메뉴 건너뛰기




Volumn 244, Issue 1, 2015, Pages 248-260

CRM in social media: Predicting increases in Facebook usage frequency

Author keywords

Data mining; Decision support systems; Facebook; Predictive analytics; Social media

Indexed keywords

ADAPTIVE BOOSTING; BENCHMARKING; DATA MINING; DECISION SUPPORT SYSTEMS; DECISION TREES; FORECASTING; LOGISTIC REGRESSION; PREDICTIVE ANALYTICS; STOCHASTIC SYSTEMS; SUPPORT VECTOR MACHINES; SUPPORT VECTOR REGRESSION;

EID: 84930480333     PISSN: 03772217     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ejor.2015.01.001     Document Type: Conference Paper
Times cited : (60)

References (101)
  • 1
    • 0033570831 scopus 로고    scopus 로고
    • Combined 5 × 2 cv f test for comparing supervised classification learning algorithms
    • Alpaydin E. Combined 5 × 2 cv f test for comparing supervised classification learning algorithms Neural Computation 11 8 1999 1885 1892
    • (1999) Neural Computation , vol.11 , Issue.8 , pp. 1885-1892
    • Alpaydin, E.1
  • 2
    • 76049088642 scopus 로고    scopus 로고
    • Distinguishing influence-based contagion from homophily-driven diffusion in dynamic networks
    • Aral S., Muchnik L., and Sundararajan A. Distinguishing influence-based contagion from homophily-driven diffusion in dynamic networks Proceedings of the National Academy of Sciences 106 2009 21544 21549
    • (2009) Proceedings of the National Academy of Sciences , vol.106 , pp. 21544-21549
    • Aral, S.1    Muchnik, L.2    Sundararajan, A.3
  • 3
    • 80052775224 scopus 로고    scopus 로고
    • Creating social contagion through viral product design: A randomized trial of peer influence in networks
    • Aral S., and Walker D. Creating social contagion through viral product design: A randomized trial of peer influence in networks Management Science 57 9 2011 1623 1639
    • (2011) Management Science , vol.57 , Issue.9 , pp. 1623-1639
    • Aral, S.1    Walker, D.2
  • 4
    • 84878375765 scopus 로고    scopus 로고
    • Egocentric online social networks: Analysis of key features and prediction of tie strength in Facebook
    • Arnaboldi V., Guazzini A., and Passarella A. Egocentric online social networks: Analysis of key features and prediction of tie strength in Facebook Computer Communications 36 10-11 2013 1130 1144
    • (2013) Computer Communications , vol.36 , Issue.10-11 , pp. 1130-1144
    • Arnaboldi, V.1    Guazzini, A.2    Passarella, A.3
  • 5
    • 0345872225 scopus 로고    scopus 로고
    • A novel evolutionary data mining algorithm with applications to churn prediction
    • Au W.H., Chan K.C.C., and Yao X. A novel evolutionary data mining algorithm with applications to churn prediction IEEE Trans. Evol. Comput. 7 6 2003 532 545 10.1109/TEVC.2003.819264
    • (2003) IEEE Trans. Evol. Comput. , vol.7 , Issue.6 , pp. 532-545
    • Au, W.H.1    Chan, K.C.C.2    Yao, X.3
  • 6
    • 84882264139 scopus 로고    scopus 로고
    • Improving customer acquisition models by incorporating spatial autocorrelation at different levels of granularity
    • Baecke P., and Van den Poel D. Improving customer acquisition models by incorporating spatial autocorrelation at different levels of granularity Journal of Intelligent Information Systems 41 1 2013 73 90
    • (2013) Journal of Intelligent Information Systems , vol.41 , Issue.1 , pp. 73-90
    • Baecke, P.1    Van Den Poel, D.2
  • 9
    • 84865244941 scopus 로고    scopus 로고
    • Customer event history for churn prediction: How long is long enough?
