메뉴 건너뛰기




Volumn 6, Issue 4, 2015, Pages 453-470

Controlling translation via modulation of tRNA levels

Author keywords

[No Author keywords available]

Indexed keywords

CCA ADDING ENZYME; ENZYME; MESSENGER RNA; MYC PROTEIN; TRANSCRIPTOME; TRANSFER RNA; UNCLASSIFIED DRUG; NUCLEOTIDE;

EID: 84931575609     PISSN: 17577004     EISSN: 17577012     Source Type: Journal    
DOI: 10.1002/wrna.1287     Document Type: Review
Times cited : (58)

References (150)
  • 1
    • 70449209123 scopus 로고
    • On protein synthesis
    • Crick FH. On protein synthesis. Symp Soc Exp Biol 1958, 12:138-163.
    • (1958) Symp Soc Exp Biol , vol.12 , pp. 138-163
    • Crick, F.H.1
  • 3
    • 33750990817 scopus 로고    scopus 로고
    • Early days of tRNA research: discovery, function, purification and sequence analysis
    • RajBhandary UL, Kohrer C. Early days of tRNA research: discovery, function, purification and sequence analysis. J Biosci 2006, 31:439-451.
    • (2006) J Biosci , vol.31 , pp. 439-451
    • RajBhandary, U.L.1    Kohrer, C.2
  • 4
    • 0016912825 scopus 로고
    • Transfer RNA: molecular structure, sequence, and properties
    • Rich A, RajBhandary UL. Transfer RNA: molecular structure, sequence, and properties. Annu Rev Biochem 1976, 45:805-860.
    • (1976) Annu Rev Biochem , vol.45 , pp. 805-860
    • Rich, A.1    RajBhandary, U.L.2
  • 8
    • 84864102272 scopus 로고    scopus 로고
    • Quality control in tRNA charging
    • Jakubowski H. Quality control in tRNA charging. Wiley Interdiscip Rev RNA 2012, 3:295-310.
    • (2012) Wiley Interdiscip Rev RNA , vol.3 , pp. 295-310
    • Jakubowski, H.1
  • 9
    • 0037154986 scopus 로고    scopus 로고
    • Ribosome structure and the mechanism of translation
    • Ramakrishnan V. Ribosome structure and the mechanism of translation. Cell 2002, 108:557-572.
    • (2002) Cell , vol.108 , pp. 557-572
    • Ramakrishnan, V.1
  • 10
    • 84906213108 scopus 로고    scopus 로고
    • tRNAs as regulators of biological processes
    • Raina M, Ibba M. tRNAs as regulators of biological processes. Front Genet 2014, 5:171.
    • (2014) Front Genet , vol.5 , pp. 171
    • Raina, M.1    Ibba, M.2
  • 11
    • 84864977835 scopus 로고    scopus 로고
    • Roles of tRNA in cell wall biosynthesis
    • Dare K, Ibba M. Roles of tRNA in cell wall biosynthesis. Wiley Interdiscip Rev RNA 2012, 3:247-264.
    • (2012) Wiley Interdiscip Rev RNA , vol.3 , pp. 247-264
    • Dare, K.1    Ibba, M.2
  • 12
    • 0016730809 scopus 로고
    • Effect of growth rate on the amounts of ribosomal and transfer ribonucleic acids in yeast
    • Waldron C, Lacroute F. Effect of growth rate on the amounts of ribosomal and transfer ribonucleic acids in yeast. J Bacteriol 1975, 122:855-865.
    • (1975) J Bacteriol , vol.122 , pp. 855-865
    • Waldron, C.1    Lacroute, F.2
  • 13
    • 0018909468 scopus 로고
    • Ribonucleic acid synthesis in embryonic chick muscle, rates of synthesis and half-lives of transfer and ribosomal RNA species
    • Nwagwu M, Nana M. Ribonucleic acid synthesis in embryonic chick muscle, rates of synthesis and half-lives of transfer and ribosomal RNA species. J Embryol Exp Morphol 1980, 56:253-267.
    • (1980) J Embryol Exp Morphol , vol.56 , pp. 253-267
    • Nwagwu, M.1    Nana, M.2
  • 14
    • 0019451544 scopus 로고
    • Codon-specific serine transfer ribonucleic acid degradation in avian liver during vitellogenin induction
    • Kanerva PA, Maenpaa PH. Codon-specific serine transfer ribonucleic acid degradation in avian liver during vitellogenin induction. Acta Chem Scand B 1981, 35:379-385.
    • (1981) Acta Chem Scand B , vol.35 , pp. 379-385
    • Kanerva, P.A.1    Maenpaa, P.H.2
  • 15
    • 77956276464 scopus 로고    scopus 로고
    • tRNA biology charges to the front
    • Phizicky EM, Hopper AK. tRNA biology charges to the front. Genes Dev 2010, 24:1832-1860.
    • (2010) Genes Dev , vol.24 , pp. 1832-1860
    • Phizicky, E.M.1    Hopper, A.K.2
  • 16
    • 58149189877 scopus 로고    scopus 로고
    • GtRNAdb: a database of transfer RNA genes detected in genomic sequence
    • Chan PP, Lowe TM. GtRNAdb: a database of transfer RNA genes detected in genomic sequence. Nucleic Acids Res 2009, 37:D93-D97.
    • (2009) Nucleic Acids Res , vol.37 , pp. D93-D97
    • Chan, P.P.1    Lowe, T.M.2
  • 17
    • 33845635732 scopus 로고    scopus 로고
    • Diversity of tRNA genes in eukaryotes
    • Goodenbour JM, Pan T. Diversity of tRNA genes in eukaryotes. Nucleic Acids Res 2006, 34:6137-6146.
    • (2006) Nucleic Acids Res , vol.34 , pp. 6137-6146
    • Goodenbour, J.M.1    Pan, T.2
  • 20
    • 0024405193 scopus 로고
    • Codon usage determines translation rate in Escherichia coli
    • Sorensen MA, Kurland CG, Pedersen S. Codon usage determines translation rate in Escherichia coli. J Mol Biol 1989, 207:365-377.
    • (1989) J Mol Biol , vol.207 , pp. 365-377
    • Sorensen, M.A.1    Kurland, C.G.2    Pedersen, S.3
  • 21
    • 84874683740 scopus 로고    scopus 로고
    • Non-optimal codon usage affects expression, structure and function of clock protein FRQ
    • Zhou M, Guo J, Cha J, Chae M, Chen S, Barral JM, Sachs MS, Liu Y. Non-optimal codon usage affects expression, structure and function of clock protein FRQ. Nature 2013, 495:111-115.
    • (2013) Nature , vol.495 , pp. 111-115
    • Zhou, M.1    Guo, J.2    Cha, J.3    Chae, M.4    Chen, S.5    Barral, J.M.6    Sachs, M.S.7    Liu, Y.8
  • 22
    • 84874722535 scopus 로고    scopus 로고
    • Non-optimal codon usage is a mechanism to achieve circadian clock conditionality
    • Xu Y, Ma P, Shah P, Rokas A, Liu Y, Johnson CH. Non-optimal codon usage is a mechanism to achieve circadian clock conditionality. Nature 2013, 495:116-120.
    • (2013) Nature , vol.495 , pp. 116-120
    • Xu, Y.1    Ma, P.2    Shah, P.3    Rokas, A.4    Liu, Y.5    Johnson, C.H.6
  • 23
    • 84925553022 scopus 로고    scopus 로고
    • Local slowdown of translation by nonoptimal codons promotes nascent-chain recognition by SRP in vivo
    • Pechmann S, Chartron JW, Frydman J. Local slowdown of translation by nonoptimal codons promotes nascent-chain recognition by SRP in vivo. Nat Struct Mol Biol 2014, 21:1100-1105.
