메뉴 건너뛰기




Volumn 363, Issue , 2015, Pages 193-226

Chemical and biological tools for the preparation of modified histone proteins

Author keywords

Chemical ligation; Chromatin; Expanded genetic code; Histones; Nucleosomes; Posttranslational modifications; Protein chemistry

Indexed keywords

CHROMATIN; HISTONE;

EID: 84929628382     PISSN: 03401022     EISSN: None     Source Type: Book Series    
DOI: 10.1007/128_2015_629     Document Type: Article
Times cited : (14)

References (141)
  • 1
    • 0036307707 scopus 로고    scopus 로고
    • Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Å resolution
    • Davey CA et al (2002) Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Å resolution. J Mol Biol 319:1097–1113
    • (2002) J Mol Biol , vol.319 , pp. 1097-1113
    • Davey, C.A.1
  • 2
    • 1842411320 scopus 로고    scopus 로고
    • Crystal structure of the nucleosome core particle at 2.8 Å resolution
    • Luger K et al (1997) Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389:251–260
    • (1997) Nature , vol.389 , pp. 251-260
    • Luger, K.1
  • 3
    • 84863638252 scopus 로고    scopus 로고
    • Histone H3 localizes to the centromeric DNA in budding yeast
    • Lochmann B, Ivanov D (2012) Histone H3 localizes to the centromeric DNA in budding yeast. PLoS Geneti 8:e1002739
    • (2012) Plos Geneti , vol.8
    • Lochmann, B.1    Ivanov, D.2
  • 4
    • 0036531895 scopus 로고    scopus 로고
    • Histone H2A variant H2AX and H2AZ
    • Redon C et al (2002) Histone H2A variant H2AX and H2AZ. Curr Opin Genet Dev 12:162–169
    • (2002) Curr Opin Genet Dev , vol.12 , pp. 162-169
    • Redon, C.1
  • 5
    • 0038143321 scopus 로고    scopus 로고
    • Accumulation of checkpoint protein 53BP1 at DNA breaks involves its binding to phosphorylated histone H2AX
    • Ward IM et al (2003) Accumulation of checkpoint protein 53BP1 at DNA breaks involves its binding to phosphorylated histone H2AX. J Biol Chem 278:19579–19582
    • (2003) J Biol Chem , vol.278 , pp. 19579-19582
    • Ward, I.M.1
  • 6
    • 2642515598 scopus 로고    scopus 로고
    • A new fluorescence resonance energy transfer approach demonstrates that the histone variant H2AZ stabilizes the histone octamer within the nucleosome
    • Park YJ et al (2004) A new fluorescence resonance energy transfer approach demonstrates that the histone variant H2AZ stabilizes the histone octamer within the nucleosome. J Biol Chem 279:24274–24282
    • (2004) J Biol Chem , vol.279 , pp. 24274-24282
    • Park, Y.J.1
  • 7
    • 0035839136 scopus 로고    scopus 로고
    • Translating the histone code
    • Jenuwein T (2001) Translating the histone code. Science 293:1074–1080
    • (2001) Science , vol.293 , pp. 1074-1080
    • Jenuwein, T.1
  • 8
    • 0034610814 scopus 로고    scopus 로고
    • The language of covalent histone modifications
    • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45
    • (2000) Nature , vol.403 , pp. 41-45
    • Strahl, B.D.1    Allis, C.D.2
  • 9
    • 84904094197 scopus 로고    scopus 로고
    • Large scale analysis of co-existing post-translational modifications in histone tails reveals global fine structure of cross-talk
    • Schwammle V et al (2014) Large scale analysis of co-existing post-translational modifications in histone tails reveals global fine structure of cross-talk. Mol Cell Proteomics 13:1855–1865
    • (2014) Mol Cell Proteomics , vol.13 , pp. 1855-1865
    • Schwammle, V.1
  • 10
    • 84865337735 scopus 로고    scopus 로고
    • Examining histone posttranslational modification patterns by highresolution mass spectrometry
    • Lin S, Garcia BA (2012) Examining histone posttranslational modification patterns by highresolution mass spectrometry. Methods Enzymol 512:3–28
    • (2012) Methods Enzymol , vol.512 , pp. 3-28
    • Lin, S.1    Garcia, B.A.2
  • 11
    • 80052942443 scopus 로고    scopus 로고
    • Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification
    • Tan M et al (2011) Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146:1016–1028
    • (2011) Cell , vol.146 , pp. 1016-1028
    • Tan, M.1
  • 12
    • 84871957612 scopus 로고    scopus 로고
    • Biotinylation of lysine 16 in histone H4 contributes toward nucleosome condensation
    • Singh MP, Wijeratne SSK, Zempleni J (2013) Biotinylation of lysine 16 in histone H4 contributes toward nucleosome condensation. Arch Biochem Biophys 529:105–111
    • (2013) Arch Biochem Biophys , vol.529 , pp. 105-111
    • Singh, M.P.1    Wijeratne, S.2    Zempleni, J.3
  • 13
    • 84917690836 scopus 로고    scopus 로고
    • Sumoylated human histone H4 prevents chromatin compaction by inhibiting long-range internucleosomal interactions
    • Dhall A et al (2014) Sumoylated human histone H4 prevents chromatin compaction by inhibiting long-range internucleosomal interactions. J Biol Chem 289:33827–33837
    • (2014) J Biol Chem , vol.289 , pp. 33827-33837
    • Dhall, A.1
  • 14
    • 78650447665 scopus 로고    scopus 로고
    • Beta-N-acetylglucosamine (O-GlcNAc) is part of the histone code
    • Sakabe K, Wang Z, Hart GW (2010) Beta-N-acetylglucosamine (O-GlcNAc) is part of the histone code. Proc Natl Acad Sci U S A 107:19915–19920
    • (2010) Proc Natl Acad Sci U S A , vol.107 , pp. 19915-19920
    • Sakabe, K.1    Wang, Z.2    Hart, G.W.3
  • 15
    • 84859836380 scopus 로고    scopus 로고
    • Chromatin as an expansive canvas for chemical biology
    • Fierz B, Muir TW (2012) Chromatin as an expansive canvas for chemical biology. Nat Chem Biol 8:417–427
    • (2012) Nat Chem Biol , vol.8 , pp. 417-427
    • Fierz, B.1    Muir, T.W.2
  • 16
    • 84904070796 scopus 로고    scopus 로고
    • Engineering chromatin states: Chemical and synthetic biology approaches to investigate histone modification function
    • Pick H, Kilic S, Fierz B (2014) Engineering chromatin states: chemical and synthetic biology approaches to investigate histone modification function. Biochim Biophys Acta 1839:644–656
    • (2014) Biochim Biophys Acta , vol.1839 , pp. 644-656
    • Pick, H.1    Kilic, S.2    Fierz, B.3
  • 17
    • 84896731239 scopus 로고    scopus 로고