    • Ballings M., and Van den Poel D. Customer event history for churn prediction: How long is long enough? Expert Systems with Applications 39 18 2012 13517 13522
    • (2012) Expert Systems with Applications , vol.39 , Issue.18 , pp. 13517-13522
    • Ballings, M.1    Van Den Poel, D.2
  • 12
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • Bauer E., and Kohavi R. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants Machine Learning 36 1-2 1999 105 139 10.1023/A:1007515423169
    • (1999) Machine Learning , vol.36 , Issue.1-2 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 13
    • 77952766987 scopus 로고    scopus 로고
    • A user's guide to support vector machines
    • Department of Computer Science Colorado State University
    • Ben-Hur A., and Weston J. A user's guide to support vector machines Methods in molecular biology 2010 Department of Computer Science Colorado State University 223 239
    • (2010) Methods in Molecular Biology , pp. 223-239
    • Ben-Hur, A.1    Weston, J.2
  • 14
    • 84861347296 scopus 로고    scopus 로고
    • Improving customer retention in financial services using kinship network information
    • Benoit D.F., and Van den Poel D. Improving customer retention in financial services using kinship network information Expert Systems with Applications 39 13 2012 11435 11442 10.1016/j.eswa.2012.04.016
    • (2012) Expert Systems with Applications , vol.39 , Issue.13 , pp. 11435-11442
    • Benoit, D.F.1    Van Den Poel, D.2
  • 17
    • 0032220721 scopus 로고    scopus 로고
    • A dynamic model of the duration of the customer's relationship with a continuous service provider: The role of satisfaction
    • Bolton R.N. A dynamic model of the duration of the customer's relationship with a continuous service provider: The role of satisfaction Marketing Science 17 1 1998 45
    • (1998) Marketing Science , vol.17 , Issue.1 , pp. 45
    • Bolton, R.N.1
  • 18
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests Machine Learning 45 1 2001 5 32
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 19
    • 10444274107 scopus 로고    scopus 로고
    • Customer base analysis: Partial defection of behaviourally loyal clients in a non-contractual FMCG retail setting
    • Buckinx W., and Van den Poel D. Customer base analysis: Partial defection of behaviourally loyal clients in a non-contractual FMCG retail setting European Journal of Operational Research 164 1 2005 252 268
    • (2005) European Journal of Operational Research , vol.164 , Issue.1 , pp. 252-268
    • Buckinx, W.1    Van Den Poel, D.2
  • 20
    • 33750429921 scopus 로고    scopus 로고
    • CRM at a pay-TV company: Using analytical models to reduce customer attrition by targeted marketing for subscription services
    • Burez J., and Van den Poel D. CRM at a pay-TV company: Using analytical models to reduce customer attrition by targeted marketing for subscription services Expert Systems with Applications 32 2 2007 277 288 10.1016/j.eswa.2005.11.037
    • (2007) Expert Systems with Applications , vol.32 , Issue.2 , pp. 277-288
    • Burez, J.1    Van Den Poel, D.2
  • 21
    • 44949150276 scopus 로고    scopus 로고
    • Separating financial from commercial customer churn: A modeling step towards resolving the conflict between the sales and credit department
    • Burez J., and Van den Poel D. Separating financial from commercial customer churn: A modeling step towards resolving the conflict between the sales and credit department Expert Systems with Applications 35 1-2 2008 497 514 10.1016/j.eswa.2007.07.036
    • (2008) Expert Systems with Applications , vol.35 , Issue.1-2 , pp. 497-514
    • Burez, J.1    Van Den Poel, D.2
  • 22
    • 58349098976 scopus 로고    scopus 로고
    • Handling class imbalance in customer churn prediction
    • Burez J., and Van den Poel D. Handling class imbalance in customer churn prediction Expert Systems with Applications 36 3 2009 4626 4636 10.1016/j.eswa.2008.05.027
    • (2009) Expert Systems with Applications , vol.36 , Issue.3 , pp. 4626-4636
    • Burez, J.1    Van Den Poel, D.2
  • 23
    • 84877656306 scopus 로고    scopus 로고
    • The effects of rewarding user engagement: The case of facebook apps
    • Claussen J., Kretschmer T., and Mayrhofer P. The effects of rewarding user engagement: The case of facebook apps Information Systems Research 24 1 2013 186 200 10.1287/isre.1120.0467
    • (2013) Information Systems Research , vol.24 , Issue.1 , pp. 186-200
    • Claussen, J.1    Kretschmer, T.2    Mayrhofer, P.3
  • 25
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C., and Vapnik V. Support-vector networks Machine Learning 20 3 1995 273 297 10.1023/A:1022627411411
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 26
    • 70449526531 scopus 로고    scopus 로고
