메뉴 건너뛰기




Volumn 3, Issue , 2011, Pages 291-317

Sparse high-dimensional models in economics

Author keywords

Factor models; Independence screening; Oracle properties; Penalized likelihood; Portfolio selection; Variable selection

Indexed keywords


EID: 80051767239     PISSN: 19411383     EISSN: 19411391     Source Type: Journal    
DOI: 10.1146/annurev-economics-061109-080451     Document Type: Review
Times cited : (167)

References (107)
  • 1
    • 0030500040 scopus 로고    scopus 로고
    • Smoothing noisy data with tapered coiflets series
    • Antoniadis A. 1996. Smoothing noisy data with tapered coiflets series. Scand. J. Stat. 23:313-30
    • (1996) Scand. J. Stat. , vol.23 , pp. 313-330
    • Antoniadis, A.1
  • 2
    • 0442312210 scopus 로고    scopus 로고
    • Regularization of wavelet approximations
    • Antoniadis A, Fan J. 2001. Regularization of wavelet approximations. J. Am. Stat. Assoc. 96:939-67
    • (2001) J. Am. Stat. Assoc. , vol.96 , pp. 939-967
    • Antoniadis, A.1    Fan, J.2
  • 3
    • 0037277111 scopus 로고    scopus 로고
    • Inferential theory for factor models of large dimensions
    • Bai J. 2003. Inferential theory for factor models of large dimensions. Econometrica 71:135-71
    • (2003) Econometrica , vol.71 , pp. 135-171
    • Bai, J.1
  • 4
    • 79953189262 scopus 로고    scopus 로고
    • Large dimensional factor analysis
    • Bai J, Ng S. 2008. Large dimensional factor analysis. Found. Trends Econom. 3(2):89-163
    • (2008) Found. Trends Econom. , vol.3 , Issue.2 , pp. 89-163
    • Bai, J.1    Ng, S.2
  • 7
    • 79551613968 scopus 로고    scopus 로고
    • '1-penalized quantile regression in high-dimensional sparse models
    • Belloni A, Chernozhukov V. 2011. '1-penalized quantile regression in high-dimensional sparse models. Ann. Stat. 39(1):82-130
    • (2011) Ann. Stat. , vol.39 , Issue.1 , pp. 82-130
    • Belloni, A.1    Chernozhukov, V.2
  • 8
    • 15544377383 scopus 로고    scopus 로고
    • Measuring the effects of monetary policy: A factor-augmented vector autoregressive (FAVAR) approach
    • DOI 10.1162/0033553053327452
    • Bernanke B, Boivin J, Eliasz PS. 2005. Measuring the effects of monetary policy: a factor-augmented vector autoregressive (FAVAR) approach. Q. J. Econ. 120(1):387-422 (Pubitemid 40406001)
    • (2005) Quarterly Journal of Economics , vol.120 , Issue.1 , pp. 387-422
    • Bernanke, B.S.1    Boivin, J.2    Eliasz, P.3
  • 9
    • 77949378683 scopus 로고    scopus 로고
    • Discussion of "sure independence screening for ultrahigh dimensional feature space"
    • Bickel PJ. 2008. Discussion of "Sure independence screening for ultrahigh dimensional feature space." J. R. Stat. Soc. B 70:883-84
    • (2008) J. R. Stat. Soc. B , vol.70 , pp. 883-884
    • Bickel, P.J.1
  • 10
    • 41549106844 scopus 로고    scopus 로고
    • Regularized estimation of large covariance matrices
    • Bickel PJ, Levina E. 2008a. Regularized estimation of large covariance matrices. Ann. Stat. 36:199-227
    • (2008) Ann. Stat. , vol.36 , pp. 199-227
    • Bickel, P.J.1    Levina, E.2