    • (2014) Nat Struct Mol Biol , vol.21 , pp. 1100-1105
    • Pechmann, S.1    Chartron, J.W.2    Frydman, J.3
  • 24
    • 84875236968 scopus 로고    scopus 로고
    • Maf1, a general negative regulator of RNA polymerase III in yeast
    • Boguta M. Maf1, a general negative regulator of RNA polymerase III in yeast. Biochim Biophys Acta 2013, 1829:376-384.
    • (2013) Biochim Biophys Acta , vol.1829 , pp. 376-384
    • Boguta, M.1
  • 25
    • 84875238269 scopus 로고    scopus 로고
    • Regulation of pol III transcription by nutrient and stress signaling pathways
    • Moir RD, Willis IM. Regulation of pol III transcription by nutrient and stress signaling pathways. Biochim Biophys Acta 2013, 1829:361-375.
    • (2013) Biochim Biophys Acta , vol.1829 , pp. 361-375
    • Moir, R.D.1    Willis, I.M.2
  • 26
    • 84930820029 scopus 로고    scopus 로고
    • Why should cancer biologists care about tRNAs? tRNA synthesis, mRNA translation and the control of growth
    • Grewal SS. Why should cancer biologists care about tRNAs? tRNA synthesis, mRNA translation and the control of growth. Biochim Biophys Acta 2014. doi:10.1016/j.bbagrm.2014.12.005.
    • (2014) Biochim Biophys Acta
    • Grewal, S.S.1
  • 27
    • 33846021292 scopus 로고    scopus 로고
    • Tissue-specific differences in human transfer RNA expression
    • Dittmar KA, Goodenbour JM, Pan T. Tissue-specific differences in human transfer RNA expression. PLoS Genet 2006, 2:e221.
    • (2006) PLoS Genet , vol.2
    • Dittmar, K.A.1    Goodenbour, J.M.2    Pan, T.3
  • 29
    • 56749170666 scopus 로고    scopus 로고
    • Non-coding RNA production by RNA polymerase III is implicated in cancer
    • Marshall L, White RJ. Non-coding RNA production by RNA polymerase III is implicated in cancer. Nat Rev Cancer 2008, 8:911-914.
    • (2008) Nat Rev Cancer , vol.8 , pp. 911-914
    • Marshall, L.1    White, R.J.2
  • 31
    • 84875465521 scopus 로고    scopus 로고
    • Overexpression of initiator methionine tRNA leads to global reprogramming of tRNA expression and increased proliferation in human epithelial cells
    • Pavon-Eternod M, Gomes S, Rosner MR, Pan T. Overexpression of initiator methionine tRNA leads to global reprogramming of tRNA expression and increased proliferation in human epithelial cells. RNA 2013, 19:461-466.
    • (2013) RNA , vol.19 , pp. 461-466
    • Pavon-Eternod, M.1    Gomes, S.2    Rosner, M.R.3    Pan, T.4
  • 32
    • 84856405632 scopus 로고    scopus 로고
    • Drosophila RNA polymerase III repressor Maf1 controls body size and developmental timing by modulating tRNAiMet synthesis and systemic insulin signaling
    • Rideout EJ, Marshall L, Grewal SS. Drosophila RNA polymerase III repressor Maf1 controls body size and developmental timing by modulating tRNAiMet synthesis and systemic insulin signaling. Proc Natl Acad Sci USA 2012, 109:1139-1144.
    • (2012) Proc Natl Acad Sci USA , vol.109 , pp. 1139-1144
    • Rideout, E.J.1    Marshall, L.2    Grewal, S.S.3
  • 35
    • 79954456859 scopus 로고    scopus 로고
    • Determinants of translation efficiency and accuracy
    • Gingold H, Pilpel Y. Determinants of translation efficiency and accuracy. Mol Syst Biol 2011, 7:481.
    • (2011) Mol Syst Biol , vol.7 , pp. 481
    • Gingold, H.1    Pilpel, Y.2
  • 36
  • 37
    • 56649105133 scopus 로고    scopus 로고
    • RNA polymerases I and III, non-coding RNAs and cancer
    • White RJ. RNA polymerases I and III, non-coding RNAs and cancer. Trends Genet 2008, 24:622-629.
    • (2008) Trends Genet , vol.24 , pp. 622-629
    • White, R.J.1
  • 38
    • 0347721764 scopus 로고    scopus 로고
    • Direct activation of RNA polymerase III transcription by c-Myc
    • Gomez-Roman N, Grandori C, Eisenman RN, White RJ. Direct activation of RNA polymerase III transcription by c-Myc. Nature 2003, 421:290-294.
    • (2003) Nature , vol.421 , pp. 290-294
    • Gomez-Roman, N.1    Grandori, C.2    Eisenman, R.N.3    White, R.J.4
  • 40
    • 3843068862 scopus 로고    scopus 로고
    • Selective and mutational patterns associated with gene expression in humans: influences on synonymous composition and intron presence
    • Comeron JM. Selective and mutational patterns associated with gene expression in humans: influences on synonymous composition and intron presence. Genetics 2004, 167:1293-1304.
    • (2004) Genetics , vol.167 , pp. 1293-1304
    • Comeron, J.M.1
  • 41
    • 13444291526 scopus 로고    scopus 로고
    • Codon bias as a factor in regulating expression via translation rate in the human genome
    • Lavner Y, Kotlar D. Codon bias as a factor in regulating expression via translation rate in the human genome. Gene 2005, 345:127-138.
    • (2005) Gene , vol.345 , pp. 127-138
    • Lavner, Y.1    Kotlar, D.2
  • 42
    • 0034821884 scopus 로고    scopus 로고
    • Codon usage and tRNA genes in eukaryotes: correlation of codon usage diversity with translation efficiency and with CG-dinucleotide usage as assessed by multivariate analysis
    • Kanaya S, Yamada Y, Kinouchi M, Kudo Y, Ikemura T. Codon usage and tRNA genes in eukaryotes: correlation of codon usage diversity with translation efficiency and with CG-dinucleotide usage as assessed by multivariate analysis. J Mol Evol 2001, 53:290-298.
    • (2001) J Mol Evol , vol.53 , pp. 290-298
    • Kanaya, S.1    Yamada, Y.2    Kinouchi, M.3    Kudo, Y.4    Ikemura, T.5
  • 43
    • 0019883546 scopus 로고
    • Two conserved sequence blocks within eukaryotic tRNA genes are major promoter elements
    • Galli G, Hofstetter H, Birnstiel ML. Two conserved sequence blocks within eukaryotic tRNA genes are major promoter elements. Nature 1981, 294:626-631.
    • (1981) Nature , vol.294 , pp. 626-631
    • Galli, G.1    Hofstetter, H.2    Birnstiel, M.L.3
  • 44
    • 0037041395 scopus 로고    scopus 로고
    • An extensive network of coupling among gene expression machines
    • Maniatis T, Reed R. An extensive network of coupling among gene expression machines. Nature 2002, 416:499-506.
    • (2002) Nature , vol.416 , pp. 499-506
    • Maniatis, T.1    Reed, R.2
  • 45
    • 33846984935 scopus 로고    scopus 로고
    • Transcriptional noise and the fidelity of initiation by RNA polymerase II
    • Struhl K. Transcriptional noise and the fidelity of initiation by RNA polymerase II. Nat Struct Mol Biol 2007, 14:103-105.
