메뉴 건너뛰기




Volumn 19, Issue 5, 2015, Pages 707-716

Non-coding RNAs as direct and indirect modulators of epigenetic mechanism regulation of cardiac fibrosis

Author keywords

Cardiac fibrosis; DNA methylation; Epigenetic; Histone modification; Long non coding RNA; MicroRNA

Indexed keywords

LONG UNTRANSLATED RNA; MICRORNA; UNTRANSLATED RNA; HISTONE;

EID: 84928472036     PISSN: 14728222     EISSN: 17447631     Source Type: Journal    
DOI: 10.1517/14728222.2014.1001740     Document Type: Review
Times cited : (25)

References (115)
  • 1
    • 79957533104 scopus 로고    scopus 로고
    • Non-coding RNAs as regulators of gene expression and epigenetics
    • Kaikkonen MU, Lam MT, Glass CK. Non-coding RNAs as regulators of gene expression and epigenetics. Cardiovasc Res 2011;90:430-40
    • (2011) Cardiovasc Res , vol.90 , pp. 430-440
    • Kaikkonen, M.U.1    Lam, M.T.2    Glass, C.K.3
  • 2
    • 84894324435 scopus 로고    scopus 로고
    • A direct role for small non-coding RNAs in DNA damage response
    • d'Adda di Fagagna F. A direct role for small non-coding RNAs in DNA damage response. Trends Cell Biol 2014;24:171-8
    • (2014) Trends Cell Biol , vol.24 , pp. 171-178
    • D'adda Di Fagagna, F.1
  • 3
    • 84901911389 scopus 로고    scopus 로고
    • Missing links in cardiology: Long non-coding RNAs enter the arena
    • Peters T, Schroen B. Missing links in cardiology: long non-coding RNAs enter the arena. Pflugers Arch 2014;466(6):1177-87
    • (2014) Pflugers Arch , vol.466 , Issue.6 , pp. 1177-1187
    • Peters, T.1    Schroen, B.2
  • 4
    • 84874967223 scopus 로고    scopus 로고
    • Role of microRNAs in cardiac remodelling: New insights and future perspectives
    • Orenes-Pinero E, Montoro-Garcia S, Patel JV, et al. Role of microRNAs in cardiac remodelling: new insights and future perspectives. Int J Cardiol 2013;167:1651-9
    • (2013) Int J Cardiol , vol.167 , pp. 1651-1659
    • Orenes-Pinero, E.1    Montoro-Garcia, S.2    Patel, J.V.3
  • 5
    • 78649321995 scopus 로고    scopus 로고
    • Use of cardiac magnetic resonance imaging to evaluate cardiac structure, function and fibrosis in children with infantile Pompe disease on enzyme replacement therapy
    • Barker PC, Pasquali SK, Darty S, et al. Use of cardiac magnetic resonance imaging to evaluate cardiac structure, function and fibrosis in children with infantile Pompe disease on enzyme replacement therapy. Mol Genet Metab 2010;101:332-7
    • (2010) Mol Genet Metab , vol.101 , pp. 332-337
    • Barker, P.C.1    Pasquali, S.K.2    Darty, S.3
  • 6
  • 7
    • 84888865520 scopus 로고    scopus 로고
    • Transgenerational epigenetic inheritance: Focus on soma to germline information transfer
    • Sharma A. Transgenerational epigenetic inheritance: focus on soma to germline information transfer. Prog Biophys Mol Biol 2013;113:439-46
    • (2013) Prog Biophys Mol Biol , vol.113 , pp. 439-446
    • Sharma, A.1
  • 8
    • 84899121027 scopus 로고    scopus 로고
    • Regulatory RNAs and paracrine networks in the heart
    • Viereck J, Bang C, Foinquinos A, et al. Regulatory RNAs and paracrine networks in the heart. Cardiovasc Res 2014;102:290-301
    • (2014) Cardiovasc Res , vol.102 , pp. 290-301
    • Viereck, J.1    Bang, C.2    Foinquinos, A.3
  • 9
    • 84879134613 scopus 로고    scopus 로고
