메뉴 건너뛰기




Volumn 5, Issue , 2011, Pages 688-749

The adaptive and the thresholded Lasso for potentially misspecified models (and a lower bound for the Lasso)

Author keywords

Adaptive Lasso; Estimation; Prediction; Restricted eigenvalue; Thresholding; Variable selection

Indexed keywords


EID: 79960978269     PISSN: 19357524     EISSN: None     Source Type: Journal    
DOI: 10.1214/11-EJS624     Document Type: Article
Times cited : (106)

References (40)
  • 1
    • 77956649096 scopus 로고    scopus 로고
    • A survey of cross-validation procedures for model selection
    • MR2602303
    • S. Arlot and A. Celisse. A survey of cross-validation procedures for model selection. Statistics Surveys, 4:40-79, 2010. MR2602303
    • (2010) Statistics Surveys , vol.4 , pp. 40-79
    • Arlot, S.1    Celisse, A.2
  • 4
    • 68649086910 scopus 로고    scopus 로고
    • Simultaneous analysis of Lasso and Dantzig selector
    • MR2533469
    • P. Bickel, Y. Ritov, and A. Tsybakov. Simultaneous analysis of Lasso and Dantzig selector. Annals of Statistics, 37:1705-1732, 2009. MR2533469
    • (2009) Annals of Statistics , vol.37 , pp. 1705-1732
    • Bickel, P.1    Ritov, Y.2    Tsybakov, A.3
  • 6
    • 33746056860 scopus 로고    scopus 로고
    • 1-penalized Least Squares
    • COLT 2006. Lecture Notes in Artificial Intelligence 4005, pages, Heidelberg, Springer Verlag
    • F. Bunea, A.B. Tsybakov, and M.H. Wegkamp. Aggregation and sparsity via ℓ1-penalized least squares. In Proceedings of 19th Annual Conference on Learning Theory, COLT 2006. Lecture Notes in Artificial Intelligence 4005, pages 379-391, Heidelberg, 2006 Springer Verlag. MR2280619
    • (2006) Proceedings of 19th Annual Conference on Learning Theory , pp. 379-391
    • Bunea, F.1    Tsybakov, A.B.2    Wegkamp, M.H.3
  • 7
  • 9
    • 69049120308 scopus 로고    scopus 로고
    • 1 minimization
    • MR2543688
    • E. Candès and Y. Plan. Near-ideal model selection by ℓ1 minimization. Annals of Statistics, 37:2145-2177, 2009. MR2543688
    • (2009) Annals of Statistics , vol.37 , pp. 2145-2177
    • Candès, E.1    Plan, Y.2
  • 11
    • 34548275795 scopus 로고    scopus 로고
    • The Dantzig selector: Statistical estimation when p is much larger than n
    • MR2382644
    • E. Candès and T. Tao. The Dantzig selector: statistical estimation when p is much larger than n. Annals of Statistics, 35:2313-2351, 2007. MR2382644
    • (2007) Annals of Statistics , vol.35 , pp. 2313-2351
    • Candès, E.1    Tao, T.2
  • 13
    • 57349174008 scopus 로고    scopus 로고
    • Enhancing sparsity by reweighted 11 minimization
    • MR2461611
    • EJ Candès, M. Wakin, and S. Boyd. Enhancing sparsity by reweighted 11 minimization. J. Fourier Anal. Appl, 14:877-905, 2008. MR2461611
    • (2008) J. Fourier Anal. Appl , vol.14 , pp. 877-905
    • Candès, E.J.1    Wakin, M.2    Boyd, S.3
  • 14
    • 77957167154 scopus 로고    scopus 로고
    • Extreme Value theory: An Introduction
    • ISBN 0387239464, MR2234156
    • L. De Haan and A. Ferreira. Extreme Value theory: an Introduction. Springer Verlag, 2006. ISBN 0387239464. MR2234156
    • (2006) Springer Verlag
    • de Haan, L.1    Ferreira, A.2
  • 16
    • 31344454903 scopus 로고    scopus 로고
    • Persistency in high dimensional linear predictor-selection and the virtue of over-parametrization
    • MR2108039
    • E. Greenshtein and Y. Ritov. Persistency in high dimensional linear predictor-selection and the virtue of over-parametrization. Bernoulli, 10:971-988, 2004. MR2108039
    • (2004) Bernoulli , vol.10 , pp. 971-988
    • Greenshtein, E.1    Ritov, Y.2
  • 17
    • 51049096710 scopus 로고    scopus 로고
    • Adaptive Lasso for sparse high-dimensional regression models
    • MR2469326