    • Synthetic chromatin approaches to probe the writing and erasing of histone modifications
    • Fierz B (2014) Synthetic chromatin approaches to probe the writing and erasing of histone modifications. ChemMedChem 9:495–504
    • (2014) Chemmedchem , vol.9 , pp. 495-504
    • Fierz, B.1
  • 18
    • 78751534193 scopus 로고    scopus 로고
    • A modified epigenetics toolbox to study histone modifications on the nucleosome core
    • Frederiks F et al (2011) A modified epigenetics toolbox to study histone modifications on the nucleosome core. ChemBioChem 12:308–313
    • (2011) Chembiochem , vol.12 , pp. 308-313
    • Frederiks, F.1
  • 19
    • 33845880445 scopus 로고    scopus 로고
    • Global analysis of functional surfaces of core histones with comprehensive point mutants
    • Matsubara K et al (2007) Global analysis of functional surfaces of core histones with comprehensive point mutants. Genes Cells 12:13–33
    • (2007) Genes Cells , vol.12 , pp. 13-33
    • Matsubara, K.1
  • 20
    • 27644467857 scopus 로고    scopus 로고
    • Insights into the role of histone H3 and histone H4 core modifiable residues in Saccharomyces cerevisiae
    • Hyland EM et al (2005) Insights into the role of histone H3 and histone H4 core modifiable residues in Saccharomyces cerevisiae. Mol Cell Biol 25:10060–10070
    • (2005) Mol Cell Biol , vol.25 , pp. 10060-10070
    • Hyland, E.M.1
  • 21
    • 0033039285 scopus 로고    scopus 로고
    • Preparation of nucleosome core particle from recombinant histones
    • Luger K, Rechsteiner TJ, Richmond TJ (1999) Preparation of nucleosome core particle from recombinant histones. Methods Enzymol 304:1–19
    • (1999) Methods Enzymol , vol.304 , pp. 1-19
    • Luger, K.1    Rechsteiner, T.J.2    Richmond, T.J.3
  • 22
    • 77953727152 scopus 로고    scopus 로고
    • Structural characterization of H3K56Q nucleosomes and nucleosomal arrays
    • Watanabe S et al (2010) Structural characterization of H3K56Q nucleosomes and nucleosomal arrays. Biochim Biophys Acta 1799:480–486
    • (2010) Biochim Biophys Acta , vol.1799 , pp. 480-486
    • Watanabe, S.1
  • 23
    • 1542320757 scopus 로고    scopus 로고
    • Crystal structures of histone Sin mutant nucleosomes reveal altered protein-DNA interactions
    • Muthurajan UM et al (2004) Crystal structures of histone Sin mutant nucleosomes reveal altered protein-DNA interactions. EMBO 23:260–270
    • (2004) EMBO , vol.23 , pp. 260-270
    • Muthurajan, U.M.1
  • 24
    • 80052459066 scopus 로고    scopus 로고
    • Comprehensive structural analysis of mutant nucleosomes containing lysine to glutamine (KQ) substitutions in the H3 and H4 histone-fold domains
    • Iwasaki W et al (2011) Comprehensive structural analysis of mutant nucleosomes containing lysine to glutamine (KQ) substitutions in the H3 and H4 histone-fold domains. Biochemistry 50:7822–7832
    • (2011) Biochemistry , vol.50 , pp. 7822-7832
    • Iwasaki, W.1
  • 25
    • 79958196780 scopus 로고    scopus 로고
    • Differential contributions of histone H3 and H4 residues to heterochromatin structure
    • Yu Q et al (2011) Differential contributions of histone H3 and H4 residues to heterochromatin structure. Genetics 188:291–308
    • (2011) Genetics , vol.188 , pp. 291-308
    • Yu, Q.1
  • 26
    • 37549023859 scopus 로고    scopus 로고
    • Acetylation mimics within individual core histone tail domains indicate distinct roles in regulating the stability of higher-order chromatin structure
    • Wang X, Hayes JJ (2008) Acetylation mimics within individual core histone tail domains indicate distinct roles in regulating the stability of higher-order chromatin structure. Mol Cell Biol 28:227–236
    • (2008) Mol Cell Biol , vol.28 , pp. 227-236
    • Wang, X.1    Hayes, J.J.2
  • 27
    • 79953148278 scopus 로고    scopus 로고
    • The effects of histone H4 tail acetylations on cation-induced chromatin folding and self-association
    • Allahverdi A et al (2010) The effects of histone H4 tail acetylations on cation-induced chromatin folding and self-association. Nucleic Acids Res 39:1680–1691
    • (2010) Nucleic Acids Res , vol.39 , pp. 1680-1691
    • Allahverdi, A.1
  • 28
    • 69949176722 scopus 로고    scopus 로고
    • Acetylation of histone H3 at the nucleosome dyad alters DNA-histone binding
    • Manohar M et al (2009) Acetylation of histone H3 at the nucleosome dyad alters DNA-histone binding. J Biol Chem 284:23312–23321
    • (2009) J Biol Chem , vol.284 , pp. 23312-23321
    • Manohar, M.1
  • 29
    • 79961231750 scopus 로고    scopus 로고
    • Phosphorylation of histone H3(T118) alters nucleosome dynamics and remodeling
    • North JA et al (2011) Phosphorylation of histone H3(T118) alters nucleosome dynamics and remodeling. Nucleic Acids Res 39:6465–6474
    • (2011) Nucleic Acids Res , vol.39 , pp. 6465-6474
    • North, J.A.1
  • 30
    • 84899876816 scopus 로고    scopus 로고
    • Histone H3 phosphorylation near the nucleosome dyad alters chromatin structure
    • North JA et al (2014) Histone H3 phosphorylation near the nucleosome dyad alters chromatin structure. Nucleic Acids Res 42:4922–4933
    • (2014) Nucleic Acids Res , vol.42 , pp. 4922-4933
    • North, J.A.1
  • 31
    • 79953719035 scopus 로고    scopus 로고
    • Preparation of fully synthetic histone H3 reveals that acetyl-lysine 56 facilitates protein binding within nucleosomes
    • Shimko JC et al (2011) Preparation of fully synthetic histone H3 reveals that acetyl-lysine 56 facilitates protein binding within nucleosomes. J Mol Biol 408:187–204
    • (2011) J Mol Biol , vol.408 , pp. 187-204
    • Shimko, J.C.1
  • 32
    • 70349765673 scopus 로고    scopus 로고
    • A method for genetically installing site-specific acetylation in recombinant histones defines the effects of H3 K56 acetylation
    • Neumann H et al (2009) A method for genetically installing site-specific acetylation in recombinant histones defines the effects of H3 K56 acetylation. Mol Cell 36:153–163
    • (2009) Mol Cell , vol.36 , pp. 153-163
    • Neumann, H.1
  • 33
    • 22444448143 scopus 로고    scopus 로고