    • MicroRNA-22 increases senescence and activates cardiac fibroblasts in the aging heart
    • Jazbutyte V, Fiedler J, Kneitz S, et al. MicroRNA-22 increases senescence and activates cardiac fibroblasts in the aging heart. Age (Dordr) 2013;35:747-62
    • (2013) Age (Dordr) , vol.35 , pp. 747-762
    • Jazbutyte, V.1    Fiedler, J.2    Kneitz, S.3
  • 10
    • 84904541089 scopus 로고    scopus 로고
    • Interpreting the language of histone and DNA modifications
    • Rothbart SB, Strahl BD. Interpreting the language of histone and DNA modifications. Biochim Biophys Acta 2014;1839(8):627-43
    • (2014) Biochim Biophys Acta , vol.1839 , Issue.8 , pp. 627-643
    • Rothbart, S.B.1    Strahl, B.D.2
  • 11
    • 84899831694 scopus 로고    scopus 로고
    • Regulation of DNA methylation turnover at LTR retrotransposons and imprinted loci by the histone methyltransferase Setdb1
    • Leung D, Du T, Wagner U, et al. Regulation of DNA methylation turnover at LTR retrotransposons and imprinted loci by the histone methyltransferase Setdb1. Proc Natl Acad Sci USA 2014;111:6690-5
    • (2014) Proc Natl Acad Sci USA , vol.111 , pp. 6690-6695
    • Leung, D.1    Du, T.2    Wagner, U.3
  • 12
    • 84873449296 scopus 로고    scopus 로고
    • Role of epigenetic mechanisms in the vascular complications of diabetes
    • Reddy MA, Natarajan R. Role of epigenetic mechanisms in the vascular complications of diabetes. Subcell Biochem 2013;61:435-54
    • (2013) Subcell Biochem , vol.61 , pp. 435-454
    • Reddy, M.A.1    Natarajan, R.2
  • 13
    • 84902971042 scopus 로고    scopus 로고
    • DNMT3A silencing RASSF1A promotes cardiac fibrosis through upregulation of ERK1/2
    • Tao H, Yang JJ, Chen ZW, et al. DNMT3A silencing RASSF1A promotes cardiac fibrosis through upregulation of ERK1/2. Toxicology 2014;323C:42-50
    • (2014) Toxicology , vol.323 C , pp. 42-50
    • Tao, H.1    Yang, J.J.2    Chen, Z.W.3
  • 14
    • 84893473726 scopus 로고    scopus 로고
    • Artificial riboswitches for gene expression and replication control of DNA and RNA viruses
    • Ketzer P, Kaufmann JK, Engelhardt S, et al. Artificial riboswitches for gene expression and replication control of DNA and RNA viruses. Proc Natl Acad Sci USA 2014;111:E554-62
    • (2014) Proc Natl Acad Sci USA , vol.111 , pp. E554-E562
    • Ketzer, P.1    Kaufmann, J.K.2    Engelhardt, S.3
  • 15
    • 84883317043 scopus 로고    scopus 로고
    • Sequence-specific cleavage of BM2 gene transcript of influenza B virus by 10-23 catalytic motif containing DNA enzymes significantly inhibits viral RNA translation and replication
    • Kumar B, Kumar P, Rajput R, et al. Sequence-specific cleavage of BM2 gene transcript of influenza B virus by 10-23 catalytic motif containing DNA enzymes significantly inhibits viral RNA translation and replication. Nucleic Acid Ther 2013;23:355-62
    • (2013) Nucleic Acid Ther , vol.23 , pp. 355-362
    • Kumar, B.1    Kumar, P.2    Rajput, R.3
  • 16
    • 84890559595 scopus 로고    scopus 로고
    • Long non-coding RNAs: New players in cell differentiation and development
    • Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genetics 2014;15:7-21
    • (2014) Nat Rev Genetics , vol.15 , pp. 7-21
    • Fatica, A.1    Bozzoni, I.2
  • 17
    • 84868705910 scopus 로고    scopus 로고
    • Long noncoding RNAs in cardiac development and pathophysiology
