메뉴 건너뛰기




Volumn 36, Issue 3 PART 1, 2009, Pages 5445-5449

Customer churn prediction using improved balanced random forests

Author keywords

Churn prediction; Imbalanced data; Random forests

Indexed keywords

DECISION TREES; ITERATIVE METHODS; NEURAL NETWORKS; SALES; SUPPORT VECTOR MACHINES;

EID: 58349116623     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2008.06.121     Document Type: Article
Times cited : (326)

References (23)
  • 1
    • 0345872225 scopus 로고    scopus 로고
    • A novel evolutionary data mining algorithm with applications to churn prediction
    • Au W.H., Chan K., and Yao X. A novel evolutionary data mining algorithm with applications to churn prediction. IEEE Transactions on Evolutionary Computation 7 6 (2003) 532-545
    • (2003) IEEE Transactions on Evolutionary Computation , vol.7 , Issue.6 , pp. 532-545
    • Au, W.H.1    Chan, K.2    Yao, X.3
  • 2
  • 3
    • 1442305742 scopus 로고    scopus 로고
    • Customer base analysis: Partial defection of behaviorally-loyal clients in a non-contractual FMCG retail setting
    • Buckinx W., and Van den Poel D. Customer base analysis: Partial defection of behaviorally-loyal clients in a non-contractual FMCG retail setting. European Journal of Operational Research 154 2 (2005) 508-523
    • (2005) European Journal of Operational Research , vol.154 , Issue.2 , pp. 508-523
    • Buckinx, W.1    Van den Poel, D.2
  • 4
    • 33750429921 scopus 로고    scopus 로고
    • CRM at a pay-TV company: Using analytical models to reduce customer attrition by targeted marketing for subscription services
    • Burez J., and Van den Poel D. CRM at a pay-TV company: Using analytical models to reduce customer attrition by targeted marketing for subscription services. Expert Systems with Applications 32 2 (2007) 277-288
    • (2007) Expert Systems with Applications , vol.32 , Issue.2 , pp. 277-288
    • Burez, J.1    Van den Poel, D.2
  • 5
    • 58349111788 scopus 로고    scopus 로고
    • Chandar, M., Laha, A., & Krishna, P. (2006). Modeling churn behavior of bank customers using predictive data mining techniques. In National conference on soft computing techniques for engineering applications (SCT-2006), March 24-26, 2006.
    • Chandar, M., Laha, A., & Krishna, P. (2006). Modeling churn behavior of bank customers using predictive data mining techniques. In National conference on soft computing techniques for engineering applications (SCT-2006), March 24-26, 2006.
  • 6
    • 58349117817 scopus 로고    scopus 로고
    • Chen, C., Liaw, A., & Breiman L. (2004). Using random forests to learn imbalanced data, Technical Report 666. Statistics Department of University of California at Berkeley.
    • Chen, C., Liaw, A., & Breiman L. (2004). Using random forests to learn imbalanced data, Technical Report 666. Statistics Department of University of California at Berkeley.
  • 7
    • 0141990810 scopus 로고    scopus 로고
    • Goal-oriented sequential pattern for network banking churn analysis
    • Chiang D., Wang Y., Lee S., and Lin C. Goal-oriented sequential pattern for network banking churn analysis. Expert Systems with Applications 25 3 (2003) 293-302
    • (2003) Expert Systems with Applications , vol.25 , Issue.3 , pp. 293-302
    • Chiang, D.1    Wang, Y.2    Lee, S.3    Lin, C.4
  • 8
    • 34248524002 scopus 로고    scopus 로고
    • Churn prediction in subscription services: An application of support vector machines while comparing two parameter-selection techniques
    • Coussement K., and Van den Poel D. Churn prediction in subscription services: An application of support vector machines while comparing two parameter-selection techniques. Expert Systems with Applications 34 1 (2008) 313-327
    • (2008) Expert Systems with Applications , vol.34 , Issue.1 , pp. 313-327
    • Coussement, K.1    Van den Poel, D.2
  • 11
    • 84867577175 scopus 로고    scopus 로고