  • 11
    • 62349112885 scopus 로고    scopus 로고
    • Covariance regularization by theresholding
    • Bickel PJ, Levina E. 2008b. Covariance regularization by theresholding. Ann. Stat. 36:2577-604
    • (2008) Ann. Stat. , vol.36 , pp. 2577-2604
    • Bickel, P.J.1    Levina, E.2
  • 12
    • 68649086910 scopus 로고    scopus 로고
    • Simultaneous analysis of Lasso and Dantzig selector
    • Bickel PJ, Ritov Y, Tsybakov A. 2009. Simultaneous analysis of Lasso and Dantzig selector. Ann. Stat. 37:1705-32
    • (2009) Ann. Stat. , vol.37 , pp. 1705-1732
    • Bickel, P.J.1    Ritov, Y.2    Tsybakov, A.3
  • 13
    • 79955022769 scopus 로고    scopus 로고
    • Penalized composite quasi-likelihood for ultrahigh-dimensional variable selection
    • In press
    • Bradic J, Fan J, Wang W. 2011. Penalized composite quasi-likelihood for ultrahigh-dimensional variable selection. J. R. Stat. Soc. B. 73:In press
    • (2011) J. R. Stat. Soc. B. , vol.73
    • Bradic, J.1    Fan, J.2    Wang, W.3
  • 14
    • 84874257732 scopus 로고
    • Better subset regression using the non-negative garrote
    • Breiman L. 1995. Better subset regression using the non-negative garrote. Technometrics 37:373-84
    • (1995) Technometrics , vol.37 , pp. 373-384
    • Breiman, L.1
  • 15
    • 0030344230 scopus 로고    scopus 로고
    • Heuristics of instability and stabilization in model selection
    • Breiman L. 1996. Heuristics of instability and stabilization in model selection. Ann. Stat. 24:2350-83
    • (1996) Ann. Stat. , vol.24 , pp. 2350-2383
    • Breiman, L.1
  • 17
    • 77955132618 scopus 로고    scopus 로고
    • Optimal rates of convergence for covariance matrix estimation
    • Cai T, Zhang C-H, Zhou H. 2010. Optimal rates of convergence for covariance matrix estimation. Ann. Stat. 38:2118-44
    • (2010) Ann. Stat. , vol.38 , pp. 2118-2144
    • Cai, T.1    Zhang, C.-H.2    Zhou, H.3
  • 20
    • 34548275795 scopus 로고    scopus 로고
    • The Dantzig selector: Statistical estimation when p is much larger than n
    • Candes E, Tao T. 2007. The Dantzig selector: statistical estimation when p is much larger than n. Ann. Stat. 35:2313-404
    • (2007) Ann. Stat. , vol.35 , pp. 2313-2404
    • Candes, E.1    Tao, T.2
  • 21
    • 0000915180 scopus 로고
    • Funds, factors and diversification in arbitrage pricing theory
    • Chamberlain G. 1983. Funds, factors and diversification in arbitrage pricing theory. Econometrica 51:1305-23
    • (1983) Econometrica , vol.51 , pp. 1305-1323
    • Chamberlain, G.1
  • 22
    • 0000915180 scopus 로고
    • Arbitrage, factor structure, and mean-variance analysis on large asset markets
    • Chamberlain G, RothschildM. 1983. Arbitrage, factor structure, and mean-variance analysis on large asset markets. Econometrica 51:1281-304
    • (1983) Econometrica , vol.51 , pp. 1281-1304
    • Chamberlain, G.1    Rothschild, M.2
  • 23
    • 0004291281 scopus 로고    scopus 로고
    • Princeton, NJ: Princeton Univ. Press. Rev. ed.
    • Cochrane JH. 2005. Asset Pricing. Princeton, NJ: Princeton Univ. Press. Rev. ed.