    • Improved marketing decision making in a customer churn prediction context using generalized additive models
    • Coussement K., Benoit D.F., and Van den Poel D. Improved marketing decision making in a customer churn prediction context using generalized additive models Expert Systems with Applications 37 3 2010 2132 2143 10.1016/j.eswa.2009.07.029
    • (2010) Expert Systems with Applications , vol.37 , Issue.3 , pp. 2132-2143
    • Coussement, K.1    Benoit, D.F.2    Van Den Poel, D.3
  • 27
    • 34248524002 scopus 로고    scopus 로고
    • Churn prediction in subscription services: An application of support vector machines while comparing two parameter-selection techniques
    • Coussement K., and Van den Poel D. Churn prediction in subscription services: An application of support vector machines while comparing two parameter-selection techniques Expert Systems with Applications 34 1 2008 313 327
    • (2008) Expert Systems with Applications , vol.34 , Issue.1 , pp. 313-327
    • Coussement, K.1    Van Den Poel, D.2
  • 28
    • 58349110712 scopus 로고    scopus 로고
    • Improving customer attrition prediction by integrating emotions from client/company interaction emails and evaluating multiple classifiers
    • Coussement K., and Van den Poel D. Improving customer attrition prediction by integrating emotions from client/company interaction emails and evaluating multiple classifiers Expert Systems with Applications 36 3 2009 6127 6134 10.1016/j.eswa.2008.07.021
    • (2009) Expert Systems with Applications , vol.36 , Issue.3 , pp. 6127-6134
    • Coussement, K.1    Van Den Poel, D.2
  • 30
    • 0034457820 scopus 로고    scopus 로고
    • Automated cellular modeling and prediction on a large scale
    • Datta P., Masand B., Mani D.R., and Li B. Automated cellular modeling and prediction on a large scale Artificial Intelligence Review 14 6 2000 485 502 10.1023/A:1006643109702
    • (2000) Artificial Intelligence Review , vol.14 , Issue.6 , pp. 485-502
    • Datta, P.1    Masand, B.2    Mani, D.R.3    Li, B.4
  • 31
    • 79958004813 scopus 로고    scopus 로고
    • An empirical evaluation of rotation-based ensemble classifiers for customer churn prediction
    • De Bock K.W., and Van den Poel D. An empirical evaluation of rotation-based ensemble classifiers for customer churn prediction Expert Systems with Applications 38 10 2011 12293 12301 10.1016/j.eswa.2011.04.007
    • (2011) Expert Systems with Applications , vol.38 , Issue.10 , pp. 12293-12301
    • De Bock, K.W.1    Van Den Poel, D.2
  • 32
    • 84857651191 scopus 로고    scopus 로고
    • Reconciling performance and interpretability in customer churn prediction using ensemble learning based on generalized additive models
    • De Bock K.W., and Van den Poel D. Reconciling performance and interpretability in customer churn prediction using ensemble learning based on generalized additive models Expert Systems with Applications 39 8 2012 6816 6826
    • (2012) Expert Systems with Applications , vol.39 , Issue.8 , pp. 6816-6826
    • De Bock, K.W.1    Van Den Poel, D.2
  • 33
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demsar J. Statistical comparisons of classifiers over multiple data sets Journal of Machine Learning Research 7 2006 1 30
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 34
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • Dietterich T.G. Approximate statistical tests for comparing supervised classification learning algorithms Neural Computation 10 7 1998 1895 1923
    • (1998) Neural Computation , vol.10 , Issue.7 , pp. 1895-1923
    • Dietterich, T.G.1
  • 35
    • 0043126911 scopus 로고    scopus 로고
    • Logistic regression and artificial neural network classification models: A methodology review
    • Dreiseitl S., and Ohno-Machado L. Logistic regression and artificial neural network classification models: A methodology review Journal of Biomedical Informatics 35 5-6 2002 352 359 10.1016/S1532-0464(03)00034-0
    • (2002) Journal of Biomedical Informatics , vol.35 , Issue.5-6 , pp. 352-359
    • Dreiseitl, S.1    Ohno-Machado, L.2
  • 37
    • 34548285057 scopus 로고    scopus 로고
    • The benefits of facebook "friends": Social capital and college students' use of online social network sites
    • Ellison N.B., Steinfield C., and Lampe C. The benefits of facebook "friends": Social capital and college students' use of online social network sites Journal of Computer-Mediated Communication 12 4 2007 1
    • (2007) Journal of Computer-Mediated Communication , vol.12 , Issue.4 , pp. 1
    • Ellison, N.B.1    Steinfield, C.2    Lampe, C.3
  • 38
    • 84951118251 scopus 로고    scopus 로고
    • Facebook
    • Facebook (2013a). News feed FYI: A window into news feed. https://www. facebook.com/business/news/News-Feed-FYI-A-Window-Into-News-Feed/.