    • J. Huang, S. Ma, and C.-H. Zhang. Adaptive Lasso for sparse high-dimensional regression models. Statistica Sinica, 18:1603-1618, 2008. MR2469326
    • (2008) Statistica Sinica , vol.18 , pp. 1603-1618
    • Huang, J.1    Ma, S.2    Zhang, C.-H.3
  • 19
    • 72249100613 scopus 로고    scopus 로고
    • The Dantzig selector and sparsity oracle inequalities
    • MR2555200
    • V. Koltchinskii. The Dantzig selector and sparsity oracle inequalities. Bernoulli, 15:799-828, 2009b. MR2555200
    • (2009) Bernoulli , vol.15 , pp. 799-828
    • Koltchinskii, V.1
  • 20
    • 56449113372 scopus 로고    scopus 로고
    • Sup-norm convergence rate and sign concentration property of Lasso and Dantzig estimators
    • MR2386087
    • K. Lounici. Sup-norm convergence rate and sign concentration property of Lasso and Dantzig estimators. Electronic Journal of Statistics, 2:90-102, 2008. MR2386087
    • (2008) Electronic Journal of Statistics , vol.2 , pp. 90-102
    • Lounici, K.1
  • 23
    • 33747163541 scopus 로고    scopus 로고
    • High dimensional graphs and variable selection with the Lasso
    • MR2278363
    • N. Meinshausen and P. Bühlmann. High dimensional graphs and variable selection with the Lasso. Annals of Statistics, 34:1436-1462, 2006. MR2278363
    • (2006) Annals of Statistics , vol.34 , pp. 1436-1462
    • Meinshausen, N.1    Bühlmann, P.2
  • 24
    • 65349193793 scopus 로고    scopus 로고
    • Lasso-type recovery of sparse representations for high-dimensional data
    • MR2488351
    • N. Meinshausen and B. Yu. Lasso-type recovery of sparse representations for high-dimensional data. Annals of Statistics, 37:246-270, 2009. MR2488351
    • (2009) Annals of Statistics , vol.37 , pp. 246-270
    • Meinshausen, N.1    Yu, B.2
  • 26
    • 51049121146 scopus 로고    scopus 로고
    • High-dimensional generalized linear models and the Lasso
    • MR2396809
    • S. van de Geer. High-dimensional generalized linear models and the Lasso. Annals of Statistics, 36:614-645, 2008. MR2396809
    • (2008) Annals of Statistics , vol.36 , pp. 614-645
    • van de Geer, S.1
  • 27
    • 79960979915 scopus 로고    scopus 로고
    • Asymptotics: Particles, Processes and Inverse Problems (E.A. Cator, G. Jongbloed, C. Kraaikamp, H.P. Lopuhaä, J.A. Wellner eds.), volume, pages, IMS Lecture Notes Monograph Series, MR2459935
    • S. van de Geer. On non-asymptotic bounds for estimation in generalized linear models with highly correlated design. In Asymptotics: Particles, Processes and Inverse Problems (E.A. Cator, G. Jongbloed, C. Kraaikamp, H.P. Lopuhaä, J.A. Wellner eds.), volume 55, pages 121-134. IMS Lecture Notes Monograph Series, 2007. MR2459935
    • (2007) On Non-asymptotic Bounds For Estimation In Generalized Linear Models With Highly Correlated Design , vol.55 , pp. 121-134
    • van de Geer, S.1
  • 28
    • 23844457879 scopus 로고    scopus 로고
    • Least squares estimation with complexity penalties
    • pages, MR1867165
    • S. van de Geer. Least squares estimation with complexity penalties. Mathematical Methods of Statistics, pages 355-374, 2001. MR1867165
    • (2001) Mathematical Methods of Statistics , pp. 355-374
    • van de Geer, S.1
  • 29
    • 77955054299 scopus 로고    scopus 로고
    • On the conditions used to prove oracle results for the Lasso
    • MR2576316
    • S. van de Geer and P. Bühlmann. On the conditions used to prove oracle results for the Lasso. Electronic Journal of Statistics, pages 1360-1392, 2009. MR2576316
    • (2009) Electronic Journal of Statistics , pp. 1360-1392
    • van de Geer, S.1    Bühlmann, P.2
  • 30
    • 73849097267 scopus 로고    scopus 로고
    • Information-theoretic limitations on sparsity recovery in the high-dimensional and noisy setting
    • MR2597190