    • A role for cell-cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response
    • Masumoto H et al (2005) A role for cell-cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response. Nature 436:294–298
    • (2005) Nature , vol.436 , pp. 294-298
    • Masumoto, H.1
  • 34
    • 77953643054 scopus 로고    scopus 로고
    • Adding new chemistries to the genetic code
    • Liu CC, Schultz PG (2010) Adding new chemistries to the genetic code. Annu Rev Biochem 79:413–444
    • (2010) Annu Rev Biochem , vol.79 , pp. 413-444
    • Liu, C.C.1    Schultz, P.G.2
  • 35
    • 84900420574 scopus 로고    scopus 로고
    • Expanding and reprogramming the genetic code of cells and animals
    • Chin JW (2014) Expanding and reprogramming the genetic code of cells and animals. Annu Rev Biochem 83:379–408
    • (2014) Annu Rev Biochem , vol.83 , pp. 379-408
    • Chin, J.W.1
  • 36
    • 0037165964 scopus 로고    scopus 로고
    • A new UAG-encoded residue in the structure of a methanogen methyltransferase
    • Hao B et al (2002) A new UAG-encoded residue in the structure of a methanogen methyltransferase. Science 296:1462–1466
    • (2002) Science , vol.296 , pp. 1462-1466
    • Hao, B.1
  • 37
    • 67650713930 scopus 로고    scopus 로고
    • The chemical biology of protein phosphorylation
    • Tarrant MK, Cole PA (2009) The chemical biology of protein phosphorylation. Annu Rev Biochem 78:797–825
    • (2009) Annu Rev Biochem , vol.78 , pp. 797-825
    • Tarrant, M.K.1    Cole, P.A.2
  • 38
    • 84878924943 scopus 로고    scopus 로고
    • Scratching the (Lateral) surface of chromatin regulation by histone modifications
    • Tropberger P, Schneider R (2013) Scratching the (lateral) surface of chromatin regulation by histone modifications. Nat Struct Mol Biol 20:657–661
    • (2013) Nat Struct Mol Biol , vol.20 , pp. 657-661
    • Tropberger, P.1    Schneider, R.2
  • 39
    • 84898765622 scopus 로고    scopus 로고
    • Acetylation of histone H3 at lysine 64 regulates nucleosome dynamics and facilitates transcription
    • Di Cerbo V et al. (2014) Acetylation of histone H3 at lysine 64 regulates nucleosome dynamics and facilitates transcription. Elife 3:e01632
    • (2014) Elife , vol.3
    • Di Cerbo, V.1
  • 40
    • 78049412986 scopus 로고    scopus 로고
    • Genetically directing ɛ-N,N-dimethyl-l-lysine in recombinant histones
    • Nguyen DP et al (2010) Genetically directing ɛ-N,N-dimethyl-l-lysine in recombinant histones. Chem Biol 17:1072–1076
    • (2010) Chem Biol , vol.17 , pp. 1072-1076
    • Nguyen, D.P.1
  • 41
    • 78650101840 scopus 로고    scopus 로고
    • A genetically encoded photocaged Nε-methyl-l-lysine
    • Wang Y-S et al (2010) A genetically encoded photocaged Nε-methyl-l-lysine. Mol BioSyst 6:1557
    • (2010) Mol Biosyst , vol.6 , pp. 1557
    • Wang, Y.-S.1
  • 42
    • 84861163510 scopus 로고    scopus 로고
    • Lysine succinylation and lysine malonylation in histones
    • Xie Z et al (2012) Lysine succinylation and lysine malonylation in histones. Mol Cell Proteomics 11:100–107
    • (2012) Mol Cell Proteomics , vol.11 , pp. 100-107
    • Xie, Z.1
  • 43
    • 84870906814 scopus 로고    scopus 로고
    • Synthesis of ε-N-propionyl-, ε-N-butyryl-, and ε-Ncrotonyl- lysine containing histone H3 using the pyrrolysine system
    • Gattner MJ, Vrabel M, Carell T (2013) Synthesis of ε-N-propionyl-, ε-N-butyryl-, and ε-Ncrotonyl- lysine containing histone H3 using the pyrrolysine system. Chem Commun 49:379
    • (2013) Chem Commun , vol.49 , pp. 379
    • Gattner, M.J.1    Vrabel, M.2    Carell, T.3
  • 44
    • 84863837242 scopus 로고    scopus 로고
    • Site-specific incorporation of ε-N-crotonyllysine into histones
    • Kim CH et al (2012) Site-specific incorporation of ε-N-crotonyllysine into histones. Angew Chem Int Ed 51:7246–7249
    • (2012) Angew Chem Int Ed , vol.51 , pp. 7246-7249
    • Kim, C.H.1
  • 45
    • 70349754425 scopus 로고    scopus 로고
    • Dual native chemical ligation at lysine
    • Yang R et al (2009) Dual native chemical ligation at lysine. JACS Commun 131:13592–13593
    • (2009) JACS Commun , vol.131 , pp. 13592-13593
    • Yang, R.1
  • 46
    • 70449571896 scopus 로고    scopus 로고
    • A pyrrolysine analogue for site-specific protein ubiquitination
    • Li X et al (2009) A pyrrolysine analogue for site-specific protein ubiquitination. Angew Chem Int Ed 48:9184–9187
    • (2009) Angew Chem Int Ed , vol.48 , pp. 9184-9187
    • Li, X.1
  • 47
    • 84903548331 scopus 로고    scopus 로고
    • Native chemical ubiquitination using a genetically incorporated azidonorleucine
    • Yang R et al (2014) Native chemical ubiquitination using a genetically incorporated azidonorleucine. Chem Commun 50:7971
    • (2014) Chem Commun , vol.50 , pp. 7971
    • Yang, R.1
  • 48
    • 52049083084 scopus 로고    scopus 로고
    • Site-specific incorporation of methyl- and acetyl-lysine analogues into recombinant proteins
    • Guo J et al (2008) Site-specific incorporation of methyl- and acetyl-lysine analogues into recombinant proteins. Angew Chem Int Ed 47:6399–6401
    • (2008) Angew Chem Int Ed , vol.47 , pp. 6399-6401
    • Guo, J.1
  • 49
    • 84863522509 scopus 로고    scopus 로고
    • A facile method to synthesize histones with posttranslational modification mimics
    • Wang ZU et al (2012) A facile method to synthesize histones with posttranslational modification mimics. Biochemistry 51:5232–5234
    • (2012) Biochemistry , vol.51 , pp. 5232-5234
    • Wang, Z.U.1
  • 50
    • 81355138529 scopus 로고    scopus 로고
    • Methods for converting cysteine to dehydroalanine on peptides and proteins
    • Chalker JM et al (2011) Methods for converting cysteine to dehydroalanine on peptides and proteins. Chem Sci 2:1666
    • (2011) Chem Sci , vol.2 , pp. 1666
    • Chalker, J.M.1
  • 51
    • 84856887479 scopus 로고    scopus 로고
    • Conversion of cysteine into dehydroalanine enables access to synthetic histones bearing diverse post-translational modifications