    • (2007) Nat Struct Mol Biol , vol.14 , pp. 103-105
    • Struhl, K.1
  • 46
    • 84919784553 scopus 로고    scopus 로고
    • From end to end: tRNA editing at 5'- and 3'-terminal positions
    • Betat H, Long Y, Jackman JE, Morl M. From end to end: tRNA editing at 5'- and 3'-terminal positions. Int J Mol Sci 2014, 15:23975-23998.
    • (2014) Int J Mol Sci , vol.15 , pp. 23975-23998
    • Betat, H.1    Long, Y.2    Jackman, J.E.3    Morl, M.4
  • 48
    • 13444288185 scopus 로고    scopus 로고
    • Compilation of tRNA sequences and sequences of tRNA genes
    • Sprinzl M, Vassilenko KS. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res 2005, 33:D139-D140.
    • (2005) Nucleic Acids Res , vol.33 , pp. D139-D140
    • Sprinzl, M.1    Vassilenko, K.S.2
  • 49
    • 71549130107 scopus 로고    scopus 로고
    • Do all modifications benefit all tRNAs?
    • Phizicky EM, Alfonzo JD. Do all modifications benefit all tRNAs? FEBS Lett 2010, 584:265-271.
    • (2010) FEBS Lett , vol.584 , pp. 265-271
    • Phizicky, E.M.1    Alfonzo, J.D.2
  • 50
    • 77953656943 scopus 로고    scopus 로고
    • tRNA stabilization by modified nucleotides
    • Motorin Y, Helm M. tRNA stabilization by modified nucleotides. Biochemistry 2010, 49:4934-4944.
    • (2010) Biochemistry , vol.49 , pp. 4934-4944
    • Motorin, Y.1    Helm, M.2
  • 51
    • 38049091553 scopus 로고    scopus 로고
    • Identification of yeast tRNA Um(44) 2'-O-methyltransferase (Trm44) and demonstration of a Trm44 role in sustaining levels of specific tRNA(Ser) species
    • Kotelawala L, Grayhack EJ, Phizicky EM. Identification of yeast tRNA Um(44) 2'-O-methyltransferase (Trm44) and demonstration of a Trm44 role in sustaining levels of specific tRNA(Ser) species. RNA 2008, 14:158-169.
    • (2008) RNA , vol.14 , pp. 158-169
    • Kotelawala, L.1    Grayhack, E.J.2    Phizicky, E.M.3
  • 52
    • 0035801515 scopus 로고    scopus 로고
    • Improvement of reading frame maintenance is a common function for several tRNA modifications
    • Urbonavicius J, Qian Q, Durand JM, Hagervall TG, Bjork GR. Improvement of reading frame maintenance is a common function for several tRNA modifications. EMBO J 2001, 20:4863-4873.
    • (2001) EMBO J , vol.20 , pp. 4863-4873
    • Urbonavicius, J.1    Qian, Q.2    Durand, J.M.3    Hagervall, T.G.4    Bjork, G.R.5
  • 53
    • 33846269602 scopus 로고    scopus 로고
    • tRNA's wobble decoding of the genome: 40 years of modification
    • Agris PF, Vendeix FA, Graham WD. tRNA's wobble decoding of the genome: 40 years of modification. J Mol Biol 2007, 366:1-13.
    • (2007) J Mol Biol , vol.366 , pp. 1-13
    • Agris, P.F.1    Vendeix, F.A.2    Graham, W.D.3
  • 56
    • 0023734317 scopus 로고
    • Codon and amino-acid specificities of a transfer RNA are both converted by a single post-transcriptional modification
    • Muramatsu T, Nishikawa K, Nemoto F, Kuchino Y, Nishimura S, Miyazawa T, Yokoyama S. Codon and amino-acid specificities of a transfer RNA are both converted by a single post-transcriptional modification. Nature 1988, 336:179-181.
    • (1988) Nature , vol.336 , pp. 179-181
    • Muramatsu, T.1    Nishikawa, K.2    Nemoto, F.3    Kuchino, Y.4    Nishimura, S.5    Miyazawa, T.6    Yokoyama, S.7
  • 57
    • 0033534387 scopus 로고    scopus 로고
    • Stabilization of the anticodon stem-loop of tRNALys,3 by an A+-C base-pair and by pseudouridine
    • Durant PC, Davis DR. Stabilization of the anticodon stem-loop of tRNALys, 3 by an A+-C base-pair and by pseudouridine. J Mol Biol 1999, 285:115-131.
    • (1999) J Mol Biol , vol.285 , pp. 115-131
    • Durant, P.C.1    Davis, D.R.2
  • 58
    • 0026524798 scopus 로고
    • Conformational rigidity of specific pyrimidine residues in tRNA arises from posttranscriptional modifications that enhance steric interaction between the base and the 2'-hydroxyl group
    • Kawai G, Yamamoto Y, Kamimura T, Masegi T, Sekine M, Hata T, Iimori T, Watanabe T, Miyazawa T, Yokoyama S. Conformational rigidity of specific pyrimidine residues in tRNA arises from posttranscriptional modifications that enhance steric interaction between the base and the 2'-hydroxyl group. Biochemistry 1992, 31:1040-1046.
    • (1992) Biochemistry , vol.31 , pp. 1040-1046
    • Kawai, G.1    Yamamoto, Y.2    Kamimura, T.3    Masegi, T.4    Sekine, M.5    Hata, T.6    Iimori, T.7    Watanabe, T.8    Miyazawa, T.9    Yokoyama, S.10
  • 60
    • 84941129093 scopus 로고    scopus 로고
    • Yeast Kre33 and human NAT10 are conserved 18S rRNA cytosine acetyltransferases that modify tRNAs assisted by the adaptor Tan1/THUMPD1
    • Sharma S, Langhendries JL, Watzinger P, Kotter P, Entian KD, Lafontaine DL. Yeast Kre33 and human NAT10 are conserved 18S rRNA cytosine acetyltransferases that modify tRNAs assisted by the adaptor Tan1/THUMPD1. Nucleic Acids Res 2015, 43:2242-2258.
    • (2015) Nucleic Acids Res , vol.43 , pp. 2242-2258
    • Sharma, S.1    Langhendries, J.L.2    Watzinger, P.3    Kotter, P.4    Entian, K.D.5    Lafontaine, D.L.6
  • 61
    • 44149119097 scopus 로고    scopus 로고
    • Degradation of several hypomodified mature tRNA species in Saccharomyces cerevisiae is mediated by Met22 and the 5'-3' exonucleases Rat1 and Xrn1
    • Chernyakov I, Whipple JM, Kotelawala L, Grayhack EJ, Phizicky EM. Degradation of several hypomodified mature tRNA species in Saccharomyces cerevisiae is mediated by Met22 and the 5'-3' exonucleases Rat1 and Xrn1. Genes Dev 2008, 22:1369-1380.
    • (2008) Genes Dev , vol.22 , pp. 1369-1380
    • Chernyakov, I.1    Whipple, J.M.2    Kotelawala, L.3    Grayhack, E.J.4    Phizicky, E.M.5
  • 62
    • 79958053947 scopus 로고    scopus 로고
    • The yeast rapid tRNA decay pathway primarily monitors the structural integrity of the acceptor and T-stems of mature tRNA
    • Whipple JM, Lane EA, Chernyakov I, D'Silva S, Phizicky EM. The yeast rapid tRNA decay pathway primarily monitors the structural integrity of the acceptor and T-stems of mature tRNA. Genes Dev 2011, 25:1173-1184.
