1946581
    • FAN, J. and LI, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. J. Amer. Statist. Assoc. 96 1348-1360. MR1946581
    • (2001) J. Amer. Statist. Assoc. , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 13
    • 84890107049 scopus 로고    scopus 로고
    • Asymptotic equivalence of regularization methods in thresholded parameter space
    • MR3174683
    • FAN, Y. and LV, J. (2013). Asymptotic equivalence of regularization methods in thresholded parameter space. J. Amer. Statist. Assoc. 108 1044-1061. MR3174683
    • (2013) J. Amer. Statist. Assoc. , vol.108 , pp. 1044-1061
    • Fan, Y.1    Lv, J.2
  • 14
    • 80051767239 scopus 로고    scopus 로고
    • Sparse high-dimensional models in economics
    • FAN, J., LV, J. and QI, L. (2011). Sparse high-dimensional models in economics. Annual Review of Economics 3 291-317.
    • (2011) Annual Review of Economics , vol.3 , pp. 291-317
    • Fan, J.1    Lv, J.2    Qi, L.3
  • 15
    • 61349120207 scopus 로고    scopus 로고
    • Causal modelling and brain connectivity in functional magnetic resonance imaging
    • FRISTON, K. (2009). Causal modelling and brain connectivity in functional magnetic resonance imaging. PLoS Biol. 7 e1000033.
    • (2009) PLoS Biol. , vol.7 , pp. e1000033
    • Friston, K.1
  • 18
    • 0003410290 scopus 로고
    • Princeton Univ. Press, Princeton, NJ, MR1278033
    • HAMILTON, J. D. (1994). Time Series Analysis. Princeton Univ. Press, Princeton, NJ. MR1278033
    • (1994) Time Series Analysis
    • Hamilton, J.D.1
  • 21
    • 24344475712 scopus 로고    scopus 로고
    • Towards a unified approach for proving geometric ergodicity and mixing properties of nonlinear autoregressive processes
    • MR2188304
    • LIEBSCHER, E. (2005). Towards a unified approach for proving geometric ergodicity and mixing properties of nonlinear autoregressive processes. J. Time Series Anal. 26 669-689. MR2188304
    • (2005) J. Time Series Anal. , vol.26 , pp. 669-689
    • Liebscher, E.1
  • 22
    • 84872078104 scopus 로고    scopus 로고
    • High-dimensional regression with noisy and missing data: Provable guarantees with nonconvexity
    • MR3015038
    • LOH, P.-L. and WAINWRIGHT, M. J. (2012). High-dimensional regression with noisy and missing data: Provable guarantees with nonconvexity. Ann. Statist. 40 1637-1664. MR3015038
    • (2012) Ann. Statist. , vol.40 , pp. 1637-1664
    • Loh, P.-L.1    Wainwright, M.J.2
  • 25
    • 84888045025 scopus 로고    scopus 로고
    • Autoregressive models for gene regulatory network inference: Sparsity, stability and causality issues
    • MR3132054
    • MICHAILIDIS, G. and D'ALCHÉ-BUC, F. (2013). Autoregressive models for gene regulatory network inference: Sparsity, stability and causality issues. Math. Biosci. 246 326-334. MR3132054
    • (2013) Math. Biosci. , vol.246 , pp. 326-334
    • Michailidis, G.1    D'Alché-Buc, F.2
  • 26
    • 79952934740 scopus 로고    scopus 로고
    • Estimation of (near) low-rank matrices with noise and high-dimensional scaling
    • MR2816348
    • NEGAHBAN, S. and WAINWRIGHT, M. J. (2011). Estimation of (near) low-rank matrices with noise and high-dimensional scaling. Ann. Statist. 39 1069-1097. MR2816348
    • (2011) Ann. Statist. , vol.39 , pp. 1069-1097
    • Negahban, S.1    Wainwright, M.J.2
  • 27
    • 84871600478 scopus 로고    scopus 로고
    • A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers
    • MR3025133
    • NEGAHBAN, S. N., RAVIKUMAR, P., WAINWRIGHT, M. J. and YU, B. (2012). A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers. Statist. Sci. 27 538-557. MR3025133
    • (2012) Statist. Sci. , vol.27 , pp. 538-557
    • Negahban, S.N.1    Ravikumar, P.2    Wainwright, M.J.3    Yu, B.4
  • 28
    • 84968504291 scopus 로고
    • Extreme eigenvalues of Toeplitz forms and applications to elliptic difference equations
    • MR0120492
    • PARTER, S. V. (1961). Extreme eigenvalues of Toeplitz forms and applications to elliptic difference equations. Trans. Amer. Math. Soc. 99 153-192. MR0120492
    • (1961) Trans. Amer. Math. Soc. , vol.99 , pp. 153-192
    • Parter, S.V.1
  • 30
    • 77956925453 scopus 로고    scopus 로고
    • Restricted eigenvalue properties for correlated Gaussian designs
    • MR2719855
    • RASKUTTI, G., WAINWRIGHT, M. J. and YU, B. (2010). Restricted eigenvalue properties for correlated Gaussian designs. J. Mach. Learn. Res. 11 2241-2259. MR2719855
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 2241-2259
    • Raskutti, G.1    Wainwright, M.J.2    Yu, B.3
  • 32
    • 84886437817 scopus 로고    scopus 로고
    • Hanson-Wright inequality and sub-Gaussian concentration
    • MR3125258
    • RUDELSON, M. and VERSHYNIN, R. (2013). Hanson-Wright inequality and sub-Gaussian concentration. Electron. Commun. Probab. 18 no. 82, 9. MR3125258
    • (2013) Electron. Commun. Probab. , vol.18 , Issue.82 , pp. 9
    • Rudelson, M.1    Vershynin, R.2
  • 33
    • 84877881209 scopus 로고    scopus 로고
    • Reconstruction from anisotropic random measurements
    • MR3061256
    • RUDELSON, M. and ZHOU, S. (2013). Reconstruction from anisotropic random measurements. IEEE Trans. Inform. Theory 59 3434-3447. MR3061256
    • (2013) IEEE Trans. Inform. Theory , vol.59 , pp. 3434-3447
    • Rudelson, M.1    Zhou, S.2
  • 34
    • 84870266555 scopus 로고    scopus 로고
    • Granger causality analysis of fMRI BOLD signals is invariant to hemodynamic convolution but not downsampling
    • SETH, A. K., CHORLEY, P. and BARNETT, L. C. (2013). Granger causality analysis of fMRI BOLD signals is invariant to hemodynamic convolution but not downsampling. NeuroImage 65 540-555.