    • Chalker JM et al (2012) Conversion of cysteine into dehydroalanine enables access to synthetic histones bearing diverse post-translational modifications. Angew Chem Int Ed Engl 51:1835–1839
    • (2012) Angew Chem Int Ed Engl , vol.51 , pp. 1835-1839
    • Chalker, J.M.1
  • 52
    • 84904069369 scopus 로고    scopus 로고
    • Sensing core histone phosphorylation — a matter of perfect timing
    • Sawicka A, Seiser C (2014) Sensing core histone phosphorylation — a matter of perfect timing. Biochim Biophys Acta 1839:711–718
    • (2014) Biochim Biophys Acta , vol.1839 , pp. 711-718
    • Sawicka, A.1    Seiser, C.2
  • 53
    • 80052165817 scopus 로고    scopus 로고
    • Expanding the genetic code of Escherichia coli with phosphoserine
    • Park HS et al (2011) Expanding the genetic code of Escherichia coli with phosphoserine. Science 333:1151–1154
    • (2011) Science , vol.333 , pp. 1151-1154
    • Park, H.S.1
  • 54
    • 84878039908 scopus 로고    scopus 로고
    • A facile strategy for selective incorporation of phosphoserine into histones
    • Lee S et al (2013) A facile strategy for selective incorporation of phosphoserine into histones. Angew Chem Int Ed 52:5771–5775
    • (2013) Angew Chem Int Ed , vol.52 , pp. 5771-5775
    • Lee, S.1
  • 55
    • 0038265881 scopus 로고    scopus 로고
    • Progress toward an expanded eukaryotic genetic code
    • Chin JW et al (2003) Progress toward an expanded eukaryotic genetic code. Chem Biol 10:511–519
    • (2003) Chem Biol , vol.10 , pp. 511-519
    • Chin, J.W.1
  • 56
    • 84885791219 scopus 로고    scopus 로고
    • Genomically recoded organisms expand biological functions
    • Lajoie MJ et al (2013) Genomically recoded organisms expand biological functions. Science 342:357–360
    • (2013) Science , vol.342 , pp. 357-360
    • Lajoie, M.J.1
  • 58
    • 2442659130 scopus 로고    scopus 로고
    • An expanded genetic code with a functional quadruplet codon
    • Anderson JC et al. (2004) An expanded genetic code with a functional quadruplet codon. Proc Natl Acad Sci 101:7566–7571
    • (2004) Proc Natl Acad Sci , vol.101 , pp. 7566-7571
    • Anderson, J.C.1
  • 59
    • 84863229777 scopus 로고    scopus 로고
    • Reprogramming the genetic code: From triplet to quadruplet codes
    • Wang K, Schmied WH, Chin JW (2012) Reprogramming the genetic code: from triplet to quadruplet codes. Angew Chem Int Ed 51:2288–2297
    • (2012) Angew Chem Int Ed , vol.51 , pp. 2288-2297
    • Wang, K.1    Schmied, W.H.2    Chin, J.W.3
  • 60
    • 0347783961 scopus 로고
    • Frameshift suppression: A nucleotide addition in the anticodon of a glycine transfer RNA
    • Riddle DL, Carbon J (1973) Frameshift suppression: a nucleotide addition in the anticodon of a glycine transfer RNA. Nat New Biol 242:230–234
    • (1973) Nat New Biol , vol.242 , pp. 230-234
    • Riddle, D.L.1    Carbon, J.2
  • 61
    • 77449157577 scopus 로고    scopus 로고
    • Probing the (H3-H4)2 histone tetramer structure using pulsed EPR spectroscopy combined with site-directed spin labelling
    • Bowman A et al (2010) Probing the (H3-H4)2 histone tetramer structure using pulsed EPR spectroscopy combined with site-directed spin labelling. Nucleic Acids Res 38:695–707
    • (2010) Nucleic Acids Res , vol.38 , pp. 695-707
    • Bowman, A.1
  • 62
    • 63149184160 scopus 로고    scopus 로고
    • Long distance PELDOR measurements on the histone core particle
    • Ward R et al (2009) Long distance PELDOR measurements on the histone core particle. J Am Chem Soc 131:1348–1349
    • (2009) J am Chem Soc , vol.131 , pp. 1348-1349
    • Ward, R.1
  • 63
    • 33847035523 scopus 로고    scopus 로고
    • Stopped-flow fluorescence resonance energy transfer for analysis of nucleosome dynamics
    • Tims HS, Widom J (2007) Stopped-flow fluorescence resonance energy transfer for analysis of nucleosome dynamics. Methods (San Diego, Calif.) 41:296–303
    • (2007) Methods (San Diego, Calif.) , vol.41 , pp. 296-303
    • Tims, H.S.1    Widom, J.2
  • 64
    • 52649141631 scopus 로고    scopus 로고
    • Architecture of the SWI/SNF-nucleosome complex
    • Dechassa ML et al (2008) Architecture of the SWI/SNF-nucleosome complex. Mol Cell Biol 28:6010–6021
    • (2008) Mol Cell Biol , vol.28 , pp. 6010-6021
    • Dechassa, M.L.1
  • 65
    • 34347363106 scopus 로고    scopus 로고
    • Histone tails and the H3 αN helix regulate nucleosome mobility and stability
    • Ferreira H et al (2007) Histone tails and the H3 αN helix regulate nucleosome mobility and stability. Mol Cell Biol 27:4037–4048
    • (2007) Mol Cell Biol , vol.27 , pp. 4037-4048
    • Ferreira, H.1
  • 66
    • 84873526311 scopus 로고    scopus 로고
    • Current progress on structural studies of nucleosomes containing histone H3 variants
    • Kurumizaka H et al (2013) Current progress on structural studies of nucleosomes containing histone H3 variants. Curr Opin Struct Biol 23:109–115
    • (2013) Curr Opin Struct Biol , vol.23 , pp. 109-115
    • Kurumizaka, H.1
  • 67
    • 0029928550 scopus 로고    scopus 로고
    • Mapping nucleosome position at single base-pair resolution by using site-directed hydroxyl radicals
    • Flaus A et al (1996) Mapping nucleosome position at single base-pair resolution by using site-directed hydroxyl radicals. Proc Natl Acad Sci U S A 93:1370–1375
    • (1996) Proc Natl Acad Sci U S A , vol.93 , pp. 1370-1375
    • Flaus, A.1
  • 68
    • 69949132193 scopus 로고    scopus 로고
    • Dynamics and function of compact nucleosome arrays
    • Poirier MG et al (2009) Dynamics and function of compact nucleosome arrays. Nat Struct Mol Biol 16:938–944
    • (2009) Nat Struct Mol Biol , vol.16 , pp. 938-944
    • Poirier, M.G.1
  • 69
    • 33847386172 scopus 로고    scopus 로고
    • The site-specific installation of methyl-lysine analogs into recombinant histones
    • Simon MD et al (2007) The site-specific installation of methyl-lysine analogs into recombinant histones. Cell 128:1003–1012
    • (2007) Cell , vol.128 , pp. 1003-1012
    • Simon, M.D.1
  • 70
  • 71
    • 84874763341 scopus 로고    scopus 로고
    • H3K4me3 interactions with TAF3 regulate preinitiation complex assembly and selective gene activation