    • (2005) Asset Pricing
    • Cochrane, J.H.1
  • 24
    • 0000336139 scopus 로고
    • Regression models and life-tables
    • Cox DR. 1972. Regression models and life-tables. J. R. Stat. Soc. B 34:187-220
    • (1972) J. R. Stat. Soc. B , vol.34 , pp. 187-220
    • Cox, D.R.1
  • 25
    • 34250263445 scopus 로고
    • Smoothing noisy data with spline functions: Estimating the correct degreeof smoothing by the method of generalized cross-validation
    • Craven P, Wahba G. 1978. Smoothing noisy data with spline functions: estimating the correct degreeof smoothing by the method of generalized cross-validation. Numer. Math. 31(4):377-403
    • (1978) Numer. Math. , vol.31 , Issue.4 , pp. 377-403
    • Craven, P.1    Wahba, G.2
  • 26
    • 7044231546 scopus 로고    scopus 로고
    • An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
    • DOI 10.1002/cpa.20042
    • Daubechies I, Defrise M, De Mol C. 2004. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57:1413-57 (Pubitemid 39427442)
    • (2004) Communications on Pure and Applied Mathematics , vol.57 , Issue.11 , pp. 1413-1457
    • Daubechies, I.1    Defrise, M.2    De Mol, C.3
  • 27
    • 67649999044 scopus 로고    scopus 로고
    • A generalized approach to portfolio optimization: Improving performance by constraining portfolio norms
    • DeMiguel V, Garlappi L, Nogales FJ, Uppal R. 2009. A generalized approach to portfolio optimization: improving performance by constraining portfolio norms. Manage. Sci. 55(5):798-812
    • (2009) Manage. Sci. , vol.55 , Issue.5 , pp. 798-812
    • Demiguel, V.1    Garlappi, L.2    Nogales, F.J.3    Uppal, R.4
  • 28
    • 33144483155 scopus 로고    scopus 로고
    • Stable recovery of sparse overcomplete representations in the presence of noise
    • DOI 10.1109/TIT.2005.860430
    • Donoho DL, Elad M, Temlyakov V. 2006. Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. Inf. Theory 52:6-18 (Pubitemid 43263116)
    • (2006) IEEE Transactions on Information Theory , vol.52 , Issue.1 , pp. 6-18
    • Donoho, D.L.1    Elad, M.2    Temlyakov, V.N.3
  • 32
    • 62349123505 scopus 로고    scopus 로고
    • Operator norm consistent estimation of large dimensional sparse covariance matrices
    • El Karoui N. 2008. Operator norm consistent estimation of large dimensional sparse covariance matrices. Ann. Stat. 36:2717-56
    • (2008) Ann. Stat. , vol.36 , pp. 2717-2756
    • El Karoui, N.1
  • 33
    • 33846470748 scopus 로고
    • A one-factor multivariate time series model of metropolitan wage rates
    • Engle RF, Watson MW. 1981. A one-factor multivariate time series model of metropolitan wage rates. J. Am. Stat. Assoc. 76:774-81
    • (1981) J. Am. Stat. Assoc. , vol.76 , pp. 774-781
    • Engle, R.F.1    Watson, M.W.2
  • 34
    • 84977737676 scopus 로고
    • The cross-section of expected stock returns
    • Fama E, French K. 1992. The cross-section of expected stock returns. J. Finance 47:427-65
    • (1992) J. Finance , vol.47 , pp. 427-465
    • Fama, E.1    French, K.2
  • 35
    • 38549147867 scopus 로고
    • Common risk factors in the returns on stocks and bonds
    • Fama E, French K. 1993. Common risk factors in the returns on stocks and bonds. J. Financ. Econ. 33:3-56
    • (1993) J. Financ. Econ. , vol.33 , pp. 3-56
    • Fama, E.1    French, K.2
  • 36
    • 53849089038 scopus 로고    scopus 로고
    • High-dimensional classification using features annealed independence rules
    • Fan J, Fan Y. 2008. High-dimensional classification using features annealed independence rules. Ann. Stat. 36:2605-37
    • (2008) Ann. Stat. , vol.36 , pp. 2605-2637
    • Fan, J.1    Fan, Y.2
  • 37
    • 55349144848 scopus 로고    scopus 로고
    • High dimensional covariance matrix estimation using a factor model
    • Fan J, Fan Y, Lv J. 2008. High dimensional covariance matrix estimation using a factor model. J. Econom. 147:186-97
    • (2008) J. Econom. , vol.147 , pp. 186-197
    • Fan, J.1    Fan, Y.2    Lv, J.3
  • 38
    • 79960138168 scopus 로고    scopus 로고
    • Nonparametric independence screening in sparse ultra-high dimensional additive models
    • In press
    • Fan J, Feng Y, Song R. 2011a. Nonparametric independence screening in sparse ultra-high dimensional additive models. J. Am. Stat. Assoc. In press
    • (2011) J. Am. Stat. Assoc.