    • (2011) Genes Dev , vol.25 , pp. 1173-1184
    • Whipple, J.M.1    Lane, E.A.2    Chernyakov, I.3    D'Silva, S.4    Phizicky, E.M.5
  • 64
    • 2642574393 scopus 로고    scopus 로고
    • Nuclear surveillance and degradation of hypomodified initiator tRNAMet in S. cerevisiae
    • Kadaba S, Krueger A, Trice T, Krecic AM, Hinnebusch AG, Anderson J. Nuclear surveillance and degradation of hypomodified initiator tRNAMet in S. cerevisiae. Genes Dev 2004, 18:1227-1240.
    • (2004) Genes Dev , vol.18 , pp. 1227-1240
    • Kadaba, S.1    Krueger, A.2    Trice, T.3    Krecic, A.M.4    Hinnebusch, A.G.5    Anderson, J.6
  • 65
    • 33344476794 scopus 로고    scopus 로고
    • Nuclear RNA surveillance in Saccharomyces cerevisiae: Trf4p-dependent polyadenylation of nascent hypomethylated tRNA and an aberrant form of 5S rRNA
    • Kadaba S, Wang X, Anderson JT. Nuclear RNA surveillance in Saccharomyces cerevisiae: Trf4p-dependent polyadenylation of nascent hypomethylated tRNA and an aberrant form of 5S rRNA. RNA 2006, 12:508-521.
    • (2006) RNA , vol.12 , pp. 508-521
    • Kadaba, S.1    Wang, X.2    Anderson, J.T.3
  • 66
    • 0036500552 scopus 로고    scopus 로고
    • RNA quality control: degradation of defective transfer RNA
    • Li Z, Reimers S, Pandit S, Deutscher MP. RNA quality control: degradation of defective transfer RNA. EMBO J 2002, 21:1132-1138.
    • (2002) EMBO J , vol.21 , pp. 1132-1138
    • Li, Z.1    Reimers, S.2    Pandit, S.3    Deutscher, M.P.4
  • 68
    • 0026727639 scopus 로고
    • Thiolation of transfer RNA in Escherichia coli varies with growth rate
    • Emilsson V, Naslund AK, Kurland CG. Thiolation of transfer RNA in Escherichia coli varies with growth rate. Nucleic Acids Res 1992, 20:4499-4505.
    • (1992) Nucleic Acids Res , vol.20 , pp. 4499-4505
    • Emilsson, V.1    Naslund, A.K.2    Kurland, C.G.3
  • 69
    • 84872584130 scopus 로고    scopus 로고
    • tRNAHis 5-methylcytidine levels increase in response to several growth arrest conditions in Saccharomyces cerevisiae
    • Preston MA, D'Silva S, Kon Y, Phizicky EM. tRNAHis 5-methylcytidine levels increase in response to several growth arrest conditions in Saccharomyces cerevisiae. RNA 2013, 19:243-256.
    • (2013) RNA , vol.19 , pp. 243-256
    • Preston, M.A.1    D'Silva, S.2    Kon, Y.3    Phizicky, E.M.4
  • 71
    • 84920999617 scopus 로고    scopus 로고
    • tRNA thiolation links translation to stress responses in Saccharomyces cerevisiae
    • Damon JR, Pincus D, Ploegh HL. tRNA thiolation links translation to stress responses in Saccharomyces cerevisiae. Mol Biol Cell 2014, 26:270-282.
    • (2014) Mol Biol Cell , vol.26 , pp. 270-282
    • Damon, J.R.1    Pincus, D.2    Ploegh, H.L.3
  • 72
    • 84921374170 scopus 로고    scopus 로고
    • Functional importance of Psi38 and Psi39 in distinct tRNAs, amplified for tRNAGln(UUG) by unexpected temperature sensitivity of the s2U modification in yeast
    • Han L, Kon Y, Phizicky EM. Functional importance of Psi38 and Psi39 in distinct tRNAs, amplified for tRNAGln(UUG) by unexpected temperature sensitivity of the s2U modification in yeast. RNA 2015, 21:188-201.
    • (2015) RNA , vol.21 , pp. 188-201
    • Han, L.1    Kon, Y.2    Phizicky, E.M.3
  • 73
    • 84921365621 scopus 로고    scopus 로고
    • An evolutionary approach uncovers a diverse response of tRNA 2-thiolation to elevated temperatures in yeast
    • Alings F, Sarin LP, Fufezan C, Drexler HC, Leidel SA. An evolutionary approach uncovers a diverse response of tRNA 2-thiolation to elevated temperatures in yeast. RNA 2015, 21:202-212.
    • (2015) RNA , vol.21 , pp. 202-212
    • Alings, F.1    Sarin, L.P.2    Fufezan, C.3    Drexler, H.C.4    Leidel, S.A.5
  • 74
    • 78650683942 scopus 로고    scopus 로고
    • A quantitative systems approach reveals dynamic control of tRNA modifications during cellular stress
    • Chan CT, Dyavaiah M, DeMott MS, Taghizadeh K, Dedon PC, Begley TJ. A quantitative systems approach reveals dynamic control of tRNA modifications during cellular stress. PLoS Genet 2010, 6:e1001247.
    • (2010) PLoS Genet , vol.6
    • Chan, C.T.1    Dyavaiah, M.2    DeMott, M.S.3    Taghizadeh, K.4    Dedon, P.C.5    Begley, T.J.6
  • 75
    • 84864828979 scopus 로고    scopus 로고
    • Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins
    • Chan CT, Pang YL, Deng W, Babu IR, Dyavaiah M, Begley TJ, Dedon PC. Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins. Nat Commun 2012, 3:937.
    • (2012) Nat Commun , vol.3 , pp. 937
    • Chan, C.T.1    Pang, Y.L.2    Deng, W.3    Babu, I.R.4    Dyavaiah, M.5    Begley, T.J.6    Dedon, P.C.7
  • 77
    • 0018624914 scopus 로고
    • The -C-C-A end of tRNA and its role in protein biosynthesis
    • Sprinzl M, Cramer F. The -C-C-A end of tRNA and its role in protein biosynthesis. Prog Nucleic Acid Res Mol Biol 1979, 22:1-69.
    • (1979) Prog Nucleic Acid Res Mol Biol , vol.22 , pp. 1-69
    • Sprinzl, M.1    Cramer, F.2
  • 78
    • 0034637161 scopus 로고    scopus 로고
    • The structural basis of ribosome activity in peptide bond synthesis
    • Nissen P, Hansen J, Ban N, Moore PB, Steitz TA. The structural basis of ribosome activity in peptide bond synthesis. Science 2000, 289:920-930.
    • (2000) Science , vol.289 , pp. 920-930
    • Nissen, P.1    Hansen, J.2    Ban, N.3    Moore, P.B.4    Steitz, T.A.5
  • 79
    • 77956942628 scopus 로고
    • tRNA nucleotidyltransferase
    • Deutscher MP. tRNA nucleotidyltransferase. Enzymes 1982, 15:183-215.
    • (1982) Enzymes , vol.15 , pp. 183-215
    • Deutscher, M.P.1
  • 80
    • 84897715807 scopus 로고    scopus 로고
    • Molecular mechanisms of template-independent RNA polymerization by tRNA nucleotidyltransferases
    • Tomita K, Yamashita S. Molecular mechanisms of template-independent RNA polymerization by tRNA nucleotidyltransferases. Front Genet 2014, 5:36.
