메뉴 건너뛰기




Volumn , Issue PART 1, 2013, Pages 831-839

Transition Matrix Estimation in High Dimensional Time Series

Author keywords

[No Author keywords available]

Indexed keywords

BRAIN MAPPING; ESTIMATION; LEARNING SYSTEMS; NEUROIMAGING; TIME SERIES; VALUE ENGINEERING;

EID: 84897500521     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (27)

References (20)
  • 1
    • 0034847008 scopus 로고    scopus 로고
    • Modeling geometric deformations in EPI time series
    • DOI 10.1006/nimg.2001.0746
    • Andersson, J.L.R., Hutton, C., Ashburner, J., Turner, R., and Friston, K. Modeling geometric deformations in epi time series. Neuroimage, 13(5):903-919, 2001. (Pubitemid 32848335)
    • (2001) NeuroImage , vol.13 , Issue.5 , pp. 903-919
    • Andersson, J.L.R.1    Hutton, C.2    Ashburner, J.3    Turner, R.4    Friston, K.5
  • 2
    • 8844277626 scopus 로고    scopus 로고
    • Analyzing time series gene expression data
    • DOI 10.1093/bioinformatics/bth283
    • Bar-Joseph, Z. Analyzing time series gene expression data. Bioinformatics, 20(16):2493-2503, 2004. (Pubitemid 39530134)
    • (2004) Bioinformatics , vol.20 , Issue.16 , pp. 2493-2503
    • Bar-Joseph, Z.1
  • 4
    • 79960110811 scopus 로고    scopus 로고
    • A constrained l1 minimization approach to sparse precision matrix estimation
    • Cai, T., Liu, W., and Luo, X. A constrained l1 minimization approach to sparse precision matrix estimation. Journal of the American Statistical Association, 106(494):594-607, 2011.
    • (2011) Journal of the American Statistical Association , vol.106 , Issue.494 , pp. 594-607
    • Cai, T.1    Liu, W.2    Luo, X.3
  • 5
    • 34548275795 scopus 로고    scopus 로고
    • The dantzig selector: Statistical estimation when p is much larger than n
    • Candes, E. and Tao, T. The dantzig selector: Statistical estimation when p is much larger than n. The Annals of Statistics, 35(6):2313-2351, 2007.
    • (2007) The Annals of Statistics , vol.35 , Issue.6 , pp. 2313-2351
    • Candes, E.1    Tao, T.2
  • 7
    • 1042301100 scopus 로고    scopus 로고
    • Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping
    • DOI 10.1016/j.mri.2003.08.026
    • Goebel, R., Roebroeck, A., Kim, D.S., and Formisano, E. Investigating directed cortical interactions in time-resolved fmri data using vector autoregressive modeling and granger causality mapping. Magnetic resonance imaging, 21(10):1251-1261, 2003. (Pubitemid 38199731)
    • (2003) Magnetic Resonance Imaging , vol.21 , Issue.10 , pp. 1251-1261
    • Goebel, R.1    Roebroeck, A.2    Kim, D.-S.3    Formisano, E.4
  • 10
    • 2342617542 scopus 로고    scopus 로고
    • Multivariate tests for autocorrelation in the stable and unstable VAR models
    • DOI 10.1016/j.econmod.2003.09.005, PII S0264999303000610
    • Hatemi-J, A. Multivariate tests for autocorrelation in the stable and unstable var models. Economic Modelling, 21(4):661-683, 2004. (Pubitemid 38586912)
    • (2004) Economic Modelling , vol.21 , Issue.4 SPEC ISS. , pp. 661-683
    • Hatemi-J, A.1
  • 11
    • 40249096206 scopus 로고    scopus 로고
    • Subset selection for vector autoregressive processes using lasso
    • Hsu, N.J., Hung, H.L., and Chang, Y.M. Subset selection for vector autoregressive processes using lasso. Computational Statistics & Data Analysis, 52(7): 3645-3657, 2008.
    • (2008) Computational Statistics & Data Analysis , vol.52 , Issue.7 , pp. 3645-3657
    • Hsu, N.J.1    Hung, H.L.2    Chang, Y.M.3
  • 13
    • 0041841552 scopus 로고    scopus 로고
    • Improved estimation of the covariance matrix of stock returns with an application to portfolio selection
    • DOI 10.1016/S0927-5398(03)00007-0, PII S0927539803000070
    • Ledoit, O. and Wolf, M. Improved estimation of the covariance matrix of stock returns with an application to portfolio selection. Journal of Empirical Finance, 10(5):603-621, 2003. (Pubitemid 36910250)
    • (2003) Journal of Empirical Finance , vol.10 , Issue.5 , pp. 603-621
    • Ledoit, O.1    Wolf, M.2
  • 15
    • 66349115724 scopus 로고    scopus 로고
    • Grouped graphical granger modeling for gene expression regulatory networks discovery
    • Lozano, A.C., Abe, N., Liu, Y., and Rosset, S. Grouped graphical granger modeling for gene expression regulatory networks discovery. Bioinformatics, 25(12):i110-i118, 2009.
    • (2009) Bioinformatics , vol.25 , Issue.12
    • Lozano, A.C.1    Abe, N.2    Liu, Y.3    Rosset, S.4
  • 16
    • 78651239444 scopus 로고    scopus 로고
    • Autoregressive process modeling via the lasso procedure
    • Nardi, Y. and Rinaldo, A. Autoregressive process modeling via the lasso procedure. Journal of Multivariate Analysis, 102(3):528-549, 2011.
    • (2011) Journal of Multivariate Analysis , vol.102 , Issue.3 , pp. 528-549
    • Nardi, Y.1    Rinaldo, A.2
  • 17
    • 14244259417 scopus 로고    scopus 로고
    • Mapping directed influence over the brain using Granger causality and fMRI
    • DOI 10.1016/j.neuroimage.2004.11.017
    • Roebroeck, A., Formisano, E., Goebel, R., et al. Mapping directed influence over the brain using granger causality and fmri. Neuroimage, 25(1):230-242, 2005. (Pubitemid 40289151)
    • (2005) NeuroImage , vol.25 , Issue.1 , pp. 230-242
    • Roebroeck, A.1    Formisano, E.2    Goebel, R.3
  • 20
    • 77956916683 scopus 로고    scopus 로고
    • High dimensional inverse covariance matrix estimation via linear programming
    • Yuan, M. High dimensional inverse covariance matrix estimation via linear programming. The Journal of Machine Learning Research, 99:2261-2286, 2010.
    • (2010) The Journal of Machine Learning Research , vol.99 , pp. 2261-2286
    • Yuan, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.