    • Fan, J.1    Feng, Y.2    Song, R.3
  • 39
    • 73949117731 scopus 로고    scopus 로고
    • Network exploration via the adaptive LASSO and SCAD penalties
    • Fan J, Feng Y, Wu Y. 2009a. Network exploration via the adaptive LASSO and SCAD penalties. Ann. Appl. Stat. 3:521-41
    • (2009) Ann. Appl. Stat. , vol.3 , pp. 521-541
    • Fan, J.1    Feng, Y.2    Wu, Y.3
  • 40
    • 80051777280 scopus 로고    scopus 로고
    • Variance estimation using refitted cross-validation in ultrahigh dimensional regression
    • In press
    • Fan J, Guo S, Hao N. 2011b. Variance estimation using refitted cross-validation in ultrahigh dimensional regression. J. R. Stat. Soc. In press
    • (2011) J. R. Stat. Soc.
    • Fan, J.1    Guo, S.2    Hao, N.3
  • 41
    • 1542784498 scopus 로고    scopus 로고
    • Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties
    • Fan J, Li R. 2001. Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96:1348-60 (Pubitemid 33695585)
    • (2001) Journal of the American Statistical Association , vol.96 , Issue.456 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 42
    • 0036117466 scopus 로고    scopus 로고
    • Variable selection for Cox's proportional hazards model and frailty model
    • DOI 10.1214/aos/1015362185
    • Fan J, Li R. 2002. Variable selection for Cox's proportional hazards model and frailty model. Ann. Stat. 30:74-99 (Pubitemid 37095369)
    • (2002) Annals of Statistics , vol.30 , Issue.1 , pp. 74-99
    • Fan, J.1    Li, R.2
  • 43
    • 53849086824 scopus 로고    scopus 로고
    • Sure independence screening for ultrahigh dimensional feature space
    • Fan J, Lv J. 2008. Sure independence screening for ultrahigh dimensional feature space. J. R. Stat. Soc. B 70:849-911
    • (2008) J. R. Stat. Soc. B , vol.70 , pp. 849-911
    • Fan, J.1    Lv, J.2
  • 44
    • 79960979995 scopus 로고    scopus 로고
    • Non-concave penalized likelihood with NP-dimensionality
    • In press
    • Fan J, Lv J. 2011. Non-concave penalized likelihood with NP-dimensionality. IEEE Trans. Inf. Theory. In press
    • (2011) IEEE Trans. Inf. Theory
    • Fan, J.1    Lv, J.2
  • 45
    • 77949352853 scopus 로고    scopus 로고
    • A selective overview of variable selection in high dimensional feature space
    • Fan J, Lv J. 2010. A selective overview of variable selection in high dimensional feature space. Stat. Sinica 20:101-48
    • (2010) Stat. Sinica , vol.20 , pp. 101-148
    • Fan, J.1    Lv, J.2
  • 46
    • 24344502730 scopus 로고    scopus 로고
    • Nonconcave penalized likelihood with a diverging number of parameters
    • DOI 10.1214/009053604000000256
    • Fan J, Peng H. 2004. Nonconcave penalized likelihood with diverging number of parameters. Ann. Stat. 32:928-61 (Pubitemid 41250289)
    • (2004) Annals of Statistics , vol.32 , Issue.3 , pp. 928-961
    • Fan, J.1    Peng, H.2
  • 47
    • 70449440300 scopus 로고    scopus 로고
    • Ultrahigh dimensional variable selection: Beyond the linear model
    • Fan J, Samworth R, Wu Y. 2009b. Ultrahigh dimensional variable selection: beyond the linear model. J. Mach. Learn. Res. 10:1829-53
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 1829-1853
    • Fan, J.1    Samworth, R.2    Wu, Y.3
  • 48
    • 78650168263 scopus 로고    scopus 로고
    • Sure independence screening in generalized linear models with NP-dimensionality
    • Fan J, Song R. 2010. Sure independence screening in generalized linear models with NP-dimensionality. Ann. Stat. 38:3567-604
    • (2010) Ann. Stat. , vol.38 , pp. 3567-3604
    • Fan, J.1    Song, R.2
  • 50
    • 84952149204 scopus 로고
    • A statistical view of some chemometrics regression tools
    • Frank IE, Friedman JH. 1993. A statistical view of some chemometrics regression tools. Technometrics 35:109-48