    • (2014) Front Genet , vol.5 , pp. 36
    • Tomita, K.1    Yamashita, S.2
  • 81
    • 77952313262 scopus 로고    scopus 로고
    • tRNA nucleotidyltransferases: ancient catalysts with an unusual mechanism of polymerization
    • Betat H, Rammelt C, Morl M. tRNA nucleotidyltransferases: ancient catalysts with an unusual mechanism of polymerization. Cell Mol Life Sci 2010, 67:1447-1463.
    • (2010) Cell Mol Life Sci , vol.67 , pp. 1447-1463
    • Betat, H.1    Rammelt, C.2    Morl, M.3
  • 82
    • 32344447144 scopus 로고    scopus 로고
    • A story with a good ending: tRNA 3'-end maturation by CCA-adding enzymes
    • Xiong Y, Steitz TA. A story with a good ending: tRNA 3'-end maturation by CCA-adding enzymes. Curr Opin Struct Biol 2006, 16:12-17.
    • (2006) Curr Opin Struct Biol , vol.16 , pp. 12-17
    • Xiong, Y.1    Steitz, T.A.2
  • 83
    • 6944236106 scopus 로고    scopus 로고
    • tRNA maturation: RNA polymerization without a nucleic acid template
    • Weiner AM. tRNA maturation: RNA polymerization without a nucleic acid template. Curr Biol 2004, 14:R883-R885.
    • (2004) Curr Biol , vol.14 , pp. R883-R885
    • Weiner, A.M.1
  • 84
    • 0025130559 scopus 로고
    • Isolation of a temperature-sensitive mutant with an altered tRNA nucleotidyltransferase and cloning of the gene encoding tRNA nucleotidyltransferase in the yeast Saccharomyces cerevisiae
    • Aebi M, Kirchner G, Chen JY, Vijayraghavan U, Jacobson A, Martin NC, Abelson J. Isolation of a temperature-sensitive mutant with an altered tRNA nucleotidyltransferase and cloning of the gene encoding tRNA nucleotidyltransferase in the yeast Saccharomyces cerevisiae. J Biol Chem 1990, 265:16216-16220.
    • (1990) J Biol Chem , vol.265 , pp. 16216-16220
    • Aebi, M.1    Kirchner, G.2    Chen, J.Y.3    Vijayraghavan, U.4    Jacobson, A.5    Martin, N.C.6    Abelson, J.7
  • 87
    • 0023394389 scopus 로고
    • tRNA nucleotidyltransferase is not essential for Escherichia coli viability
    • Zhu L, Deutscher MP. tRNA nucleotidyltransferase is not essential for Escherichia coli viability. EMBO J 1987, 6:2473-2477.
    • (1987) EMBO J , vol.6 , pp. 2473-2477
    • Zhu, L.1    Deutscher, M.P.2
  • 88
    • 0032491395 scopus 로고    scopus 로고
    • The CCA-adding enzyme has a single active site
    • Yue D, Weiner AM, Maizels N. The CCA-adding enzyme has a single active site. J Biol Chem 1998, 273:29693-29700.
    • (1998) J Biol Chem , vol.273 , pp. 29693-29700
    • Yue, D.1    Weiner, A.M.2    Maizels, N.3
  • 89
    • 0032101196 scopus 로고    scopus 로고
    • CCA addition by tRNA nucleotidyltransferase: polymerization without translocation?
    • Shi PY, Maizels N, Weiner AM. CCA addition by tRNA nucleotidyltransferase: polymerization without translocation? EMBO J 1998, 17:3197-3206.
    • (1998) EMBO J , vol.17 , pp. 3197-3206
    • Shi, P.Y.1    Maizels, N.2    Weiner, A.M.3
  • 91
    • 3943089138 scopus 로고    scopus 로고
    • Mechanism of transfer RNA maturation by CCA-adding enzyme without using an oligonucleotide template
    • Xiong Y, Steitz TA. Mechanism of transfer RNA maturation by CCA-adding enzyme without using an oligonucleotide template. Nature 2004, 430:640-645.
    • (2004) Nature , vol.430 , pp. 640-645
    • Xiong, Y.1    Steitz, T.A.2
  • 92
    • 0029903451 scopus 로고    scopus 로고
    • CCA-adding enzymes and poly(A) polymerases are all members of the same nucleotidyltransferase superfamily: characterization of the CCA-adding enzyme from the archaeal hyperthermophile Sulfolobus shibatae
    • Yue D, Maizels N, Weiner AM. CCA-adding enzymes and poly(A) polymerases are all members of the same nucleotidyltransferase superfamily: characterization of the CCA-adding enzyme from the archaeal hyperthermophile Sulfolobus shibatae. RNA 1996, 2:895-908.
    • (1996) RNA , vol.2 , pp. 895-908
    • Yue, D.1    Maizels, N.2    Weiner, A.M.3
  • 93
    • 33750430666 scopus 로고    scopus 로고
    • Complete crystallographic analysis of the dynamics of CCA sequence addition
    • Tomita K, Ishitani R, Fukai S, Nureki O. Complete crystallographic analysis of the dynamics of CCA sequence addition. Nature 2006, 443:956-960.
    • (2006) Nature , vol.443 , pp. 956-960
    • Tomita, K.1    Ishitani, R.2    Fukai, S.3    Nureki, O.4
  • 94
    • 78149385338 scopus 로고    scopus 로고
    • How the CCA-adding enzyme selects adenine over cytosine at position 76 of tRNA
    • Pan B, Xiong Y, Steitz TA. How the CCA-adding enzyme selects adenine over cytosine at position 76 of tRNA. Science 2010, 330:937-940.
    • (2010) Science , vol.330 , pp. 937-940
    • Pan, B.1    Xiong, Y.2    Steitz, T.A.3
  • 95
    • 0037074014 scopus 로고    scopus 로고
    • Crystal structures of the Bacillus stearothermophilus CCA-adding enzyme and its complexes with ATP or CTP
    • Li F, Xiong Y, Wang J, Cho HD, Tomita K, Weiner AM, Steitz TA. Crystal structures of the Bacillus stearothermophilus CCA-adding enzyme and its complexes with ATP or CTP. Cell 2002, 111:815-824.
    • (2002) Cell , vol.111 , pp. 815-824
    • Li, F.1    Xiong, Y.2    Wang, J.3    Cho, H.D.4    Tomita, K.5    Weiner, A.M.6    Steitz, T.A.7
  • 96
    • 33846062140 scopus 로고    scopus 로고
    • Reengineering CCA-adding enzymes to function as (U,G)- or dCdCdA-adding enzymes or poly(C,A) and poly(U,G) polymerases
    • Cho HD, Verlinde CL, Weiner AM. Reengineering CCA-adding enzymes to function as (U, G)- or dCdCdA-adding enzymes or poly(C, A) and poly(U, G) polymerases. Proc Natl Acad Sci USA 2007, 104:54-59.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 54-59
    • Cho, H.D.1    Verlinde, C.L.2    Weiner, A.M.3
  • 97
    • 43449087645 scopus 로고    scopus 로고
    • tRNA integrity is a prerequisite for rapid CCA addition: implication for quality control
    • Dupasquier M, Kim S, Halkidis K, Gamper H, Hou YM. tRNA integrity is a prerequisite for rapid CCA addition: implication for quality control. J Mol Biol 2008, 379:579-588.