    • Lauberth SM et al (2013) H3K4me3 interactions with TAF3 regulate preinitiation complex assembly and selective gene activation. Cell 152:1021–1036
    • (2013) Cell , vol.152 , pp. 1021-1036
    • Lauberth, S.M.1
  • 72
    • 53549124960 scopus 로고    scopus 로고
    • The effect of H3K79 dimethylation and H4K20 trimethylation on nucleosome and chromatin structure
    • Lu X et al (2008) The effect of H3K79 dimethylation and H4K20 trimethylation on nucleosome and chromatin structure. Nat Struct Mol Biol 15:1122–1124
    • (2008) Nat Struct Mol Biol , vol.15 , pp. 1122-1124
    • Lu, X.1
  • 73
    • 55249111484 scopus 로고    scopus 로고
    • Structural basis for the recognition of methylated histone H3K36 by the Eaf3 subunit of histone deacetylase complex Rpd3S
    • Xu C et al (2008) Structural basis for the recognition of methylated histone H3K36 by the Eaf3 subunit of histone deacetylase complex Rpd3S. Structure 16:1740–1750
    • (2008) Structure , vol.16 , pp. 1740-1750
    • Xu, C.1
  • 74
    • 84876027348 scopus 로고    scopus 로고
    • Structural basis for high-affinity binding of LEDGF PWWP to mononucleosomes
    • Eidahl JO et al (2013) Structural basis for high-affinity binding of LEDGF PWWP to mononucleosomes. Nucleic Acids Res 41:3924–3936
    • (2013) Nucleic Acids Res , vol.41 , pp. 3924-3936
    • Eidahl, J.O.1
  • 75
    • 58649102691 scopus 로고    scopus 로고
    • ING4 mediates crosstalk between histone H3 K4 trimethylation and H3 acetylation to attenuate cellular transformation
    • Hung T et al (2009) ING4 mediates crosstalk between histone H3 K4 trimethylation and H3 acetylation to attenuate cellular transformation. Mol Cell 33:248–256
    • (2009) Mol Cell , vol.33 , pp. 248-256
    • Hung, T.1
  • 76
    • 70349952171 scopus 로고    scopus 로고
    • Role of the polycomb protein EED in the propagation of repressive histone marks
    • Margueron R et al (2009) Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 461:762–767
    • (2009) Nature , vol.461 , pp. 762-767
    • Margueron, R.1
  • 77
    • 77955810448 scopus 로고    scopus 로고
    • Site-specific introduction of an acetyl-lysine mimic into peptides and proteins by cysteine alkylation
    • Huang R et al (2010) Site-specific introduction of an acetyl-lysine mimic into peptides and proteins by cysteine alkylation. J Am Chem Soc 132:9986–9987
    • (2010) J am Chem Soc , vol.132 , pp. 9986-9987
    • Huang, R.1
  • 79
    • 80053557477 scopus 로고    scopus 로고
    • A direct method for site-specific protein acetylation
    • Li F et al (2011) A direct method for site-specific protein acetylation. Angew Chem Int Ed 50:9611–9614
    • (2011) Angew Chem Int Ed , vol.50 , pp. 9611-9614
    • Li, F.1
  • 80
    • 84874619010 scopus 로고    scopus 로고
    • Site-Specific and Regiospecific Installation of Methylarginine Analogues into Recombinant Histones and Insights into Effector Protein Binding
    • Le D et al. (2013) Site-Specific and Regiospecific Installation of Methylarginine Analogues into Recombinant Histones and Insights into Effector Protein Binding. J Am Chem Soc 135:2879–2882.
    • (2013) J am Chem Soc , vol.135 , pp. 2879-2882
    • Le, D.1
  • 81
    • 77949874828 scopus 로고    scopus 로고
    • Disulfide-directed histone ubiquitylation reveals plasticity in hDot1L activation
    • Chatterjee A et al (2010) Disulfide-directed histone ubiquitylation reveals plasticity in hDot1L activation. Nat Chem Biol 6:267–269
    • (2010) Nat Chem Biol , vol.6 , pp. 267-269
    • Chatterjee, A.1
  • 82
    • 84863634911 scopus 로고    scopus 로고
    • Histone monoubiquitylation position determines specificity and direction of enzymatic cross-talk with histone methyltransferases Dot1L and PRC 2
    • Whitcomb SJ et al (2012) Histone monoubiquitylation position determines specificity and direction of enzymatic cross-talk with histone methyltransferases Dot1L and PRC 2. J Biol Chem 287:23718–23725
    • (2012) J Biol Chem , vol.287 , pp. 23718-23725
    • Whitcomb, S.J.1
  • 83
    • 0027944205 scopus 로고
    • Synthesis of proteins by native chemical ligation
    • Dawson PE et al (1994) Synthesis of proteins by native chemical ligation. Science 266:776–779
    • (1994) Science , vol.266 , pp. 776-779
    • Dawson, P.E.1
  • 84
    • 0142123130 scopus 로고    scopus 로고
    • Facile synthesis of site-specifically acetylated and methylated histone proteins: Reagents for evaluation of the histone code hypothesis
    • He S et al. (2003) Facile synthesis of site-specifically acetylated and methylated histone proteins: reagents for evaluation of the histone code hypothesis. Proc Natl Acad Sci 100:12033–12038
    • (2003) Proc Natl Acad Sci , vol.100 , pp. 12033-12038
    • He, S.1
  • 85
    • 0038047672 scopus 로고    scopus 로고
    • A native peptide ligation strategy for deciphering nucleosomal histone modifications
    • Shogren-Knaak MA, Fry CJ, Peterson CL (2003) A native peptide ligation strategy for deciphering nucleosomal histone modifications. J Biol Chem 278:15744–15748
    • (2003) J Biol Chem , vol.278 , pp. 15744-15748
    • Shogren-Knaak, M.A.1    Fry, C.J.2    Peterson, C.L.3
  • 86
    • 78751515133 scopus 로고    scopus 로고
    • Histone H2B ubiquitylation disrupts local and higher-order chromatin compaction
    • Fierz B et al (2011) Histone H2B ubiquitylation disrupts local and higher-order chromatin compaction. Nat Chem Biol 7:113–119
    • (2011) Nat Chem Biol , vol.7 , pp. 113-119
    • Fierz, B.1
  • 87
    • 84894148049 scopus 로고    scopus 로고
    • Genetic encoding of photocaged cysteine allows photoactivation of TEV protease in live mammalian cells
    • Nguyen DP et al (2014) Genetic encoding of photocaged cysteine allows photoactivation of TEV protease in live mammalian cells. J Am Chem Soc 136:2240–2243
    • (2014) J am Chem Soc , vol.136 , pp. 2240-2243
    • Nguyen, D.P.1
  • 88
    • 23044497568 scopus 로고    scopus 로고
    • Histone H3 amino-terminal tail phosphorylation and acetylation: Synergistic or independent transcriptional regulatory marks?