    • (2013) News Feed FYI: A Window into News Feed
  • 40
    • 84924140381 scopus 로고    scopus 로고
    • Facebook
    • Facebook (2014). Newsroom - Key facts. http://newsroom.fb.com/Key-Facts.
    • (2014) Newsroom - Key Facts
  • 42
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • Friedman J.H. Greedy function approximation: A gradient boosting machine Annals of Statistics 29 5 2001 1189 1232
    • (2001) Annals of Statistics , vol.29 , Issue.5 , pp. 1189-1232
    • Friedman, J.H.1
  • 44
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • Friedman J., Hastie T., and Tibshirani R. Regularization paths for generalized linear models via coordinate descent Journal of Statistical Software 33 1 2010 1 22
    • (2010) Journal of Statistical Software , vol.33 , Issue.1 , pp. 1-22
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 47
    • 84872105041 scopus 로고    scopus 로고
    • Modeling centrality measures in social network analysis using bi-criteria network flow optimization problems
    • Gómez D., Figueira J.R., and Eusébio A. Modeling centrality measures in social network analysis using bi-criteria network flow optimization problems European Journal of Operational Research 226 2 2013 354 365
    • (2013) European Journal of Operational Research , vol.226 , Issue.2 , pp. 354-365
    • Gómez, D.1    Figueira, J.R.2    Eusébio, A.3
  • 48
    • 0037202446 scopus 로고    scopus 로고
    • Generalized linear and generalized additive models in studies of species distributions: Setting the scene
    • Guisan A., Edwards T.C., and Hastie T. Generalized linear and generalized additive models in studies of species distributions: Setting the scene Ecological Modelling 157 2-3 2002 89 100 10.1016/S0304-3800(02)00204-1
    • (2002) Ecological Modelling , vol.157 , Issue.2-3 , pp. 89-100
    • Guisan, A.1    Edwards, T.C.2    Hastie, T.3
  • 49
    • 24144464528 scopus 로고    scopus 로고
    • Good practice in retail credit scorecard assessment
    • Hand D.J. Good practice in retail credit scorecard assessment Journal of the Operational Research Society 56 9 2005 1109 1117
    • (2005) Journal of the Operational Research Society , vol.56 , Issue.9 , pp. 1109-1117
    • Hand, D.J.1
  • 50
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (roc) curve
    • Hanley J., and Mcneil B. The meaning and use of the area under a receiver operating characteristic (roc) curve Radiology 143 1 1982 29 36
    • (1982) Radiology , vol.143 , Issue.1 , pp. 29-36
    • Hanley, J.1    McNeil, B.2
  • 51
    • 54149117233 scopus 로고    scopus 로고
    • Modeling social interactions: Identification, empirical methods and policy implications
    • Hartmann W.R., Manchanda P., Nair H., Bothner M., Dodds P., and Godes D. Modeling social interactions: Identification, empirical methods and policy implications Marketing Letters 19 3-4 2008 287 304
    • (2008) Marketing Letters , vol.19 , Issue.3-4 , pp. 287-304
    • Hartmann, W.R.1    Manchanda, P.2    Nair, H.3    Bothner, M.4    Dodds, P.5    Godes, D.6
  • 53
    • 4944228528 scopus 로고    scopus 로고
    • A practical guide to support vector classification
    • Department of Computer Science and Information Engineering, National Taiwan University Taipei 106, Taiwan
    • Hsu C.-W., Chang C.-C., and Lin C.-J. A practical guide to support vector classification Technical Report 2010 Department of Computer Science and Information Engineering, National Taiwan University Taipei 106, Taiwan
    • (2010) Technical Report
    • Hsu, C.-W.1    Chang, C.-C.2    Lin, C.-J.3
  • 54
    • 33744831465 scopus 로고    scopus 로고
    • Applying data mining to telecom churn management
    • Hung S.-Y., Yen D.C., and Wang H.-Y. Applying data mining to telecom churn management Expert Systems with Applications 31 3 2006 515 524 10.1016/j.eswa.2005.09.080
    • (2006) Expert Systems with Applications , vol.31 , Issue.3 , pp. 515-524
    • Hung, S.-Y.1    Yen, D.C.2    Wang, H.-Y.3
  • 55
