-
1
-
-
77956649096
-
A survey of cross-validation procedures for model selection
-
MR2602303
-
S. Arlot and A. Celisse. A survey of cross-validation procedures for model selection. Statistics Surveys, 4:40-79, 2010. MR2602303
-
(2010)
Statistics Surveys
, vol.4
, pp. 40-79
-
-
Arlot, S.1
Celisse, A.2
-
4
-
-
68649086910
-
Simultaneous analysis of Lasso and Dantzig selector
-
MR2533469
-
P. Bickel, Y. Ritov, and A. Tsybakov. Simultaneous analysis of Lasso and Dantzig selector. Annals of Statistics, 37:1705-1732, 2009. MR2533469
-
(2009)
Annals of Statistics
, vol.37
, pp. 1705-1732
-
-
Bickel, P.1
Ritov, Y.2
Tsybakov, A.3
-
6
-
-
33746056860
-
1-penalized Least Squares
-
COLT 2006. Lecture Notes in Artificial Intelligence 4005, pages, Heidelberg, Springer Verlag
-
F. Bunea, A.B. Tsybakov, and M.H. Wegkamp. Aggregation and sparsity via ℓ1-penalized least squares. In Proceedings of 19th Annual Conference on Learning Theory, COLT 2006. Lecture Notes in Artificial Intelligence 4005, pages 379-391, Heidelberg, 2006 Springer Verlag. MR2280619
-
(2006)
Proceedings of 19th Annual Conference on Learning Theory
, pp. 379-391
-
-
Bunea, F.1
Tsybakov, A.B.2
Wegkamp, M.H.3
-
9
-
-
69049120308
-
1 minimization
-
MR2543688
-
E. Candès and Y. Plan. Near-ideal model selection by ℓ1 minimization. Annals of Statistics, 37:2145-2177, 2009. MR2543688
-
(2009)
Annals of Statistics
, vol.37
, pp. 2145-2177
-
-
Candès, E.1
Plan, Y.2
-
11
-
-
34548275795
-
The Dantzig selector: Statistical estimation when p is much larger than n
-
MR2382644
-
E. Candès and T. Tao. The Dantzig selector: statistical estimation when p is much larger than n. Annals of Statistics, 35:2313-2351, 2007. MR2382644
-
(2007)
Annals of Statistics
, vol.35
, pp. 2313-2351
-
-
Candès, E.1
Tao, T.2
-
13
-
-
57349174008
-
Enhancing sparsity by reweighted 11 minimization
-
MR2461611
-
EJ Candès, M. Wakin, and S. Boyd. Enhancing sparsity by reweighted 11 minimization. J. Fourier Anal. Appl, 14:877-905, 2008. MR2461611
-
(2008)
J. Fourier Anal. Appl
, vol.14
, pp. 877-905
-
-
Candès, E.J.1
Wakin, M.2
Boyd, S.3
-
14
-
-
77957167154
-
Extreme Value theory: An Introduction
-
ISBN 0387239464, MR2234156
-
L. De Haan and A. Ferreira. Extreme Value theory: an Introduction. Springer Verlag, 2006. ISBN 0387239464. MR2234156
-
(2006)
Springer Verlag
-
-
de Haan, L.1
Ferreira, A.2
-
16
-
-
31344454903
-
Persistency in high dimensional linear predictor-selection and the virtue of over-parametrization
-
MR2108039
-
E. Greenshtein and Y. Ritov. Persistency in high dimensional linear predictor-selection and the virtue of over-parametrization. Bernoulli, 10:971-988, 2004. MR2108039
-
(2004)
Bernoulli
, vol.10
, pp. 971-988
-
-
Greenshtein, E.1
Ritov, Y.2
-
17
-
-
51049096710
-
Adaptive Lasso for sparse high-dimensional regression models
-
MR2469326
-
J. Huang, S. Ma, and C.-H. Zhang. Adaptive Lasso for sparse high-dimensional regression models. Statistica Sinica, 18:1603-1618, 2008. MR2469326
-
(2008)
Statistica Sinica
, vol.18
, pp. 1603-1618
-
-
Huang, J.1
Ma, S.2
Zhang, C.-H.3
-
19
-
-
72249100613
-
The Dantzig selector and sparsity oracle inequalities
-
MR2555200
-