    • (2008) J Mol Biol , vol.379 , pp. 579-588
    • Dupasquier, M.1    Kim, S.2    Halkidis, K.3    Gamper, H.4    Hou, Y.M.5
  • 98
    • 47949120771 scopus 로고    scopus 로고
    • Molecular basis for maintenance of fidelity during the CCA-adding reaction by a CCA-adding enzyme
    • Toh Y, Numata T, Watanabe K, Takeshita D, Nureki O, Tomita K. Molecular basis for maintenance of fidelity during the CCA-adding reaction by a CCA-adding enzyme. EMBO J 2008, 27:1944-1952.
    • (2008) EMBO J , vol.27 , pp. 1944-1952
    • Toh, Y.1    Numata, T.2    Watanabe, K.3    Takeshita, D.4    Nureki, O.5    Tomita, K.6
  • 99
  • 100
    • 56349113455 scopus 로고    scopus 로고
    • 3' end processing of a long nuclear-retained noncoding RNA yields a tRNA-like cytoplasmic RNA
    • Wilusz JE, Freier SM, Spector DL. 3' end processing of a long nuclear-retained noncoding RNA yields a tRNA-like cytoplasmic RNA. Cell 2008, 135:919-932.
    • (2008) Cell , vol.135 , pp. 919-932
    • Wilusz, J.E.1    Freier, S.M.2    Spector, D.L.3
  • 101
    • 61849113891 scopus 로고    scopus 로고
    • MEN ε{lunate}/β nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles
    • Sunwoo H, Dinger ME, Wilusz JE, Amaral PP, Mattick JS, Spector DL. MEN ε{lunate}/β nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. Genome Res 2009, 19:347-359.
    • (2009) Genome Res , vol.19 , pp. 347-359
    • Sunwoo, H.1    Dinger, M.E.2    Wilusz, J.E.3    Amaral, P.P.4    Mattick, J.S.5    Spector, D.L.6
  • 102
    • 40849106786 scopus 로고    scopus 로고
    • Structure of the active subunit of the yeast exosome core, Rrp44: diverse modes of substrate recruitment in the RNase II nuclease family
    • Lorentzen E, Basquin J, Tomecki R, Dziembowski A, Conti E. Structure of the active subunit of the yeast exosome core, Rrp44: diverse modes of substrate recruitment in the RNase II nuclease family. Mol Cell 2008, 29:717-728.
    • (2008) Mol Cell , vol.29 , pp. 717-728
    • Lorentzen, E.1    Basquin, J.2    Tomecki, R.3    Dziembowski, A.4    Conti, E.5
  • 103
    • 33749578566 scopus 로고    scopus 로고
    • Substrate recognition and catalysis by the exoribonuclease RNase R
    • Vincent HA, Deutscher MP. Substrate recognition and catalysis by the exoribonuclease RNase R. J Biol Chem 2006, 281:29769-29775.
    • (2006) J Biol Chem , vol.281 , pp. 29769-29775
    • Vincent, H.A.1    Deutscher, M.P.2
  • 104
  • 105
    • 84864315112 scopus 로고    scopus 로고
    • The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult
    • Zhang B, Arun G, Mao YS, Lazar Z, Hung G, Bhattacharjee G, Xiao X, Booth CJ, Wu J, Zhang C, et al. The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult. Cell Rep 2012, 2:111-123.
    • (2012) Cell Rep , vol.2 , pp. 111-123
    • Zhang, B.1    Arun, G.2    Mao, Y.S.3    Lazar, Z.4    Hung, G.5    Bhattacharjee, G.6    Xiao, X.7    Booth, C.J.8    Wu, J.9    Zhang, C.10
  • 106
    • 1642488261 scopus 로고    scopus 로고
    • Mitochondrial 3' tRNA editing in the jakobid Seculamonas ecuadoriensis: a novel mechanism and implications for tRNA processing
    • Leigh J, Lang BF. Mitochondrial 3' tRNA editing in the jakobid Seculamonas ecuadoriensis: a novel mechanism and implications for tRNA processing. RNA 2004, 10:615-621.
    • (2004) RNA , vol.10 , pp. 615-621
    • Leigh, J.1    Lang, B.F.2
  • 107
    • 0027500536 scopus 로고
    • Editing of transfer RNAs in Acanthamoeba castellanii mitochondria
    • Lonergan KM, Gray MW. Editing of transfer RNAs in Acanthamoeba castellanii mitochondria. Science 1993, 259:812-816.
    • (1993) Science , vol.259 , pp. 812-816
    • Lonergan, K.M.1    Gray, M.W.2
  • 109
    • 0024284965 scopus 로고
    • A simple structural feature is a major determinant of the identity of a transfer RNA
    • Hou YM, Schimmel P. A simple structural feature is a major determinant of the identity of a transfer RNA. Nature 1988, 333:140-145.
    • (1988) Nature , vol.333 , pp. 140-145
    • Hou, Y.M.1    Schimmel, P.2
  • 110
    • 0024279871 scopus 로고
    • Changing the identity of a tRNA by introducing a G-U wobble pair near the 3' acceptor end
    • McClain WH, Foss K. Changing the identity of a tRNA by introducing a G-U wobble pair near the 3' acceptor end. Science 1988, 240:793-796.
    • (1988) Science , vol.240 , pp. 793-796
    • McClain, W.H.1    Foss, K.2
  • 111
    • 0031883924 scopus 로고    scopus 로고
    • A top-half tDNA minihelix is a good substrate for the eubacterial CCA-adding enzyme
    • Shi PY, Weiner AM, Maizels N. A top-half tDNA minihelix is a good substrate for the eubacterial CCA-adding enzyme. RNA 1998, 4:276-284.
    • (1998) RNA , vol.4 , pp. 276-284
    • Shi, P.Y.1    Weiner, A.M.2    Maizels, N.3
  • 112
    • 84922688087 scopus 로고    scopus 로고
    • On-enzyme refolding permits small RNA and tRNA surveillance by the CCA-adding enzyme
    • Kuhn CD, Wilusz JE, Zheng Y, Beal PA, Joshua-Tor L. On-enzyme refolding permits small RNA and tRNA surveillance by the CCA-adding enzyme. Cell 2015, 160:644-658.
    • (2015) Cell , vol.160 , pp. 644-658
    • Kuhn, C.D.1    Wilusz, J.E.2    Zheng, Y.3    Beal, P.A.4    Joshua-Tor, L.5
  • 113
    • 84857379318 scopus 로고    scopus 로고
    • Widespread RNA 3'-end oligouridylation in mammals
    • Choi YS, Patena W, Leavitt AD, McManus MT. Widespread RNA 3'-end oligouridylation in mammals. RNA 2012, 18:394-401.
    • (2012) RNA , vol.18 , pp. 394-401
    • Choi, Y.S.1    Patena, W.2    Leavitt, A.D.3    McManus, M.T.4
  • 114
    • 68749102148 scopus 로고    scopus 로고
    • TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation
    • Heo I, Joo C, Kim YK, Ha M, Yoon MJ, Cho J, Yeom KH, Han J, Kim VN. TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell 2009, 138:696-708.
    • (2009) Cell , vol.138 , pp. 696-708
    • Heo, I.1    Joo, C.2    Kim, Y.K.3    Ha, M.4    Yoon, M.J.5    Cho, J.6    Yeom, K.H.7    Han, J.8    Kim, V.N.9
  • 115
    • 84908311054 scopus 로고    scopus 로고
    • Mechanism of Dis3l2 substrate recognition in the Lin28-let-7 pathway
    • Faehnle CR, Walleshauser J, Joshua-Tor L. Mechanism of Dis3l2 substrate recognition in the Lin28-let-7 pathway. Nature 2014, 514:252-256.