    • 0347592341 scopus 로고    scopus 로고
    • An LTV model and customer segmentation based on customer value: A case study on the wireless telecommunication industry
    • Hwang H., Jung T., and Suh E. An LTV model and customer segmentation based on customer value: A case study on the wireless telecommunication industry Expert Systems with Applications 26 2 2004 181 188 10.1016/S0957-4174(03)00133-7
    • (2004) Expert Systems with Applications , vol.26 , Issue.2 , pp. 181-188
    • Hwang, H.1    Jung, T.2    Suh, E.3
  • 56
    • 84875818068 scopus 로고    scopus 로고
    • An AUC-based permutation variable importance measure for random forests
    • Janitza S., Strobl C., and Boulesteix A.-L. An AUC-based permutation variable importance measure for random forests BMC Bioinformatics 14 1 2013 119
    • (2013) BMC Bioinformatics , vol.14 , Issue.1 , pp. 119
    • Janitza, S.1    Strobl, C.2    Boulesteix, A.-L.3
  • 57
    • 29144445856 scopus 로고    scopus 로고
    • Toward a successful CRM: Variable selection, sampling, and ensemble
    • Kim Y. Toward a successful CRM: Variable selection, sampling, and ensemble Decision Support Systems 41 2 2006 542 553
    • (2006) Decision Support Systems , vol.41 , Issue.2 , pp. 542-553
    • Kim, Y.1
  • 58
    • 0029306995 scopus 로고
    • Statlog - Comparison of classification algorithms on large real-world problems
    • King R., Feng C., and Sutherland A. Statlog - Comparison of classification algorithms on large real-world problems Applied Artificial Intelligence 9 3 1995 289 333
    • (1995) Applied Artificial Intelligence , vol.9 , Issue.3 , pp. 289-333
    • King, R.1    Feng, C.2    Sutherland, A.3
  • 61
    • 22144481002 scopus 로고    scopus 로고
    • Predicting customer retention and profitability by using random forests and regression forests techniques
    • Larivière B., and Van den Poel D. Predicting customer retention and profitability by using random forests and regression forests techniques Expert Systems with Applications 29 2 2005 472 484
    • (2005) Expert Systems with Applications , vol.29 , Issue.2 , pp. 472-484
    • Larivière, B.1    Van Den Poel, D.2
  • 62
    • 33744526493 scopus 로고    scopus 로고
    • Bagging and boosting classification trees to predict churn
    • Lemmens A., and Croux C. Bagging and boosting classification trees to predict churn Journal of Marketing Research (JMR) 43 2 2006 276 286
    • (2006) Journal of Marketing Research (JMR) , vol.43 , Issue.2 , pp. 276-286
    • Lemmens, A.1    Croux, C.2
  • 63
    • 0036001755 scopus 로고    scopus 로고
    • Dynamic customer relationship management: Incorporating future considerations into the service retention decision
    • Lemon K.N., White T.B., and Winer R.S. Dynamic customer relationship management: Incorporating future considerations into the service retention decision Journal of Marketing 66 1 2002 1 14
    • (2002) Journal of Marketing , vol.66 , Issue.1 , pp. 1-14
    • Lemon, K.N.1    White, T.B.2    Winer, R.S.3
  • 64
    • 52049120331 scopus 로고    scopus 로고
    • Tastes, ties, and time: A new social network dataset using facebook.com
    • Lewis K., Kaufman J., Gonzalez M., Wimmer A., and Christakis N. Tastes, ties, and time: A new social network dataset using facebook.com Social Networks 30 4 2008 330 342
    • (2008) Social Networks , vol.30 , Issue.4 , pp. 330-342
    • Lewis, K.1    Kaufman, J.2    Gonzalez, M.3    Wimmer, A.4    Christakis, N.5
  • 65
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by randomForest
    • Liaw A., and Wiener M. Classification and regression by randomForest R News 2 3 2002 18 22
    • (2002) R News , vol.2 , Issue.3 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 66
    • 85016401039 scopus 로고    scopus 로고
    • RandomForest: Breiman and Cutler's random forests for classification and regression
    • Liaw, A. Wiener, M. (2012). randomForest: Breiman and Cutler's random forests for classification and regression. R package version 4.6-7.