    • (1993) Technometrics , vol.35 , pp. 109-148
    • Frank, I.E.1    Friedman, J.H.2
  • 51
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • DOI 10.1093/biostatistics/kxm045
    • Friedman J, Hastie T, Tibshirani R. 2008. Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9:432-41 (Pubitemid 351882084)
    • (2008) Biostatistics , vol.9 , Issue.3 , pp. 432-441
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 52
    • 0032361278 scopus 로고    scopus 로고
    • Penalized regression: The bridge versus the lasso
    • Fu WJ. 1998. Penalized regression: the bridge versus the lasso. J. Comput. Graph. Stat. 7:397-416
    • (1998) J. Comput. Graph. Stat. , vol.7 , pp. 397-416
    • Fu, W.J.1
  • 54
    • 68849084522 scopus 로고    scopus 로고
    • Using generalized correlation to effect variable selection in very high dimensional problems
    • Hall P, Miller H. 2009. Using generalized correlation to effect variable selection in very high dimensional problems. J. Comput. Graph. Stat. 18(3):533-50
    • (2009) J. Comput. Graph. Stat. , vol.18 , Issue.3 , pp. 533-550
    • Hall, P.1    Miller, H.2
  • 55
    • 37849031233 scopus 로고    scopus 로고
    • Theoretic measures of relative performance of classifiers for high dimensional data with small sample sizes
    • Hall P, Pittelkow Y, GhoshM. 2008. Theoretic measures of relative performance of classifiers for high dimensional data with small sample sizes. J. R. Stat. Soc. B 70:158-73
    • (2008) J. R. Stat. Soc. B , vol.70 , pp. 158-173
    • Hall, P.1    Pittelkow, Y.2    Ghosh, M.3
  • 56
    • 68849102598 scopus 로고    scopus 로고
    • Tilting methods for assessing the influence of components in a classifier
    • Hall P, Titterington DM, Xue J-H. 2009. Tilting methods for assessing the influence of components in a classifier. J. R. Stat. Soc. B 71:783-803
    • (2009) J. R. Stat. Soc. B , vol.71 , pp. 783-803
    • Hall, P.1    Titterington, D.M.2    Xue, J.-H.3
  • 58
    • 33645817313 scopus 로고    scopus 로고
    • Assessing high house prices: Bubbles, fundamentals and misperceptions
    • DOI 10.1257/089533005775196769
    • Himmelberg C, Mayer C, Sinai T. 2005. Assessing high house prices: bubbles, fundamentals and misperceptions. J. Econ. Perspect. 19(4):67-92 (Pubitemid 43572704)
    • (2005) Journal of Economic Perspectives , vol.19 , Issue.4 , pp. 67-92
    • Himmelberg, C.1    Mayer, C.2    Sinai, T.3
  • 59
    • 49949115667 scopus 로고    scopus 로고
    • Asymptotic properties of bridge estimators in sparse highdimensional regression models
    • Huang J, Horowitz J, Ma S. 2008. Asymptotic properties of bridge estimators in sparse highdimensional regression models. Ann. Stat. 36:587-613
    • (2008) Ann. Stat. , vol.36 , pp. 587-613
    • Huang, J.1    Horowitz, J.2    Ma, S.3
  • 60
    • 33644986127 scopus 로고    scopus 로고
    • Covariance matrix selection and estimation via penalised normal likelihood
    • Huang JZ, Liu N, Pourahmadi M, Liu L. 2006. Covariance matrix selection and estimation via penalised normal likelihood. Biometrika 93:85-98
    • (2006) Biometrika , vol.93 , pp. 85-98
    • Huang, J.Z.1    Liu, N.2    Pourahmadi, M.3    Liu, L.4
  • 61
    • 26444617168 scopus 로고    scopus 로고
    • Variable selection using MM algorithms
    • DOI 10.1214/009053605000000200
    • Hunter DR, Li R. 2005. Variable selection using MM algorithms. Ann. Stat. 33:1617-42 (Pubitemid 41423982)
    • (2005) Annals of Statistics , vol.33 , Issue.4 , pp. 1617-1642
    • Hunter, D.R.1    Li, R.2
  • 62
    • 0142188090 scopus 로고    scopus 로고
    • Risk reduction in large portfolios: Why imposing the wrong constraints helps
    • DOI 10.1111/1540-6261.00580
