-
1
-
-
0034847008
-
Modeling geometric deformations in EPI time series
-
DOI 10.1006/nimg.2001.0746
-
Andersson, J.L.R., Hutton, C., Ashburner, J., Turner, R., and Friston, K. Modeling geometric deformations in epi time series. Neuroimage, 13(5):903-919, 2001. (Pubitemid 32848335)
-
(2001)
NeuroImage
, vol.13
, Issue.5
, pp. 903-919
-
-
Andersson, J.L.R.1
Hutton, C.2
Ashburner, J.3
Turner, R.4
Friston, K.5
-
2
-
-
8844277626
-
Analyzing time series gene expression data
-
DOI 10.1093/bioinformatics/bth283
-
Bar-Joseph, Z. Analyzing time series gene expression data. Bioinformatics, 20(16):2493-2503, 2004. (Pubitemid 39530134)
-
(2004)
Bioinformatics
, vol.20
, Issue.16
, pp. 2493-2503
-
-
Bar-Joseph, Z.1
-
3
-
-
4644245438
-
-
Econometric Studies: A Festschrift in Honour of Joachim Frohn, LIT-Verlag, Miinster
-
Briiggemann, R. and Liitkepohl, H. Lag selection in subset var models with an application to a us monetary system. Econometric Studies: A Festschrift in Honour of Joachim Frohn, LIT-Verlag, Miinster, pp. 107-28, 2001.
-
(2001)
Lag Selection in Subset Var Models with An Application to a Us Monetary System
, pp. 107-128
-
-
Briiggemann, R.1
Liitkepohl, H.2
-
4
-
-
79960110811
-
A constrained l1 minimization approach to sparse precision matrix estimation
-
Cai, T., Liu, W., and Luo, X. A constrained l1 minimization approach to sparse precision matrix estimation. Journal of the American Statistical Association, 106(494):594-607, 2011.
-
(2011)
Journal of the American Statistical Association
, vol.106
, Issue.494
, pp. 594-607
-
-
Cai, T.1
Liu, W.2
Luo, X.3
-
5
-
-
34548275795
-
The dantzig selector: Statistical estimation when p is much larger than n
-
Candes, E. and Tao, T. The dantzig selector: Statistical estimation when p is much larger than n. The Annals of Statistics, 35(6):2313-2351, 2007.
-
(2007)
The Annals of Statistics
, vol.35
, Issue.6
, pp. 2313-2351
-
-
Candes, E.1
Tao, T.2
-
6
-
-
0037304874
-
Order selection for vector autoregressive models
-
de Waele, S. and Broersen, P.M.T. Order selection for vector autoregressive models. Signal Processing, IEEE Transactions on, 51(2):427-433, 2003.
-
(2003)
Signal Processing, IEEE Transactions on
, vol.51
, Issue.2
, pp. 427-433
-
-
De Waele, S.1
Broersen, P.M.T.2
-
7
-
-
1042301100
-
Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping
-
DOI 10.1016/j.mri.2003.08.026
-
Goebel, R., Roebroeck, A., Kim, D.S., and Formisano, E. Investigating directed cortical interactions in time-resolved fmri data using vector autoregressive modeling and granger causality mapping. Magnetic resonance imaging, 21(10):1251-1261, 2003. (Pubitemid 38199731)
-
(2003)
Magnetic Resonance Imaging
, vol.21
, Issue.10
, pp. 1251-1261
-
-
Goebel, R.1
Roebroeck, A.2
Kim, D.-S.3
Formisano, E.4
-
10
-
-
2342617542
-
Multivariate tests for autocorrelation in the stable and unstable VAR models
-
DOI 10.1016/j.econmod.2003.09.005, PII S0264999303000610
-
Hatemi-J, A. Multivariate tests for autocorrelation in the stable and unstable var models. Economic Modelling, 21(4):661-683, 2004. (Pubitemid 38586912)
-
(2004)
Economic Modelling
, vol.21
, Issue.4 SPEC ISS.