    • (2012) R Package Version 4.6-7
    • Liaw, A.1    Wiener, M.2
  • 67
    • 68149172842 scopus 로고    scopus 로고
    • Domain knowledge integration in data mining using decision tables: Case studies in churn prediction
    • Lima E., Mues C., and Baesens B. Domain knowledge integration in data mining using decision tables: Case studies in churn prediction Journal of the Operational Research Society 60 8 2009 1096 1106 10.1057/jors.2008.161
    • (2009) Journal of the Operational Research Society , vol.60 , Issue.8 , pp. 1096-1106
    • Lima, E.1    Mues, C.2    Baesens, B.3
  • 71
    • 51249194645 scopus 로고
    • A logical calculus of the ideas immanent in nervous activity
    • McCulloch W., and Pitts W. A logical calculus of the ideas immanent in nervous activity Bulletin of Mathematical Biophysics 5 1943 115 133
    • (1943) Bulletin of Mathematical Biophysics , vol.5 , pp. 115-133
    • McCulloch, W.1    Pitts, W.2
  • 73
    • 84861199904 scopus 로고    scopus 로고
    • Modeling partial customer churn: On the value of first product-category purchase sequences
    • Migueis V., Van den Poel D., Camanho A., and Falcao e Cunha J. Modeling partial customer churn: On the value of first product-category purchase sequences Expert Systems with Applications 39 12 2012 11250 11256 10.1016/j.eswa.2012.03.073
    • (2012) Expert Systems with Applications , vol.39 , Issue.12 , pp. 11250-11256
    • Migueis, V.1    Van Den Poel, D.2    Camanho, A.3    Falcao Cunha, E.J.4
  • 74
    • 84870472711 scopus 로고    scopus 로고
    • Predicting partial customer churn using Markov for discrimination for modeling first purchase sequences
    • Migueis V.L., Van den Poel D., Camanho A.S., and Cunha J.F.e. Predicting partial customer churn using Markov for discrimination for modeling first purchase sequences Advances in Data Analysis and Classification 6 4 2012 337 353 10.1007/s11634-012-0121-3
    • (2012) Advances in Data Analysis and Classification , vol.6 , Issue.4 , pp. 337-353
    • Migueis, V.L.1    Van Den Poel, D.2    Camanho, A.S.3    Cunha, J.F.E.4
  • 75
    • 0034187076 scopus 로고    scopus 로고
    • Predicting subscriber dissatisfaction and improving retention in the wireless telecommunications industry
    • Mozer M., Wolniewicz R., Grimes D., Johnson E., and Kaushansky H. Predicting subscriber dissatisfaction and improving retention in the wireless telecommunications industry IEEE Transactions on Neural Networks 11 3 2000 690 696 10.1109/72.846740
    • (2000) IEEE Transactions on Neural Networks , vol.11 , Issue.3 , pp. 690-696
    • Mozer, M.1    Wolniewicz, R.2    Grimes, D.3    Johnson, E.4    Kaushansky, H.5
  • 77
    • 33744509693 scopus 로고    scopus 로고
    • Defection detection: Measuring and understanding the predictive accuracy of customer churn models
    • Neslin S.A., Gupta S., Kamakura W., Junxiang L., and Mason C.H. Defection detection: Measuring and understanding the predictive accuracy of customer churn models Journal of Marketing Research (JMR) 43 2 2006 204 211
    • (2006) Journal of Marketing Research (JMR) , vol.43 , Issue.2 , pp. 204-211
    • Neslin, S.A.1    Gupta, S.2    Kamakura, W.3    Junxiang, L.4    Mason, C.H.5
  • 78
    • 56349094668 scopus 로고    scopus 로고
    • Application of data mining techniques in customer relationship management: A literature review and classification
    • Ngai E., Xiu L., and Chau D. Application of data mining techniques in customer relationship management: A literature review and classification Expert Systems with Applications 36 2 2009 2592 2602 10.1016/j.eswa.2008.02.021
    • (2009) Expert Systems with Applications , vol.36 , Issue.2 , pp. 2592-2602
    • Ngai, E.1    Xiu, L.2    Chau, D.3
  • 79
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparison to regularized likelihood methods
    • MIT Press Cambridge, MA
    • Platt J. Probabilistic outputs for support vector machines and comparison to regularized likelihood methods Advances in Large Margin Classifiers 2000 MIT Press Cambridge, MA