    • Jagannathan R, Ma T. 2003. Risk reduction in large portfolios: why imposing the wrong constraints helps. J. Finance 58(4):1651-83 (Pubitemid 37311696)
    • (2003) Journal of Finance , vol.58 , Issue.4 , pp. 1651-1683
    • Jagannathan, R.1    Ma, T.2
  • 64
    • 0035641726 scopus 로고    scopus 로고
    • On the distribution of the largest eigenvalue in principal components analysis
    • Johnstone IM. 2001. On the distribution of the largest eigenvalue in principal components analysis. Ann. Stat. 29:295-327
    • (2001) Ann. Stat. , vol.29 , pp. 295-327
    • Johnstone, I.M.1
  • 66
    • 77949349770 scopus 로고    scopus 로고
    • Smoothly clipped absolute deviation on high dimensions
    • Kim Y, Choi H, Oh HS. 2008. Smoothly clipped absolute deviation on high dimensions. J. Am. Stat. Assoc. 103:1665-73
    • (2008) J. Am. Stat. Assoc. , vol.103 , pp. 1665-1673
    • Kim, Y.1    Choi, H.2    Oh, H.S.3
  • 68
    • 68849132263 scopus 로고    scopus 로고
    • Sparse recovery in convex hulls via entropy penalization
    • Koltchinskii V. 2008. Sparse recovery in convex hulls via entropy penalization. Ann. Stat. 37(3):1332-59
    • (2008) Ann. Stat. , vol.37 , Issue.3 , pp. 1332-1359
    • Koltchinskii, V.1
  • 69
    • 73949122606 scopus 로고    scopus 로고
    • Sparsistency and rates of convergence in large covariance matrices estimation
    • Lam C, Fan J. 2009. Sparsistency and rates of convergence in large covariance matrices estimation. Ann. Stat. 37:4254-78
    • (2009) Ann. Stat. , vol.37 , pp. 4254-4278
    • Lam, C.1    Fan, J.2
  • 70
    • 54649084049 scopus 로고    scopus 로고
    • On Cox processes and credit risky securities
    • Lando D. 1998. On Cox processes and credit risky securities. Rev. Deriv. Res. 2:99-120
    • (1998) Rev. Deriv. Res. , vol.2 , pp. 99-120
    • Lando, D.1
  • 71
    • 0346961488 scopus 로고    scopus 로고
    • A well-conditioned estimator for large-dimensional covariance matrices
    • DOI 10.1016/S0047-259X(03)00096-4
    • Ledoit O, Wolf M. 2004. A well conditioned estimator for large-dimensional covariance matrices. J. Multivar. Anal. 88:365-411 (Pubitemid 38033261)
    • (2004) Journal of Multivariate Analysis , vol.88 , Issue.2 , pp. 365-411
    • Ledoit, O.1    Wolf, M.2
  • 72
    • 62349114549 scopus 로고    scopus 로고
    • Sparse estimation of large covariance matrices via a nested Lasso penalty
    • Levina E, Rothman AJ, Zhu J. 2008. Sparse estimation of large covariance matrices via a nested Lasso penalty. Ann. Appl. Stat. 2:245-63
    • (2008) Ann. Appl. Stat. , vol.2 , pp. 245-263
    • Levina, E.1    Rothman, A.J.2    Zhu, J.3
  • 73
    • 69949175557 scopus 로고    scopus 로고
    • A unified approach to model selection and sparse recovery using regularized least squares
    • Lv J, Fan Y. 2009. A unified approach to model selection and sparse recovery using regularized least squares. Ann. Stat. 37:3498-528
    • (2009) Ann. Stat. , vol.37 , pp. 3498-3528
    • Lv, J.1    Fan, Y.2
  • 74
    • 84995186518 scopus 로고
    • Portfolio selection
    • Markowitz HM. 1952. Portfolio selection. J. Finance 7:77-91
    • (1952) J. Finance , vol.7 , pp. 77-91
    • Markowitz, H.M.1
  • 77
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the Lasso
    • DOI 10.1214/009053606000000281
    • Meinshausen N, Bühlmann P. 2006. High dimensional graphs and variable selection with the Lasso. Ann. Stat. 34:1436-62 (Pubitemid 44231168)
    • (2006) Annals of Statistics , vol.34 , Issue.3 , pp. 1436-1462
    • Meinshausen, N.1    Buhlmann, P.2
  • 78
    • 80051752236 scopus 로고    scopus 로고
    • A factor analysis of housing market dynamics in the U.S. and the regions
    • In press
    • Ng S, Moench E. 2011. A factor analysis of housing market dynamics in the U.S. and the regions. Econom. J. In press
    • (2011) Econom. J.