    • Elkan, C. (2001). The foundations of cost-sensitive learning. In Proceedings of the 17th international joint conference on artificial intelligence (pp. 973-978).
    • Elkan, C. (2001). The foundations of cost-sensitive learning. In Proceedings of the 17th international joint conference on artificial intelligence (pp. 973-978).
  • 12
    • 2942566200 scopus 로고    scopus 로고
    • Investigating the role of product features in preventing customer churn by using survival analysis and choice modeling: The case of financial services
    • Lariviere B., and Van den Poel D. Investigating the role of product features in preventing customer churn by using survival analysis and choice modeling: The case of financial services. Expert Systems with Applications 27 (2004) 277-285
    • (2004) Expert Systems with Applications , vol.27 , pp. 277-285
    • Lariviere, B.1    Van den Poel, D.2
  • 13
    • 22144481002 scopus 로고    scopus 로고
    • Predicting customer retention and profitability by using random forests and regression forests techniques
    • Lariviere B., and Van den Poel D. Predicting customer retention and profitability by using random forests and regression forests techniques. Expert Systems with Applications 29 (2005) 472-484
    • (2005) Expert Systems with Applications , vol.29 , pp. 472-484
    • Lariviere, B.1    Van den Poel, D.2
  • 14
    • 58349111444 scopus 로고    scopus 로고
    • Lemmens, A., & Croux, C. (2003). Bagging and boosting classification trees to predict churn. DTEW Research Report 0361.
    • Lemmens, A., & Croux, C. (2003). Bagging and boosting classification trees to predict churn. DTEW Research Report 0361.
  • 15
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by random forest
    • Liaw A., and Wiener M. Classification and regression by random forest. The Newsletter of the R. Project 2 3 (2002) 18-22
    • (2002) The Newsletter of the R. Project , vol.2 , Issue.3 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 16
    • 40549103920 scopus 로고    scopus 로고
    • Bayesian network classifier and its application in CRM
    • Luo N., and Mu Z. Bayesian network classifier and its application in CRM. Computer Application 24 3 (2004) 79-81
    • (2004) Computer Application , vol.24 , Issue.3 , pp. 79-81
    • Luo, N.1    Mu, Z.2
  • 19
    • 58349087566 scopus 로고    scopus 로고
    • Neslin, S., Gupta, S., Kamakura, W., Lu, J., & Mason, C. (2004). Defection detection: improving predictive accuracy of customer churn models. Working Paper, Teradata Center at Duke University.
    • Neslin, S., Gupta, S., Kamakura, W., Lu, J., & Mason, C. (2004). Defection detection: improving predictive accuracy of customer churn models. Working Paper, Teradata Center at Duke University.
  • 21
    • 58349102861 scopus 로고    scopus 로고
    • Scholkopf, B., Platt, J. C., Shawe, J. T., Smola, A. J., & Williamson, R. C. (1999). Estimation the support of a high-dimensional distribution. Microsoft Research, Technical Report MSR-TR-99-87.
    • Scholkopf, B., Platt, J. C., Shawe, J. T., Smola, A. J., & Williamson, R. C. (1999). Estimation the support of a high-dimensional distribution. Microsoft Research, Technical Report MSR-TR-99-87.
  • 22
    • 58349110247 scopus 로고    scopus 로고
    • Putting a quality edge to digital wireless networks
    • Shah T. Putting a quality edge to digital wireless networks. Cellular Business 13 (1996) 82-90
    • (1996) Cellular Business , vol.13 , pp. 82-90
    • Shah, T.1
  • 23
    • 26944455147 scopus 로고    scopus 로고
    • Customer churn prediction using improved one-class support vector machine
    • Zhao Y., Li B., Li X., Liu W., and Ren S. Customer churn prediction using improved one-class support vector machine. Lecture Notes in Computer Science 3584 (2005) 300-306
    • (2005) Lecture Notes in Computer Science , vol.3584 , pp. 300-306
    • Zhao, Y.1    Li, B.2    Li, X.3    Liu, W.4    Ren, S.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.