    • (2014) Nature , vol.514 , pp. 252-256
    • Faehnle, C.R.1    Walleshauser, J.2    Joshua-Tor, L.3
  • 117
    • 66849122924 scopus 로고    scopus 로고
    • Decapping is preceded by 3' uridylation in a novel pathway of bulk mRNA turnover
    • Rissland OS, Norbury CJ. Decapping is preceded by 3' uridylation in a novel pathway of bulk mRNA turnover. Nat Struct Mol Biol 2009, 16:616-623.
    • (2009) Nat Struct Mol Biol , vol.16 , pp. 616-623
    • Rissland, O.S.1    Norbury, C.J.2
  • 119
    • 84894318075 scopus 로고    scopus 로고
    • Coupling mRNA processing with transcription in time and space
    • Bentley DL. Coupling mRNA processing with transcription in time and space. Nat Rev Genet 2014, 15:163-175.
    • (2014) Nat Rev Genet , vol.15 , pp. 163-175
    • Bentley, D.L.1
  • 120
    • 0041467844 scopus 로고    scopus 로고
    • Possibility of cytoplasmic pre-tRNA splicing: the yeast tRNA splicing endonuclease mainly localizes on the mitochondria
    • Yoshihisa T, Yunoki-Esaki K, Ohshima C, Tanaka N, Endo T. Possibility of cytoplasmic pre-tRNA splicing: the yeast tRNA splicing endonuclease mainly localizes on the mitochondria. Mol Biol Cell 2003, 14:3266-3279.
    • (2003) Mol Biol Cell , vol.14 , pp. 3266-3279
    • Yoshihisa, T.1    Yunoki-Esaki, K.2    Ohshima, C.3    Tanaka, N.4    Endo, T.5
  • 121
    • 2042479408 scopus 로고    scopus 로고
    • Identification of a human endonuclease complex reveals a link between tRNA splicing and pre-mRNA 3' end formation
    • Paushkin SV, Patel M, Furia BS, Peltz SW, Trotta CR. Identification of a human endonuclease complex reveals a link between tRNA splicing and pre-mRNA 3' end formation. Cell 2004, 117:311-321.
    • (2004) Cell , vol.117 , pp. 311-321
    • Paushkin, S.V.1    Patel, M.2    Furia, B.S.3    Peltz, S.W.4    Trotta, C.R.5
  • 122
    • 84877088375 scopus 로고    scopus 로고
    • Transfer RNA post-transcriptional processing, turnover, and subcellular dynamics in the yeast Saccharomyces cerevisiae
    • Hopper AK. Transfer RNA post-transcriptional processing, turnover, and subcellular dynamics in the yeast Saccharomyces cerevisiae. Genetics 2013, 194:43-67.
    • (2013) Genetics , vol.194 , pp. 43-67
    • Hopper, A.K.1
  • 123
    • 23844508130 scopus 로고    scopus 로고
    • Retrograde movement of tRNAs from the cytoplasm to the nucleus in Saccharomyces cerevisiae
    • Shaheen HH, Hopper AK. Retrograde movement of tRNAs from the cytoplasm to the nucleus in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 2005, 102:11290-11295.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 11290-11295
    • Shaheen, H.H.1    Hopper, A.K.2
  • 124
    • 21744453148 scopus 로고    scopus 로고
    • tRNA actively shuttles between the nucleus and cytosol in yeast
    • Takano A, Endo T, Yoshihisa T. tRNA actively shuttles between the nucleus and cytosol in yeast. Science 2005, 309:140-142.
    • (2005) Science , vol.309 , pp. 140-142
    • Takano, A.1    Endo, T.2    Yoshihisa, T.3
  • 125
    • 34250789855 scopus 로고    scopus 로고
    • Rapid and reversible nuclear accumulation of cytoplasmic tRNA in response to nutrient availability
    • Whitney ML, Hurto RL, Shaheen HH, Hopper AK. Rapid and reversible nuclear accumulation of cytoplasmic tRNA in response to nutrient availability. Mol Biol Cell 2007, 18:2678-2686.
    • (2007) Mol Biol Cell , vol.18 , pp. 2678-2686
    • Whitney, M.L.1    Hurto, R.L.2    Shaheen, H.H.3    Hopper, A.K.4
  • 126
    • 34250711447 scopus 로고    scopus 로고
    • Inorganic phosphate deprivation causes tRNA nuclear accumulation via retrograde transport in Saccharomyces cerevisiae
    • Hurto RL, Tong AH, Boone C, Hopper AK. Inorganic phosphate deprivation causes tRNA nuclear accumulation via retrograde transport in Saccharomyces cerevisiae. Genetics 2007, 176:841-852.
    • (2007) Genetics , vol.176 , pp. 841-852
    • Hurto, R.L.1    Tong, A.H.2    Boone, C.3    Hopper, A.K.4
  • 127
    • 84886937862 scopus 로고    scopus 로고
    • Genome-wide investigation of the role of the tRNA nuclear-cytoplasmic trafficking pathway in regulation of the yeast Saccharomyces cerevisiae transcriptome and proteome
    • Chu HY, Hopper AK. Genome-wide investigation of the role of the tRNA nuclear-cytoplasmic trafficking pathway in regulation of the yeast Saccharomyces cerevisiae transcriptome and proteome. Mol Cell Biol 2013, 33:4241-4254.
    • (2013) Mol Cell Biol , vol.33 , pp. 4241-4254
    • Chu, H.Y.1    Hopper, A.K.2
  • 128
    • 84891368395 scopus 로고    scopus 로고
    • Retrograde transfer RNA nuclear import provides a new level of tRNA quality control in Saccharomyces cerevisiae
    • Kramer EB, Hopper AK. Retrograde transfer RNA nuclear import provides a new level of tRNA quality control in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 2013, 110:21042-21047.
    • (2013) Proc Natl Acad Sci USA , vol.110 , pp. 21042-21047
    • Kramer, E.B.1    Hopper, A.K.2
  • 129
    • 67650604265 scopus 로고    scopus 로고
    • Stressing out over tRNA cleavage
    • Thompson DM, Parker R. Stressing out over tRNA cleavage. Cell 2009, 138:215-219.
    • (2009) Cell , vol.138 , pp. 215-219
    • Thompson, D.M.1    Parker, R.2
  • 130
    • 84910673620 scopus 로고    scopus 로고
    • tRNA fragments in human health and disease
    • Anderson P, Ivanov P. tRNA fragments in human health and disease. FEBS Lett 2014, 588:4297-4304.
    • (2014) FEBS Lett , vol.588 , pp. 4297-4304
    • Anderson, P.1    Ivanov, P.2
  • 131
    • 84893147804 scopus 로고    scopus 로고
    • Slicing tRNAs to boost functional ncRNA diversity
    • Gebetsberger J, Polacek N. Slicing tRNAs to boost functional ncRNA diversity. RNA Biol 2013, 10:1798-1806.
    • (2013) RNA Biol , vol.10 , pp. 1798-1806
    • Gebetsberger, J.1    Polacek, N.2
  • 132
    • 65249129859 scopus 로고    scopus 로고
    • Angiogenin cleaves tRNA and promotes stress-induced translational repression
    • Yamasaki S, Ivanov P, Hu GF, Anderson P. Angiogenin cleaves tRNA and promotes stress-induced translational repression. J Cell Biol 2009, 185:35-42.
    • (2009) J Cell Biol , vol.185 , pp. 35-42
    • Yamasaki, S.1    Ivanov, P.2    Hu, G.F.3    Anderson, P.4
  • 134
    • 52949145277 scopus 로고    scopus 로고
    • tRNA cleavage is a conserved response to oxidative stress in eukaryotes
    • Thompson DM, Lu C, Green PJ, Parker R. tRNA cleavage is a conserved response to oxidative stress in eukaryotes. RNA 2008, 14:2095-2103.