    • Ng, S.1    Moench, E.2
  • 80
    • 70350431688 scopus 로고    scopus 로고
    • Forecasting real housing price growth in the eighth district states
    • Rapach DE, Strass JK. 2007. Forecasting real housing price growth in the eighth district states. Reg. Econ. Dev. 3(2):33-42
    • (2007) Reg. Econ. Dev. , vol.3 , Issue.2 , pp. 33-42
    • Rapach, D.E.1    Strass, J.K.2
  • 81
    • 34548452938 scopus 로고    scopus 로고
    • Piecewise linear regularized solution paths
    • Rosset S, Zhu J. 2007. Piecewise linear regularized solution paths. Ann. Stat. 35:1012-30
    • (2007) Ann. Stat. , vol.35 , pp. 1012-1030
    • Rosset, S.1    Zhu, J.2
  • 83
    • 0000997472 scopus 로고
    • Macroeconomics and reality
    • Sims CA. 1980.Macroeconomics and reality. Econometrica 48(1):1-48
    • (1980) Econometrica , vol.48 , Issue.1 , pp. 1-48
    • Sims, C.A.1
  • 84
    • 80051723321 scopus 로고
    • Presented as Rietz Lecture, IMS Annu.Meet., 39th, Atlanta, Georgia
    • Stein C. 1975. Estimation of a covariance matrix. Presented as Rietz Lecture, IMS Annu.Meet., 39th, Atlanta, Georgia
    • (1975) Estimation of A Covariance Matrix
    • Stein, C.1
  • 87
    • 67649342377 scopus 로고    scopus 로고
    • Forecasting with many predictors
    • ed. G Elliott, C Granger, A Timmermann. Amsterdam: North-Holland
    • Stock JH, Watson MW. 2006. Forecasting with many predictors. In Handbook of Economic Forecasting, Vol. 1, ed. G Elliott, C Granger, A Timmermann, pp. 515-54. Amsterdam: North-Holland
    • (2006) Handbook of Economic Forecasting , vol.1 , pp. 515-554
    • Stock, J.H.1    Watson, M.W.2
  • 88
    • 84920100025 scopus 로고    scopus 로고
    • The evolution of national and regional factors in U.S. housing construction
    • ed. T Bollerslev, J Russell, M Watson. New York: Oxford Univ. Press
    • Stock JH, Watson MW. 2010. The evolution of national and regional factors in U.S. housing construction. In Volatility Time Series Econometrics, ed. T Bollerslev, J Russell, M Watson, pp. 35-62. New York: Oxford Univ. Press
    • (2010) Volatility Time Series Econometrics , pp. 35-62
    • Stock, J.H.1    Watson, M.W.2
  • 89
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani R. 1996. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B 58:267-88
    • (1996) J. R. Stat. Soc. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 90
    • 0031015557 scopus 로고    scopus 로고
    • The lasso method for variable selection in the cox model
    • DOI 10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2- 3
    • Tibshirani R. 1997. The lasso method for variable selection in the Cox model. Stat. Med. 16:385-95 (Pubitemid 27073009)
    • (1997) Statistics in Medicine , vol.16 , Issue.4 , pp. 385-395
    • Tibshirani, R.1
  • 91
    • 51049121146 scopus 로고    scopus 로고
    • High-dimensional generalized linear models and the lasso
    • van de Geer S. 2008. High-dimensional generalized linear models and the lasso. Ann. Stat. 36:614-45
    • (2008) Ann. Stat. , vol.36 , pp. 614-645
    • Van De Geer, S.1
  • 92
    • 41949129774 scopus 로고    scopus 로고
    • Sharp thresholds for high-dimensional and noisy recovery of sparsity
    • Dep. Stat., Univ. Calif., Berkeley
    • Wainwright MJ. 2006. Sharp thresholds for high-dimensional and noisy recovery of sparsity. Tech. Rep., Dep. Stat., Univ. Calif., Berkeley
    • (2006) Tech. Rep.