    • Fry CJ, Shogren-Knaak MA, Peterson CL (2004) Histone H3 amino-terminal tail phosphorylation and acetylation: synergistic or independent transcriptional regulatory marks? Cold Spring Harb Symp Quant Biol 69:219–226
    • (2004) Cold Spring Harb Symp Quant Biol , vol.69 , pp. 219-226
    • Fry, C.J.1    Shogren-Knaak, M.A.2    Peterson, C.L.3
  • 89
    • 32444434989 scopus 로고    scopus 로고
    • Histone H4-K16 acetylation controls chromatin structure and protein interactions
    • Shogren-Knaak M (2006) Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311:844–847
    • (2006) Science , vol.311 , pp. 844-847
    • Shogren-Knaak, M.1
  • 90
    • 35548941098 scopus 로고    scopus 로고
    • Histone modifications influence the action of Snf2 family remodelling enzymes by different mechanisms
    • Ferreira H, Flaus A, Owen-Hughes T (2007) Histone modifications influence the action of Snf2 family remodelling enzymes by different mechanisms. J Mol Biol 374:563–579
    • (2007) J Mol Biol , vol.374 , pp. 563-579
    • Ferreira, H.1    Flaus, A.2    Owen-Hughes, T.3
  • 91
    • 82555176461 scopus 로고    scopus 로고
    • Influence of histone tails and H4 tail acetylations on nucleosomenucleosome interactions
    • Liu Y et al (2011) Influence of histone tails and H4 tail acetylations on nucleosomenucleosome interactions. J Mol Biol 414:749–764
    • (2011) J Mol Biol , vol.414 , pp. 749-764
    • Liu, Y.1
  • 92
    • 70349390704 scopus 로고    scopus 로고
    • A semisynthetic strategy to generate phosphorylated and acetylated histone H2B
    • Chiang KP et al (2009) A semisynthetic strategy to generate phosphorylated and acetylated histone H2B. Chembiochem 10:2182–2187
    • (2009) Chembiochem , vol.10 , pp. 2182-2187
    • Chiang, K.P.1
  • 93
    • 84883815400 scopus 로고    scopus 로고
    • H3R42me2a is a histone modification with positive transcriptional effects
    • Casadio F et al (2013) H3R42me2a is a histone modification with positive transcriptional effects. PNAS 110:14894–14899
    • (2013) PNAS , vol.110 , pp. 14894-14899
    • Casadio, F.1
  • 94
    • 84875771630 scopus 로고    scopus 로고
    • The n-SET domain of Set1 regulates H2B ubiquitylation-dependent H3K4 methylation
    • Kim J et al (2013) The n-SET domain of Set1 regulates H2B ubiquitylation-dependent H3K4 methylation. Mol Cell 49:1121–1133
    • (2013) Mol Cell , vol.49 , pp. 1121-1133
    • Kim, J.1
  • 95
    • 84941119192 scopus 로고    scopus 로고
    • Traceless semisynthesis of a set of histone 3 species bearing specific lysine methylation marks
    • Chen Z, Gryzbowski AT, Ruthenburg AJ (2014) Traceless semisynthesis of a set of histone 3 species bearing specific lysine methylation marks. ChemBioChem 15:2071–2075
    • (2014) Chembiochem , vol.15 , pp. 2071-2075
    • Chen, Z.1    Gryzbowski, A.T.2    Ruthenburg, A.J.3
  • 96
    • 0033621158 scopus 로고    scopus 로고
    • Protein synthesis by native chemical ligation: Expanded scope by using straightforward methodology
    • Hackeng TM, Dawson PE (1999) Protein synthesis by native chemical ligation: expanded scope by using straightforward methodology. Proc Natl Acad Sci U S A 96:10069–10073
    • (1999) Proc Natl Acad Sci U S A , vol.96 , pp. 10069-10073
    • Hackeng, T.M.1    Dawson, P.E.2
  • 97
    • 57449106327 scopus 로고    scopus 로고
    • Cross-talk between histone H3 tails produces cooperative nucleosome acetylation
    • Li S, Shogren-Knaak MA (2008) Cross-talk between histone H3 tails produces cooperative nucleosome acetylation. Proc Natl Acad Sci 105:18243–18248
    • (2008) Proc Natl Acad Sci , vol.105 , pp. 18243-18248
    • Li, S.1    Shogren-Knaak, M.A.2
  • 98
    • 33845196702 scopus 로고    scopus 로고
    • The LRS and SIN domains: Two structurally equivalent but functionally distinct nucleosomal surfaces required for transcriptional silencing
    • Fry CJ et al (2006) The LRS and SIN domains: two structurally equivalent but functionally distinct nucleosomal surfaces required for transcriptional silencing. Mol Cell Biol 26:9045–9059
    • (2006) Mol Cell Biol , vol.26 , pp. 9045-9059
    • Fry, C.J.1
  • 99
    • 0035912356 scopus 로고    scopus 로고
    • Convergent synthesis of peptide conjugates using dehydroalanines for chemoselective ligations
    • Zhu Y, van der Donk W (2001) Convergent synthesis of peptide conjugates using dehydroalanines for chemoselective ligations. Org Lett 3:1189–1192
    • (2001) Org Lett , vol.3 , pp. 1189-1192
    • Zhu, Y.1    Van Der Donk, W.2
  • 100
    • 37349094422 scopus 로고    scopus 로고
    • Free-radical-based, specific desulfurization of cysteine: A powerful advance in the synthesis of polypeptides and glycopolypeptides
    • Wan Q, Danishefsky SJ (2007) Free-radical-based, specific desulfurization of cysteine: a powerful advance in the synthesis of polypeptides and glycopolypeptides. Angew Chem Int Ed 46:9248–9252
    • (2007) Angew Chem Int Ed , vol.46 , pp. 9248-9252
    • Wan, Q.1    Danishefsky, S.J.2
  • 101
    • 84870708220 scopus 로고    scopus 로고
    • Stability of nucleosomes containing homogenously ubiquitylated H2A and H2B prepared using semisynthesis
    • Fierz B et al (2012) Stability of nucleosomes containing homogenously ubiquitylated H2A and H2B prepared using semisynthesis. J Am Chem Soc 134:19548–19551
    • (2012) J am Chem Soc , vol.134 , pp. 19548-19551
    • Fierz, B.1
  • 102
    • 84987678570 scopus 로고    scopus 로고
    • Realizing serine/threonine ligation: Scope and limitations and mechanistic implication thereof
    • Wong CTT et al (2014) Realizing serine/threonine ligation: scope and limitations and mechanistic implication thereof. Front Chem 2:28
    • (2014) Front Chem , vol.2 , pp. 28
    • Wong, C.1
  • 103
    • 52449084906 scopus 로고    scopus 로고
    • Native chemical ligation at valine
    • Haase C, Rohde H, Seitz O (2008) Native chemical ligation at valine. Angew Chem Int Ed 47:6807–6810
    • (2008) Angew Chem Int Ed , vol.47 , pp. 6807-6810
    • Haase, C.1    Rohde, H.2    Seitz, O.3
  • 104
    • 34548153495 scopus 로고    scopus 로고
    • Native chemical ligation at phenylalanine
    • Crich D, Banerjee A (2007) Native chemical ligation at phenylalanine. JACS Commun 129:10064–10065
    • (2007) JACS Commun , vol.129 , pp. 10064-10065
    • Crich, D.1    Banerjee, A.2
  • 105
    • 33646900510 scopus 로고    scopus 로고
    • The tale beyond the tail: Histone core domain modifications and the regulation of chromatin structure
    • Mersfelder EL, Parthun MR (2006) The tale beyond the tail: histone core domain modifications and the regulation of chromatin structure. Nucleic Acids Res 34:2653–2662
    • (2006) Nucleic Acids Res , vol.34 , pp. 2653-2662
    • Mersfelder, E.L.1    Parthun, M.R.2
  • 106
    • 84904754117 scopus 로고    scopus 로고