    • (2008) RNA , vol.14 , pp. 2095-2103
    • Thompson, D.M.1    Lu, C.2    Green, P.J.3    Parker, R.4
  • 135
    • 84884638166 scopus 로고    scopus 로고
    • Reversible and rapid transfer-RNA deactivation as a mechanism of translational repression in stress
    • Czech A, Wende S, Morl M, Pan T, Ignatova Z. Reversible and rapid transfer-RNA deactivation as a mechanism of translational repression in stress. PLoS Genet 2013, 9:e1003767.
    • (2013) PLoS Genet , vol.9
    • Czech, A.1    Wende, S.2    Morl, M.3    Pan, T.4    Ignatova, Z.5
  • 136
    • 84919934354 scopus 로고    scopus 로고
    • G-quadruplex structures contribute to the neuroprotective effects of angiogenin-induced tRNA fragments
    • Ivanov P, O'Day E, Emara MM, Wagner G, Lieberman J, Anderson P. G-quadruplex structures contribute to the neuroprotective effects of angiogenin-induced tRNA fragments. Proc Natl Acad Sci USA 2014, 111:18201-18206.
    • (2014) Proc Natl Acad Sci USA , vol.111 , pp. 18201-18206
    • Ivanov, P.1    O'Day, E.2    Emara, M.M.3    Wagner, G.4    Lieberman, J.5    Anderson, P.6
  • 137
    • 80051713296 scopus 로고    scopus 로고
    • Angiogenin-induced tRNA fragments inhibit translation initiation
    • Ivanov P, Emara MM, Villen J, Gygi SP, Anderson P. Angiogenin-induced tRNA fragments inhibit translation initiation. Mol Cell 2011, 43:613-623.
    • (2011) Mol Cell , vol.43 , pp. 613-623
    • Ivanov, P.1    Emara, M.M.2    Villen, J.3    Gygi, S.P.4    Anderson, P.5
  • 139
    • 71549169628 scopus 로고    scopus 로고
    • Filtering of deep sequencing data reveals the existence of abundant Dicer-dependent small RNAs derived from tRNAs
    • Cole C, Sobala A, Lu C, Thatcher SR, Bowman A, Brown JW, Green PJ, Barton GJ, Hutvagner G. Filtering of deep sequencing data reveals the existence of abundant Dicer-dependent small RNAs derived from tRNAs. RNA 2009, 15:2147-2160.
    • (2009) RNA , vol.15 , pp. 2147-2160
    • Cole, C.1    Sobala, A.2    Lu, C.3    Thatcher, S.R.4    Bowman, A.5    Brown, J.W.6    Green, P.J.7    Barton, G.J.8    Hutvagner, G.9
  • 140
    • 84864913576 scopus 로고    scopus 로고
    • Extensive terminal and asymmetric processing of small RNAs from rRNAs, snoRNAs, snRNAs, and tRNAs
    • Li Z, Ender C, Meister G, Moore PS, Chang Y, John B. Extensive terminal and asymmetric processing of small RNAs from rRNAs, snoRNAs, snRNAs, and tRNAs. Nucleic Acids Res 2012, 40:6787-6799.
    • (2012) Nucleic Acids Res , vol.40 , pp. 6787-6799
    • Li, Z.1    Ender, C.2    Meister, G.3    Moore, P.S.4    Chang, Y.5    John, B.6
  • 141
    • 72749089855 scopus 로고    scopus 로고
    • A novel class of small RNAs: tRNA-derived RNA fragments (tRFs)
    • Lee YS, Shibata Y, Malhotra A, Dutta A. A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev 2009, 23:2639-2649.
    • (2009) Genes Dev , vol.23 , pp. 2639-2649
    • Lee, Y.S.1    Shibata, Y.2    Malhotra, A.3    Dutta, A.4
  • 142
    • 84896859718 scopus 로고    scopus 로고
    • Argonaute-bound small RNAs from promoter-proximal RNA polymerase II
    • Zamudio JR, Kelly TJ, Sharp PA. Argonaute-bound small RNAs from promoter-proximal RNA polymerase II. Cell 2014, 156:920-934.
    • (2014) Cell , vol.156 , pp. 920-934
    • Zamudio, J.R.1    Kelly, T.J.2    Sharp, P.A.3
  • 144
    • 84879025267 scopus 로고    scopus 로고
    • Small RNAs derived from the 5' end of tRNA can inhibit protein translation in human cells
    • Sobala A, Hutvagner G. Small RNAs derived from the 5' end of tRNA can inhibit protein translation in human cells. RNA Biol 2013, 10:553-563.
    • (2013) RNA Biol , vol.10 , pp. 553-563
    • Sobala, A.1    Hutvagner, G.2
  • 145
    • 84872784032 scopus 로고    scopus 로고
    • tRNA-derived fragments target the ribosome and function as regulatory non-coding RNA in Haloferax volcanii
    • Gebetsberger J, Zywicki M, Kunzi A, Polacek N. tRNA-derived fragments target the ribosome and function as regulatory non-coding RNA in Haloferax volcanii. Archaea 2012, 2012:260909.
    • (2012) Archaea , vol.2012 , pp. 260909
    • Gebetsberger, J.1    Zywicki, M.2    Kunzi, A.3    Polacek, N.4
  • 146
    • 66149125192 scopus 로고    scopus 로고
    • The phloem-delivered RNA pool contains small noncoding RNAs and interferes with translation
    • Zhang S, Sun L, Kragler F. The phloem-delivered RNA pool contains small noncoding RNAs and interferes with translation. Plant Physiol 2009, 150:378-387.
    • (2009) Plant Physiol , vol.150 , pp. 378-387
    • Zhang, S.1    Sun, L.2    Kragler, F.3
  • 147
    • 84866622511 scopus 로고    scopus 로고
    • The yeast rapid tRNA decay pathway competes with elongation factor 1A for substrate tRNAs and acts on tRNAs lacking one or more of several modifications
    • Dewe JM, Whipple JM, Chernyakov I, Jaramillo LN, Phizicky EM. The yeast rapid tRNA decay pathway competes with elongation factor 1A for substrate tRNAs and acts on tRNAs lacking one or more of several modifications. RNA 2012, 18:1886-1896.
    • (2012) RNA , vol.18 , pp. 1886-1896
    • Dewe, J.M.1    Whipple, J.M.2    Chernyakov, I.3    Jaramillo, L.N.4    Phizicky, E.M.5
  • 148
    • 84866634409 scopus 로고    scopus 로고
    • Maf1-mediated repression of RNA polymerase III transcription inhibits tRNA degradation via RTD pathway
    • Turowski TW, Karkusiewicz I, Kowal J, Boguta M. Maf1-mediated repression of RNA polymerase III transcription inhibits tRNA degradation via RTD pathway. RNA 2012, 18:1823-1832.
    • (2012) RNA , vol.18 , pp. 1823-1832
    • Turowski, T.W.1    Karkusiewicz, I.2    Kowal, J.3    Boguta, M.4
  • 150
    • 84888601034 scopus 로고    scopus 로고
    • Adaptive translation as a mechanism of stress response and adaptation
    • Pan T. Adaptive translation as a mechanism of stress response and adaptation. Annu Rev Genet 2013, 47:121-137.
    • (2013) Annu Rev Genet , vol.47 , pp. 121-137
    • Pan, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.