V. Koltchinskii. The Dantzig selector and sparsity oracle inequalities. Bernoulli, 15:799-828, 2009b. MR2555200
-
(2009)
Bernoulli
, vol.15
, pp. 799-828
-
-
Koltchinskii, V.1
-
20
-
-
56449113372
-
Sup-norm convergence rate and sign concentration property of Lasso and Dantzig estimators
-
MR2386087
-
K. Lounici. Sup-norm convergence rate and sign concentration property of Lasso and Dantzig estimators. Electronic Journal of Statistics, 2:90-102, 2008. MR2386087
-
(2008)
Electronic Journal of Statistics
, vol.2
, pp. 90-102
-
-
Lounici, K.1
-
23
-
-
33747163541
-
High dimensional graphs and variable selection with the Lasso
-
MR2278363
-
N. Meinshausen and P. Bühlmann. High dimensional graphs and variable selection with the Lasso. Annals of Statistics, 34:1436-1462, 2006. MR2278363
-
(2006)
Annals of Statistics
, vol.34
, pp. 1436-1462
-
-
Meinshausen, N.1
Bühlmann, P.2
-
24
-
-
65349193793
-
Lasso-type recovery of sparse representations for high-dimensional data
-
MR2488351
-
N. Meinshausen and B. Yu. Lasso-type recovery of sparse representations for high-dimensional data. Annals of Statistics, 37:246-270, 2009. MR2488351
-
(2009)
Annals of Statistics
, vol.37
, pp. 246-270
-
-
Meinshausen, N.1
Yu, B.2
-
26
-
-
51049121146
-
High-dimensional generalized linear models and the Lasso
-
MR2396809
-
S. van de Geer. High-dimensional generalized linear models and the Lasso. Annals of Statistics, 36:614-645, 2008. MR2396809
-
(2008)
Annals of Statistics
, vol.36
, pp. 614-645
-
-
van de Geer, S.1
-
27
-
-
79960979915
-
-
Asymptotics: Particles, Processes and Inverse Problems (E.A. Cator, G. Jongbloed, C. Kraaikamp, H.P. Lopuhaä, J.A. Wellner eds.), volume, pages, IMS Lecture Notes Monograph Series, MR2459935
-
S. van de Geer. On non-asymptotic bounds for estimation in generalized linear models with highly correlated design. In Asymptotics: Particles, Processes and Inverse Problems (E.A. Cator, G. Jongbloed, C. Kraaikamp, H.P. Lopuhaä, J.A. Wellner eds.), volume 55, pages 121-134. IMS Lecture Notes Monograph Series, 2007. MR2459935
-
(2007)
On Non-asymptotic Bounds For Estimation In Generalized Linear Models With Highly Correlated Design
, vol.55
, pp. 121-134
-
-
van de Geer, S.1
-
28
-
-
23844457879
-
Least squares estimation with complexity penalties
-
pages, MR1867165
-
S. van de Geer. Least squares estimation with complexity penalties. Mathematical Methods of Statistics, pages 355-374, 2001. MR1867165
-
(2001)
Mathematical Methods of Statistics
, pp. 355-374
-
-
van de Geer, S.1
-
29
-
-
77955054299
-
On the conditions used to prove oracle results for the Lasso
-
MR2576316
-
S. van de Geer and P. Bühlmann. On the conditions used to prove oracle results for the Lasso. Electronic Journal of Statistics, pages 1360-1392, 2009. MR2576316
-
(2009)
Electronic Journal of Statistics
, pp. 1360-1392
-
-
van de Geer, S.1
Bühlmann, P.2
-
30
-
-
73849097267
-
Information-theoretic limitations on sparsity recovery in the high-dimensional and noisy setting
-
MR2597190
-
M. Wainwright. Information-theoretic limitations on sparsity recovery in the high-dimensional and noisy setting. IEEE Transactions on Information Theory, 55:5728-5741, 2007. MR2597190