    • (2000) Advances in Large Margin Classifiers
    • Platt, J.1
  • 80
    • 33749540373 scopus 로고    scopus 로고
    • Incorporating sequential information into traditional classification models by using an element/position-sensitive SAM
    • Prinzie A., and Van den Poel D. Incorporating sequential information into traditional classification models by using an element/position-sensitive SAM Decision Support Systems 42 2 2006 508 526 10.1016/j.dss.2005.02.004
    • (2006) Decision Support Systems , vol.42 , Issue.2 , pp. 508-526
    • Prinzie, A.1    Van Den Poel, D.2
  • 81
    • 37349073894 scopus 로고    scopus 로고
    • Random forests for multiclass classification: Random MultiNomial logit
    • Prinzie A., and Van den Poel D. Random forests for multiclass classification: Random MultiNomial logit Expert Systems with Applications 34 3 2008 1721 1732
    • (2008) Expert Systems with Applications , vol.34 , Issue.3 , pp. 1721-1732
    • Prinzie, A.1    Van Den Poel, D.2
  • 82
    • 79958862968 scopus 로고    scopus 로고
    • Modeling complex longitudinal consumer behavior with dynamic Bayesian networks: An acquisition pattern analysis application
    • Prinzie A., and Van den Poel D. Modeling complex longitudinal consumer behavior with dynamic Bayesian networks: An acquisition pattern analysis application Journal of Intelligent Information Systems 36 3 2011 283 304 10.1007/s10844-009-0106-7
    • (2011) Journal of Intelligent Information Systems , vol.36 , Issue.3 , pp. 283-304
    • Prinzie, A.1    Van Den Poel, D.2
  • 84
    • 84930474007 scopus 로고    scopus 로고
    • Stats: R statistical functions
    • R Core Team Vienna, Austria, R package version 3.1.2
    • R Core Team (2013). stats: R statistical functions. R Foundation for Statistical Computing, Vienna, Austria, R package version 3.1.2.
    • (2013) R Foundation for Statistical Computing
  • 86
    • 79960563575 scopus 로고    scopus 로고
    • NNET: Feed-forward neural networks and multinomial log-linear models
    • Ripley, B. (2013). NNET: Feed-forward neural networks and multinomial log-linear models. R package version 7.3-8.
    • (2013) R Package Version 7.3-8
    • Ripley, B.1
  • 87
    • 0030299447 scopus 로고    scopus 로고
    • The value of purchase history data in target marketing
    • Rossi P.E., McCulloch R.E., and Allenby G.M. The value of purchase history data in target marketing Marketing Science 15 4 1996 321 340 10.1287/mksc.15.4.321
    • (1996) Marketing Science , vol.15 , Issue.4 , pp. 321-340
    • Rossi, P.E.1    McCulloch, R.E.2    Allenby, G.M.3
  • 88
    • 0033748604 scopus 로고    scopus 로고
    • An analysis of customer retention and insurance claim patterns using data mining: A case study
    • Smith K.A., Willis R.J., and Brooks M. An analysis of customer retention and insurance claim patterns using data mining: A case study Journal of the Operational Research Society 51 5 2000 532 541 10.1057/palgrave.jors.2600941
    • (2000) Journal of the Operational Research Society , vol.51 , Issue.5 , pp. 532-541
    • Smith, K.A.1    Willis, R.J.2    Brooks, M.3
  • 89
    • 0026396714 scopus 로고
    • Maximum likelihood training of connectionist models: Comparison with least squares back-propagation and logistic regression
    • Spackman K.A. Maximum likelihood training of connectionist models: Comparison with least squares back-propagation and logistic regression Proceedings of the annual symposium on computer application in medical care 1991 285 289
    • (1991) Proceedings of the Annual Symposium on Computer Application in Medical Care , pp. 285-289
    • Spackman, K.A.1
  • 90
    • 84865034916 scopus 로고    scopus 로고
    • Predicting e-commerce company success by mining the text of its publicly-accessible website
    • Thorleuchter D., and Van den Poel D. Predicting e-commerce company success by mining the text of its publicly-accessible website Expert Systems with Applications 39 17 2012 13026 13034