    • Wainwright, M.J.1
  • 93
    • 66849138434 scopus 로고    scopus 로고
    • Shrinkage tuning parameter selection with a diverging number of parameters
    • Wang H, Li B, Leng C. 2009. Shrinkage tuning parameter selection with a diverging number of parameters. J. R. Stat. Soc. B 71(3):671-83
    • (2009) J. R. Stat. Soc. B , vol.71 , Issue.3 , pp. 671-683
    • Wang, H.1    Li, B.2    Leng, C.3
  • 94
    • 34548536572 scopus 로고    scopus 로고
    • Tuning parameter selectors for the smoothly clipped absolute deviation method
    • DOI 10.1093/biomet/asm053
    • Wang H, Li R, Tsai CL. 2007. Tuning parameter selectors for the smoothly clipped absolute deviation method. Biometrika 94:553-68 (Pubitemid 47384250)
    • (2007) Biometrika , vol.94 , Issue.3 , pp. 553-568
    • Wang, H.1    Li, R.2    Tsai, C.-L.3
  • 95
    • 84863879353 scopus 로고    scopus 로고
    • Coordinate descent algorithms for lasso penalized regression
    • Wu TT, Lange K. 2008. Coordinate descent algorithms for lasso penalized regression. Ann. Appl. Stat. 2:224-44
    • (2008) Ann. Appl. Stat. , vol.2 , pp. 224-244
    • Wu, T.T.1    Lange, K.2
  • 96
    • 3843104546 scopus 로고    scopus 로고
    • Nonparametric estimation of large covariance matrices of longitudinal data
    • DOI 10.1093/biomet/90.4.831
    • Wu WB, Pourahmadi M. 2003. Nonparametric estimation of large covariance matrices of longitudinal data. Biometrika 90:831-44 (Pubitemid 39047122)
    • (2003) Biometrika , vol.90 , Issue.4 , pp. 831-844
    • Wu, W.B.1    Pourahmadi, M.2
  • 98
    • 33947115409 scopus 로고    scopus 로고
    • Model selection and estimation in the Gaussian graphical model
    • DOI 10.1093/biomet/asm018
    • Yuan M, Lin Y. 2007. Model selection and estimation in the Gaussian graphical model. Biometrika 94:19-35 (Pubitemid 46410725)
    • (2007) Biometrika , vol.94 , Issue.1 , pp. 19-35
    • Yuan, M.1    Lin, Y.2
  • 99
    • 77649284492 scopus 로고    scopus 로고
    • Nearly unbiased variable selection under minimax concave penalty
    • Zhang CH. 2010. Nearly unbiased variable selection under minimax concave penalty. Ann. Stat. 38 (2):894-942
    • (2010) Ann. Stat. , vol.38 , Issue.2 , pp. 894-942
    • Zhang, C.H.1
  • 100
    • 34548151636 scopus 로고    scopus 로고
    • Adaptive Lasso for Cox's proportional hazards model
    • DOI 10.1093/biomet/asm037
    • Zhang HH, Lu W. 2007. Adaptive Lasso for Cox's proportional hazards model. Biometrika 94:691-703 (Pubitemid 47384259)
    • (2007) Biometrika , vol.94 , Issue.3 , pp. 691-703
    • Zhang, H.H.1    Lu, W.2
  • 103
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive lasso and its oracle properties
    • Zou H. 2006. The adaptive lasso and its oracle properties. J. Am. Stat. Assoc. 101:1418-29
    • (2006) J. Am. Stat. Assoc. , vol.101 , pp. 1418-1429
    • Zou, H.1
  • 104
    • 40249107663 scopus 로고    scopus 로고
    • A note on path-based variable selection in the penalized proportional hazards model
    • DOI 10.1093/biomet/asm083
    • Zou H. 2008. A note on path-based variable selection in the penalized proportional hazards model. Biometrika 95:241-47 (Pubitemid 351333336)
    • (2008) Biometrika , vol.95 , Issue.1 , pp. 241-247
    • Zou, H.1
  • 107
    • 51049104549 scopus 로고    scopus 로고
    • One-step sparse estimates in nonconcave penalized likelihood models
    • Zou H, Li R. 2008. One-step sparse estimates in nonconcave penalized likelihood models. Ann. Stat. 36:1509-66
    • (2008) Ann. Stat. , vol.36 , pp. 1509-1566
    • Zou, H.1    Li, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.