    • Getting down to the core of histone modifications
    • Jack AM, Hake S (2014) Getting down to the core of histone modifications. Chromosoma 123:355–371
    • (2014) Chromosoma , vol.123 , pp. 355-371
    • Jack, A.M.1    Hake, S.2
  • 107
    • 84901449946 scopus 로고    scopus 로고
    • Intein applications: From protein purification and labeling to metabolic control methods
    • Wood DW, Camarero JA (2014) Intein applications: from protein purification and labeling to metabolic control methods. J Biol Chem 289:14512–14519
    • (2014) J Biol Chem , vol.289 , pp. 14512-14519
    • Wood, D.W.1    Camarero, J.A.2
  • 108
    • 0033506586 scopus 로고    scopus 로고
    • Introduction of unnatural amino acids into proteins using expressed protein ligation
    • Ayers B et al (1999) Introduction of unnatural amino acids into proteins using expressed protein ligation. Pept Sci 51:343–354
    • (1999) Pept Sci , vol.51 , pp. 343-354
    • Ayers, B.1
  • 109
    • 44849100496 scopus 로고    scopus 로고
    • Chemically ubiquitylated histone H2B stimulates hDot1L-mediated intranucleosomal methylation
    • McGinty RK et al (2008) Chemically ubiquitylated histone H2B stimulates hDot1L-mediated intranucleosomal methylation. Nature 453:812–816
    • (2008) Nature , vol.453 , pp. 812-816
    • McGinty, R.K.1
  • 110
    • 84880207420 scopus 로고    scopus 로고
    • Preparing semisynthetic and fully synthetic histones H3 and H4 to modify the nucleosome core
    • Shimko JC et al. (2013) Preparing semisynthetic and fully synthetic histones H3 and H4 to modify the nucleosome core. Methods Mol Biol 981:177–192
    • (2013) Methods Mol Biol , vol.981 , pp. 177-192
    • Shimko, J.C.1
  • 111
    • 79961217626 scopus 로고    scopus 로고
    • Histone fold modifications control nucleosome unwrapping and disassembly
    • Simon M et al (2011) Histone fold modifications control nucleosome unwrapping and disassembly. Proc Natl Acad Sci U S A 108:12711–12716
    • (2011) Proc Natl Acad Sci U S A , vol.108 , pp. 12711-12716
    • Simon, M.1
  • 112
    • 72149111977 scopus 로고    scopus 로고
    • Nucleosome remodeling by hMSH2-hMSH 6
    • Javaid S et al (2009) Nucleosome remodeling by hMSH2-hMSH 6. Mol Cell 36:1086–1094
    • (2009) Mol Cell , vol.36 , pp. 1086-1094
    • Javaid, S.1
  • 113
    • 0028801404 scopus 로고
    • Amino acid substitutions in the structured domains of histones H3 and H4 partially relieve the requirement of the yeast SWI/SNF complex for transcription
    • Kruger W et al (1995) Amino acid substitutions in the structured domains of histones H3 and H4 partially relieve the requirement of the yeast SWI/SNF complex for transcription. Genes Dev 9:2770–2779
    • (1995) Genes Dev , vol.9 , pp. 2770-2779
    • Kruger, W.1
  • 114
    • 67650215370 scopus 로고    scopus 로고
    • Phosphorylation of histone H3 Thr-45 is linked to apoptosis
    • Hurd PJ et al (2009) Phosphorylation of histone H3 Thr-45 is linked to apoptosis. J Biol Chem 284:16675–16683
    • (2009) J Biol Chem , vol.284 , pp. 16675-16683
    • Hurd, P.J.1
  • 115
    • 28544438953 scopus 로고    scopus 로고
    • Human SWI/SNF generates abundant, structurally altered dinucleosomes on polynucleosomal templates
    • Ulyanova NP, Schnitzler GR (2005) Human SWI/SNF generates abundant, structurally altered dinucleosomes on polynucleosomal templates. Mol Cell Biol 25:11156–11170
    • (2005) Mol Cell Biol , vol.25 , pp. 11156-11170
    • Ulyanova, N.P.1    Schnitzler, G.R.2
  • 116
    • 0032504102 scopus 로고    scopus 로고
    • Human SWI/SNF interconverts a nucleosome between its base state and a stable remodeled state
    • Schnitzler GR, Sif S, Kingston RE (1998) Human SWI/SNF interconverts a nucleosome between its base state and a stable remodeled state. Cell 94:17–27
    • (1998) Cell , vol.94 , pp. 17-27
    • Schnitzler, G.R.1    Sif, S.2    Kingston, R.E.3
  • 117
    • 73449105394 scopus 로고    scopus 로고
    • Structure–activity analysis of semisynthetic nucleosomes: Mechanistic insights into the stimulation of dot1l by ubiquitylated histone H2B
    • McGinty RK et al (2009) Structure–activity analysis of semisynthetic nucleosomes: mechanistic insights into the stimulation of dot1l by ubiquitylated histone H2B. ACS Chem Biol 4:958–968
    • (2009) ACS Chem Biol , vol.4 , pp. 958-968
    • McGinty, R.K.1
  • 118
    • 84905217856 scopus 로고    scopus 로고
    • Accelerated chromatin biochemistry using DNA-barcoded nucleosome libraries
    • Nguyen UTT et al (2014) Accelerated chromatin biochemistry using DNA-barcoded nucleosome libraries. Nat Methods 11:834–840
    • (2014) Nat Methods , vol.11 , pp. 834-840
    • Nguyen, U.1
  • 119
    • 84857411167 scopus 로고    scopus 로고
    • A reversible protection strategy to improve Fmoc-SPPS of peptide thioesters by the N-acylurea approach
    • Mahto SK et al (2011) A reversible protection strategy to improve Fmoc-SPPS of peptide thioesters by the N-acylurea approach. ChemBioChem 12:2488–2494
    • (2011) Chembiochem , vol.12 , pp. 2488-2494
    • Mahto, S.K.1
  • 120
    • 84867057855 scopus 로고    scopus 로고
    • Convergent chemical synthesis of proteins by ligation of peptide hydrazides
    • Fang GM, Wang JX, Liu L (2012) Convergent chemical synthesis of proteins by ligation of peptide hydrazides. Angew Chem Int Ed Engl 51:10347–10350
    • (2012) Angew Chem Int Ed Engl , vol.51 , pp. 10347-10350
    • Fang, G.M.1    Wang, J.X.2    Liu, L.3
  • 121
    • 84903762615 scopus 로고    scopus 로고
    • One-pot native chemical ligation of peptide hydrazides enables total synthesis of modified histones
    • Li J et al (2014) One-pot native chemical ligation of peptide hydrazides enables total synthesis of modified histones. Org Biomol Chem 12:5435
    • (2014) Org Biomol Chem , vol.12 , pp. 5435
    • Li, J.1
  • 122
    • 84880816458 scopus 로고    scopus 로고
    • Convergent chemical synthesis of histone H2B protein for the sitespecific ubiquitination at Lys 34
    • Siman P et al (2013) Convergent chemical synthesis of histone H2B protein for the sitespecific ubiquitination at Lys 34. Angew Chem Int Ed 52:8059–8063
    • (2013) Angew Chem Int Ed , vol.52 , pp. 8059-8063
    • Siman, P.1
  • 123
    • 84907821844 scopus 로고    scopus 로고
    • Solid phase chemical ligation employing a Rink amide linker for the synthesis of histone H2B protein
    • Jbara M, Seenaiah M, Brik A (2014) Solid phase chemical ligation employing a Rink amide linker for the synthesis of histone H2B protein. Chem Commun 50:12534–12537
    • (2014) Chem Commun , vol.50 , pp. 12534-12537
    • Jbara, M.1    Seenaiah, M.2    Brik, A.3
  • 124
    • 84875374714 scopus 로고    scopus 로고
    • Discovering common combinatorial histone modification patterns in the human genome