-
(2007)
IEEE Transactions On Information Theory
, vol.55
, pp. 5728-5741
-
-
Wainwright, M.1
-
31
-
-
65749083666
-
1-constrained quadratic programming (Lasso)
-
MR2729873
-
M. Wainwright. Sharp thresholds for high-dimensional and noisy sparsity recovery using ℓ1-constrained quadratic programming (Lasso). IEEE Transactions on Information Theory, 55:2183-2202, 2009. MR2729873
-
(2009)
IEEE Transactions On Information Theory
, vol.55
, pp. 2183-2202
-
-
Wainwright, M.1
-
32
-
-
69049091975
-
High dimensional variable selection
-
MR2543689
-
L. Wasserman and K. Roeder. High dimensional variable selection. Annals of Statistics, 37:2178-2201, 2009. MR2543689
-
(2009)
Annals of Statistics
, vol.37
, pp. 2178-2201
-
-
Wasserman, L.1
Roeder, K.2
-
33
-
-
77649284492
-
Nearly unbiased variable selection under minimax concave penalty
-
MR2604701
-
C.H. Zhang. Nearly unbiased variable selection under minimax concave penalty. Annals of Statistics, 38(2):894-942, 2010. MR2604701
-
(2010)
Annals of Statistics
, vol.38
, Issue.2
, pp. 894-942
-
-
Zhang, C.H.1
-
34
-
-
50949096321
-
The sparsity and bias of the Lasso selection in high-dimensional linear regression
-
MR2435448
-
C.H. Zhang and J. Huang. The sparsity and bias of the Lasso selection in high-dimensional linear regression. Annals of Statistics, 36(4):1567-1594, 2008. MR2435448
-
(2008)
Annals of Statistics
, vol.36
, Issue.4
, pp. 1567-1594
-
-
Zhang, C.H.1
Huang, J.2
-
35
-
-
69049086702
-
1 regularization
-
MR2543687
-
T. Zhang. Some sharp performance bounds for least squares regression with ℓ1 regularization. Annals of Statistics, 37:2109-2144, 2009. MR2543687
-
(2009)
Annals of Statistics
, vol.37
, pp. 2109-2144
-
-
Zhang, T.1
-
36
-
-
33845263263
-
On model selection consistency of Lasso
-
MR2274449
-
P. Zhao and B. Yu. On model selection consistency of Lasso. Journal of Machine Learning Research, 7:2541-2567, 2006. MR2274449
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 2541-2567
-
-
Zhao, P.1
Yu, B.2
-
38
-
-
79960982021
-
Thresholded lasso for high dimensional variable selection and statistical estimation
-
2010. arXiv:1002.1583v2, NIPS
-
S. Zhou. Thresholded lasso for high dimensional variable selection and statistical estimation, 2010. arXiv:1002.1583v2, shorter version in Advances in Neural Information Processing Systems 22 (NIPS 2009).
-
(2009)
Shorter Version In Advances In Neural Information Processing Systems
, vol.22
-
-
Zhou, S.1
-
39
-
-
33846114377
-
The adaptive Lasso and its oracle properties
-
MR2279469
-
H. Zou. The adaptive Lasso and its oracle properties. Journal of the American Statistical Association, 101:1418-1429, 2006. MR2279469
-
(2006)
Journal of the American Statistical Association
, vol.101
, pp. 1418-1429
-
-
Zou, H.1
-
40
-
-
51049104549
-
One-step sparse estimates in nonconcave penalized likelihood models (with discussion)
-
MR2435443
-
H. Zou and R. Li. One-step sparse estimates in nonconcave penalized likelihood models (with discussion). Annals of Statistics, 36:1509-1566, 2008. MR2435443
-
(2008)
Annals of Statistics
, vol.36
, pp. 1509-1566
-
-
Zou, H.1
Li, R.2
|