, pp. 661-683
-
-
Hatemi-J, A.1
-
11
-
-
40249096206
-
Subset selection for vector autoregressive processes using lasso
-
Hsu, N.J., Hung, H.L., and Chang, Y.M. Subset selection for vector autoregressive processes using lasso. Computational Statistics & Data Analysis, 52(7): 3645-3657, 2008.
-
(2008)
Computational Statistics & Data Analysis
, vol.52
, Issue.7
, pp. 3645-3657
-
-
Hsu, N.J.1
Hung, H.L.2
Chang, Y.M.3
-
13
-
-
0041841552
-
Improved estimation of the covariance matrix of stock returns with an application to portfolio selection
-
DOI 10.1016/S0927-5398(03)00007-0, PII S0927539803000070
-
Ledoit, O. and Wolf, M. Improved estimation of the covariance matrix of stock returns with an application to portfolio selection. Journal of Empirical Finance, 10(5):603-621, 2003. (Pubitemid 36910250)
-
(2003)
Journal of Empirical Finance
, vol.10
, Issue.5
, pp. 603-621
-
-
Ledoit, O.1
Wolf, M.2
-
14
-
-
84875151494
-
High dimensional semiparametric gaussian copula graphical models
-
Liu, H., Han, F., Yuan, M., Lafferty, J., and Wasserman, L. High dimensional semiparametric gaussian copula graphical models. Annals of Statistics, 2012.
-
(2012)
Annals of Statistics
-
-
Liu, H.1
Han, F.2
Yuan, M.3
Lafferty, J.4
Wasserman, L.5
-
15
-
-
66349115724
-
Grouped graphical granger modeling for gene expression regulatory networks discovery
-
Lozano, A.C., Abe, N., Liu, Y., and Rosset, S. Grouped graphical granger modeling for gene expression regulatory networks discovery. Bioinformatics, 25(12):i110-i118, 2009.
-
(2009)
Bioinformatics
, vol.25
, Issue.12
-
-
Lozano, A.C.1
Abe, N.2
Liu, Y.3
Rosset, S.4
-
16
-
-
78651239444
-
Autoregressive process modeling via the lasso procedure
-
Nardi, Y. and Rinaldo, A. Autoregressive process modeling via the lasso procedure. Journal of Multivariate Analysis, 102(3):528-549, 2011.
-
(2011)
Journal of Multivariate Analysis
, vol.102
, Issue.3
, pp. 528-549
-
-
Nardi, Y.1
Rinaldo, A.2
-
17
-
-
14244259417
-
Mapping directed influence over the brain using Granger causality and fMRI
-
DOI 10.1016/j.neuroimage.2004.11.017
-
Roebroeck, A., Formisano, E., Goebel, R., et al. Mapping directed influence over the brain using granger causality and fmri. Neuroimage, 25(1):230-242, 2005. (Pubitemid 40289151)
-
(2005)
NeuroImage
, vol.25
, Issue.1
, pp. 230-242
-
-
Roebroeck, A.1
Formisano, E.2
Goebel, R.3
-
19
-
-
33846190566
-
Regression coefficient and autoregressive order shrinkage and selection via the lasso
-
Wang, H., Li, G., and Tsai, C.L. Regression coefficient and autoregressive order shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69(1):63-78, 2007.
-
(2007)
Journal of the Royal Statistical Society: Series B (Statistical Methodology)
, vol.69
, Issue.1
, pp. 63-78
-
-
Wang, H.1
Li, G.2
Tsai, C.L.3
-
20
-
-
77956916683
-
High dimensional inverse covariance matrix estimation via linear programming
-
Yuan, M. High dimensional inverse covariance matrix estimation via linear programming. The Journal of Machine Learning Research, 99:2261-2286, 2010.
-
(2010)
The Journal of Machine Learning Research
, vol.99
, pp. 2261-2286
-
-
Yuan, M.1
|