    • Linghu C et al (2013) Discovering common combinatorial histone modification patterns in the human genome. Gene 518:171–178
    • (2013) Gene , vol.518 , pp. 171-178
    • Linghu, C.1
  • 125
    • 0038605538 scopus 로고    scopus 로고
    • Intra- and inter-nucleosomal protein-DNA interactions of the core histone tail domains in a model system
    • Zheng C, Hayes JJ (2003) Intra- and inter-nucleosomal protein-DNA interactions of the core histone tail domains in a model system. J Biol Chem 278:24217–24224
    • (2003) J Biol Chem , vol.278 , pp. 24217-24224
    • Zheng, C.1    Hayes, J.J.2
  • 126
    • 0014600364 scopus 로고
    • Isolation of the nuclear histones from the myxomycete, Physarum polycephalum
    • Mohberg J, Rusch HP (1969) Isolation of the nuclear histones from the myxomycete, Physarum polycephalum. Arch Biochem Biophys 134:577–589
    • (1969) Arch Biochem Biophys , vol.134 , pp. 577-589
    • Mohberg, J.1    Rusch, H.P.2
  • 127
    • 0032824943 scopus 로고    scopus 로고
    • Histone proteins in vivo: Cell-cycle-dependent physiological effects of exogenous linker histones incorporated into Physarum polycephalum
    • Thiriet C, Hayes JJ (1999) Histone proteins in vivo: cell-cycle-dependent physiological effects of exogenous linker histones incorporated into Physarum polycephalum. Methods 17:140–150
    • (1999) Methods , vol.17 , pp. 140-150
    • Thiriet, C.1    Hayes, J.J.2
  • 128
    • 0018891793 scopus 로고
    • Incorporation of exogenous pyrene-labeled histone into Physarum chromatin: A system for studying changes in nucleosomes assembled in vivo
    • Prior CP et al (1980) Incorporation of exogenous pyrene-labeled histone into Physarum chromatin: a system for studying changes in nucleosomes assembled in vivo. Cell 20:597–608
    • (1980) Cell , vol.20 , pp. 597-608
    • Prior, C.P.1
  • 129
    • 84883699700 scopus 로고    scopus 로고
    • Slimeware: Engineering devices with slime mold
    • Adamatzky A (2013) Slimeware: engineering devices with slime mold. Artificial Life 19:317–330
    • (2013) Artificial Life , vol.19 , pp. 317-330
    • Adamatzky, A.1
  • 130
    • 84911414837 scopus 로고    scopus 로고
    • Physarum polycephalum: Towards a biological controller
    • Taylor B et al (2014) Physarum polycephalum: towards a biological controller. Biosystems 127C:42–46
    • (2014) Biosystems , vol.127 , pp. 42-46
    • Taylor, B.1
  • 131
    • 78751531687 scopus 로고    scopus 로고
    • H4 replication-dependent diacetylation and Hat1 promote S-phase chromatin assembly in vivo
    • Ejlassi-Lassallette A et al (2010) H4 replication-dependent diacetylation and Hat1 promote S-phase chromatin assembly in vivo. Mol Biol Cell 22:245–255
    • (2010) Mol Biol Cell , vol.22 , pp. 245-255
    • Ejlassi-Lassallette, A.1
  • 132
    • 0035881855 scopus 로고    scopus 로고
    • A novel labeling technique reveals a function for histone H2A/H2B dimer tail domains in chromatin assembly in vivo
    • Thiriet C, Hayes JJ (2001) A novel labeling technique reveals a function for histone H2A/H2B dimer tail domains in chromatin assembly in vivo. Genes Dev 15:2048–2053
    • (2001) Genes Dev , vol.15 , pp. 2048-2053
    • Thiriet, C.1    Hayes, J.J.2
  • 133
    • 0028125847 scopus 로고
    • A histone octamer can step around a transcribing polymerase without leaving the template
    • Studitsky VM, Clark DJ, Felsenfeld G (1994) A histone octamer can step around a transcribing polymerase without leaving the template. Cell 76:371–382
    • (1994) Cell , vol.76 , pp. 371-382
    • Studitsky, V.M.1    Clark, D.J.2    Felsenfeld, G.3
  • 134
    • 0036203807 scopus 로고    scopus 로고
    • Nucleosome remodeling induced by RNA polymerase II: Loss of the H2A-H2B dimer during transcription
    • Kireeva ML et al (2002) Nucleosome remodeling induced by RNA polymerase II: loss of the H2A-H2B dimer during transcription. Mol Cell 9:541–552
    • (2002) Mol Cell , vol.9 , pp. 541-552
    • Kireeva, M.L.1
  • 135
    • 42049117592 scopus 로고    scopus 로고
    • Intracellular delivery of acetyl-histone peptides inhibits native bromodomain-chromatin interactions and impairs mitotic progression
    • Nishiyama A et al (2008) Intracellular delivery of acetyl-histone peptides inhibits native bromodomain-chromatin interactions and impairs mitotic progression. FEBS Lett 582:1501–1507
    • (2008) FEBS Lett , vol.582 , pp. 1501-1507
    • Nishiyama, A.1
  • 136
    • 84878014081 scopus 로고    scopus 로고
    • Cell-penetrating H4 tail peptides potentiate p53-mediated transactivation via inhibition of G9a and HDAC 1
    • Heo K et al (2013) Cell-penetrating H4 tail peptides potentiate p53-mediated transactivation via inhibition of G9a and HDAC 1. Oncogene 32:2510–2520
    • (2013) Oncogene , vol.32 , pp. 2510-2520
    • Heo, K.1
  • 137
    • 84890501893 scopus 로고    scopus 로고
    • Transduction of proteins into Leishmania tarentolae by formation of non-covalent complexes with cell-penetrating peptides
    • Keller AA et al (2014) Transduction of proteins into Leishmania tarentolae by formation of non-covalent complexes with cell-penetrating peptides. J Cell Biochem 115:243–252
    • (2014) J Cell Biochem , vol.115 , pp. 243-252
    • Keller, A.A.1
  • 138
    • 4344609460 scopus 로고    scopus 로고
    • Non-endocytic penetration of core histones into petunia protoplasts and cultured cells: A novel mechanism for the introduction of macromolecules into plant cells
    • Rosenbluh J et al (2004) Non-endocytic penetration of core histones into petunia protoplasts and cultured cells: a novel mechanism for the introduction of macromolecules into plant cells. Biochim Biophys Acta 1664:230–240
    • (2004) Biochim Biophys Acta , vol.1664 , pp. 230-240
    • Rosenbluh, J.1
  • 139
    • 0344465848 scopus 로고    scopus 로고
    • Direct translocation of histone molecules across cell membranes
    • Hariton-Gazal E et al (2003) Direct translocation of histone molecules across cell membranes. J Cell Sci 116:4577–4586
    • (2003) J Cell Sci , vol.116 , pp. 4577-4586
    • Hariton-Gazal, E.1
  • 140
    • 0037188524 scopus 로고    scopus 로고
    • Structure and function correlation in histone H2A peptide-mediated gene transfer
    • Balicki D et al. (2002) Structure and function correlation in histone H2A peptide-mediated gene transfer. Proc Natl Acad Sci 99:7467–7471
    • (2002) Proc Natl Acad Sci , vol.99 , pp. 7467-7471
    • Balicki, D.1
  • 141
    • 33745603250 scopus 로고    scopus 로고
    • Histonefection: Novel and potent non-viral gene delivery
    • Kaouass M, Beaulieu R, Balicki D (2006) Histonefection: Novel and potent non-viral gene delivery. J Control Release 113:245–254
    • (2006) J Control Release , vol.113 , pp. 245-254
    • Kaouass, M.1    Beaulieu, R.2    Balicki, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.