    • M. Wainwright. Information-theoretic limitations on sparsity recovery in the high-dimensional and noisy setting. IEEE Transactions on Information Theory, 55:5728-5741, 2007. MR2597190
    • (2007) IEEE Transactions On Information Theory , vol.55 , pp. 5728-5741
    • Wainwright, M.1
  • 31
    • 65749083666 scopus 로고    scopus 로고
    • 1-constrained quadratic programming (Lasso)
    • MR2729873
    • M. Wainwright. Sharp thresholds for high-dimensional and noisy sparsity recovery using ℓ1-constrained quadratic programming (Lasso). IEEE Transactions on Information Theory, 55:2183-2202, 2009. MR2729873
    • (2009) IEEE Transactions On Information Theory , vol.55 , pp. 2183-2202
    • Wainwright, M.1
  • 32
    • 69049091975 scopus 로고    scopus 로고
    • High dimensional variable selection
    • MR2543689
    • L. Wasserman and K. Roeder. High dimensional variable selection. Annals of Statistics, 37:2178-2201, 2009. MR2543689
    • (2009) Annals of Statistics , vol.37 , pp. 2178-2201
    • Wasserman, L.1    Roeder, K.2
  • 33
    • 77649284492 scopus 로고    scopus 로고
    • Nearly unbiased variable selection under minimax concave penalty
    • MR2604701
    • C.H. Zhang. Nearly unbiased variable selection under minimax concave penalty. Annals of Statistics, 38(2):894-942, 2010. MR2604701
    • (2010) Annals of Statistics , vol.38 , Issue.2 , pp. 894-942
    • Zhang, C.H.1
  • 34
    • 50949096321 scopus 로고    scopus 로고
    • The sparsity and bias of the Lasso selection in high-dimensional linear regression
    • MR2435448
    • C.H. Zhang and J. Huang. The sparsity and bias of the Lasso selection in high-dimensional linear regression. Annals of Statistics, 36(4):1567-1594, 2008. MR2435448
    • (2008) Annals of Statistics , vol.36 , Issue.4 , pp. 1567-1594
    • Zhang, C.H.1    Huang, J.2
  • 35
    • 69049086702 scopus 로고    scopus 로고
    • 1 regularization
    • MR2543687
    • T. Zhang. Some sharp performance bounds for least squares regression with ℓ1 regularization. Annals of Statistics, 37:2109-2144, 2009. MR2543687
    • (2009) Annals of Statistics , vol.37 , pp. 2109-2144
    • Zhang, T.1
  • 36
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of Lasso
    • MR2274449
    • P. Zhao and B. Yu. On model selection consistency of Lasso. Journal of Machine Learning Research, 7:2541-2567, 2006. MR2274449
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2541-2567
    • Zhao, P.1    Yu, B.2
  • 38
    • 79960982021 scopus 로고    scopus 로고
    • Thresholded lasso for high dimensional variable selection and statistical estimation
    • 2010. arXiv:1002.1583v2, NIPS
    • S. Zhou. Thresholded lasso for high dimensional variable selection and statistical estimation, 2010. arXiv:1002.1583v2, shorter version in Advances in Neural Information Processing Systems 22 (NIPS 2009).
    • (2009) Shorter Version In Advances In Neural Information Processing Systems , vol.22
    • Zhou, S.1
  • 39
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive Lasso and its oracle properties
    • MR2279469
    • H. Zou. The adaptive Lasso and its oracle properties. Journal of the American Statistical Association, 101:1418-1429, 2006. MR2279469
    • (2006) Journal of the American Statistical Association , vol.101 , pp. 1418-1429
    • Zou, H.1
  • 40
    • 51049104549 scopus 로고    scopus 로고
    • One-step sparse estimates in nonconcave penalized likelihood models (with discussion)
    • MR2435443
    • H. Zou and R. Li. One-step sparse estimates in nonconcave penalized likelihood models (with discussion). Annals of Statistics, 36:1509-1566, 2008. MR2435443
    • (2008) Annals of Statistics , vol.36 , pp. 1509-1566
    • Zou, H.1    Li, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.