    • (2012) Expert Systems with Applications , vol.39 , Issue.17 , pp. 13026-13034
    • Thorleuchter, D.1    Van Den Poel, D.2
  • 91
    • 84864935139 scopus 로고    scopus 로고
    • Analyzing existing customers' websites to improve the customer acquisition process as well as the profitability prediction in b-to-b marketing
    • Thorleuchter D., Van den Poel D., and Prinzie A. Analyzing existing customers' websites to improve the customer acquisition process as well as the profitability prediction in b-to-b marketing Expert Systems with Applications 39 3 2012 2597 2605 10.1016/j.eswa.2011.08.115
    • (2012) Expert Systems with Applications , vol.39 , Issue.3 , pp. 2597-2605
    • Thorleuchter, D.1    Van Den Poel, D.2    Prinzie, A.3
  • 93
    • 1842478892 scopus 로고    scopus 로고
    • Customer attrition analysis for financial services using proportional hazard models
    • Van den Poel D., and Lariviere B. Customer attrition analysis for financial services using proportional hazard models European Journal of Operational Research 157 1 2004 196 217 10.1016/S0377-2217(03)00069-9
    • (2004) European Journal of Operational Research , vol.157 , Issue.1 , pp. 196-217
    • Van Den Poel, D.1    Lariviere, B.2
  • 96
    • 78049530278 scopus 로고    scopus 로고
    • Building comprehensible customer churn prediction models with advanced rule induction techniques
    • Verbeke W., Martens D., Mues C., and Baesens B. Building comprehensible customer churn prediction models with advanced rule induction techniques Expert Systems with Applications 38 3 2011 2354 2364 10.1016/j.eswa.2010.08.023
    • (2011) Expert Systems with Applications , vol.38 , Issue.3 , pp. 2354-2364
    • Verbeke, W.1    Martens, D.2    Mues, C.3    Baesens, B.4
  • 97
    • 79551589464 scopus 로고    scopus 로고
    • Improving campaign success rate by tailoring donation requests along the donor lifecycle
    • Verhaert G.A., and Van den Poel D. Improving campaign success rate by tailoring donation requests along the donor lifecycle Journal of Interactive Marketing 25 1 2011 51 63 10.1016/j.intmar.2010.09.001
    • (2011) Journal of Interactive Marketing , vol.25 , Issue.1 , pp. 51-63
    • Verhaert, G.A.1    Van Den Poel, D.2
  • 98
    • 33644847339 scopus 로고    scopus 로고
    • A primer on kernel methods
    • B. Schölkopf, K. Tsuda, J.-P. Vert, Computational Molecular Biology MIT Press
    • Vert J.-P., Tsuda K., and Schölkopf B. A primer on kernel methods B. Schölkopf, K. Tsuda, J.-P. Vert, Kernel methods in computational biology Computational Molecular Biology 2004 MIT Press 35 70
    • (2004) Kernel Methods in Computational Biology , pp. 35-70
    • Vert, J.-P.1    Tsuda, K.2    Schölkopf, B.3
  • 99
    • 21844497348 scopus 로고
    • Using survey data to predict adoption and switching for services
    • Weerahandi S., and Moitra S. Using survey data to predict adoption and switching for services Journal of Marketing Research 32 1 1995 85 96 10.2307/3152113
    • (1995) Journal of Marketing Research , vol.32 , Issue.1 , pp. 85-96
    • Weerahandi, S.1    Moitra, S.2
  • 100
    • 0036696364 scopus 로고    scopus 로고
    • Turning telecommunications call details to churn prediction: A data mining approach
    • Wei C.-P., and Chiu I.-T. Turning telecommunications call details to churn prediction: A data mining approach Expert Systems with Applications 23 2 2002 103 112 10.1016/S0957-4174(02)00030-1
    • (2002) Expert Systems with Applications , vol.23 , Issue.2 , pp. 103-112
    • Wei, C.-P.1    Chiu, I.-T.2
  • 101
    • 58349116623 scopus 로고    scopus 로고
    • Customer churn prediction using improved balanced random forests
    • Xie Y., Li X., Ngai E., and Ying W. Customer churn prediction using improved balanced random forests Expert Systems with Applications 36 3 2009 5445 5449 10.1016/j.eswa.2008.06.121
    • (2009) Expert Systems with Applications , vol.36 , Issue.3 , pp. 5445-5449
    • Xie, Y.1    Li, X.2    Ngai, E.3    Ying, W.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.