    • (2013) NeuroImage , vol.65 , pp. 540-555
    • Seth, A.K.1    Chorley, P.2    Barnett, L.C.3
  • 35
    • 77956514067 scopus 로고    scopus 로고
    • Discovering graphical Granger causality using the truncating lasso penalty
    • SHOJAIE, A. and MICHAILIDIS, G. (2010). Discovering graphical Granger causality using the truncating lasso penalty. Bioinformatics 26 i517-i523.
    • (2010) Bioinformatics , vol.26 , pp. i517-i523
    • Shojaie, A.1    Michailidis, G.2
  • 36
    • 0000997472 scopus 로고
    • Macroeconomics and reality
    • SIMS, C. A. (1980). Macroeconomics and reality. Econometrica 48 1-48.
    • (1980) Econometrica , vol.48 , pp. 1-48
    • Sims, C.A.1
  • 37
    • 84862999728 scopus 로고    scopus 로고
    • The future of FMRI connectivity
    • SMITH, S. M. (2012). The future of FMRI connectivity. NeuroImage 62 1257-1266.
    • (2012) NeuroImage , vol.62 , pp. 1257-1266
    • Smith, S.M.1
  • 40
    • 77955054299 scopus 로고    scopus 로고
    • On the conditions used to prove oracle results for the Lasso
    • MR2576316
    • VAN DE GEER, S. A. and BÜHLMANN, P. (2009). On the conditions used to prove oracle results for the Lasso. Electron. J. Stat. 3 1360-1392. MR2576316
    • (2009) Electron. J. Stat. , vol.3 , pp. 1360-1392
    • Van De Geer, S.A.1    Bühlmann, P.2
  • 41
    • 79960978269 scopus 로고    scopus 로고
    • The adaptive and the thresholded Lasso for potentially misspecified models (and a lower bound for the Lasso)
    • MR2820636
    • VAN DE GEER, S., BÜHLMANN, P. and ZHOU, S. (2011). The adaptive and the thresholded Lasso for potentially misspecified models (and a lower bound for the Lasso). Electron. J. Stat. 5 688-749. MR2820636
    • (2011) Electron. J. Stat. , vol.5 , pp. 688-749
    • Van De Geer, S.1    Bühlmann, P.2    Zhou, S.3
  • 43
    • 26444450641 scopus 로고    scopus 로고
    • Nonlinear system theory: Another look at dependence
    • MR2172215
    • WU, W. B. (2005). Nonlinear system theory: Another look at dependence. Proc. Natl. Acad. Sci. USA 102 14150-14154 (electronic). MR2172215
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 14150-14154
    • Wu, W.B.1
  • 44
    • 84933568593 scopus 로고    scopus 로고
    • High-dimensional linear models with dependent observations
    • WU, W.-B. and WU, Y. N. (2014). High-dimensional linear models with dependent observations. Preprint.
    • (2014) Preprint.
    • Wu, W.-B.1    Wu, Y.N.2
  • 45
    • 84866867488 scopus 로고    scopus 로고
    • Covariance matrix estimation for stationary time series
    • MR3014314
    • XIAO, H. and WU, W. B. (2012). Covariance matrix estimation for stationary time series. Ann. Statist. 40 466-493. MR3014314
    • (2012) Ann. Statist. , vol.40 , pp. 466-493
    • Xiao, H.1    Wu, W.B.2
  • 46
    • 77649284492 scopus 로고    scopus 로고
    • Nearly unbiased variable selection under minimax concave penalty
    • MR2604701
    • ZHANG, C.-H. (2010). Nearly unbiased variable selection under minimax concave penalty. Ann. Statist. 38 894-942. MR2604701
    • (2010) Ann. Statist. , vol.38 , pp. 894-942
    • Zhang, C.-H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.