    • Schonrock N, Harvey RP, Mattick JS. Long noncoding RNAs in cardiac development and pathophysiology. Circ Res 2012;111:1349-62
    • (2012) Circ Res , vol.111 , pp. 1349-1362
    • Schonrock, N.1    Harvey, R.P.2    Mattick, J.S.3
  • 18
    • 84904337178 scopus 로고    scopus 로고
    • Differential role of TIMP2 and TIMP3 in cardiac hypertrophy, fibrosis, and diastolic dysfunction
    • Fan D, Takawale A, Basu R, et al. Differential role of TIMP2 and TIMP3 in cardiac hypertrophy, fibrosis, and diastolic dysfunction. Cardiovasc Res 2014;103(2):268-80
    • (2014) Cardiovasc Res , vol.103 , Issue.2 , pp. 268-280
    • Fan, D.1    Takawale, A.2    Basu, R.3
  • 19
    • 84896741733 scopus 로고    scopus 로고
    • Molecular imaging of the cardiac extracellular matrix
    • de Haas HJ, Arbustini E, Fuster V, et al. Molecular imaging of the cardiac extracellular matrix. Circ Res 2014;114:903-15
    • (2014) Circ Res , vol.114 , pp. 903-915
    • De Haas, H.J.1    Arbustini, E.2    Fuster, V.3
  • 20
    • 84891273415 scopus 로고    scopus 로고
    • The critical role of Sestrin 1 in regulating the proliferation of cardiac fibroblasts
    • Sun G, Xue R, Yao F, et al. The critical role of Sestrin 1 in regulating the proliferation of cardiac fibroblasts. Arch Biochem Biophys 2014;542:1-6.
    • (2014) Arch Biochem Biophys , vol.542 , pp. 1-6
    • Sun, G.1    Xue, R.2    Yao, F.3
  • 21
    • 84900020293 scopus 로고    scopus 로고
    • A novel beta-adrenergic response element regulates both basal and agonist-induced expression of cyclin-dependent kinase 1 gene in cardiac fibroblasts
    • Gaspard GJ, MacLean J, Rioux D, et al. A novel beta-adrenergic response element regulates both basal and agonist-induced expression of cyclin-dependent kinase 1 gene in cardiac fibroblasts. Am J Physiol Cell Physiol 2014;306:C540-50
    • (2014) Am J Physiol Cell Physiol , vol.306 , pp. C540-C550
    • Gaspard, G.J.1    Maclean, J.2    Rioux, D.3
  • 22
    • 84888857378 scopus 로고    scopus 로고
    • Increase in cellular cyclic AMP concentrations reverses the profibrogenic phenotype of cardiac myofibroblasts: A novel therapeutic approach for cardiac fibrosis
    • Lu D, Aroonsakool N, Yokoyama U, et al. Increase in cellular cyclic AMP concentrations reverses the profibrogenic phenotype of cardiac myofibroblasts: a novel therapeutic approach for cardiac fibrosis. Mol Pharmacol 2013;84:787-93
    • (2013) Mol Pharmacol , vol.84 , pp. 787-793
    • Lu, D.1    Aroonsakool, N.2    Yokoyama, U.3
  • 23
    • 84899654453 scopus 로고    scopus 로고
    • Ubiquitin carboxyl terminal hydrolyase L1 - Suppressed autophagic degradation of p21WAF1/Cip1 as a novel feedback mechanism in the control of cardiac fibroblast proliferation
    • Zhang X, Guo L, Niu T, et al. Ubiquitin carboxyl terminal hydrolyase L1-suppressed autophagic degradation of p21WAF1/Cip1 as a novel feedback mechanism in the control of cardiac fibroblast proliferation. PLoS One 2014;9:e94658.
    • (2014) PLoS One , vol.9
    • Zhang, X.1    Guo, L.2    Niu, T.3
  • 24
    • 84895659496 scopus 로고    scopus 로고
    • Calcium sensing receptor promotes cardiac fibroblast proliferation and extracellular matrix secretion
    • Zhang X, Zhang T, Wu J, et al. Calcium sensing receptor promotes cardiac fibroblast proliferation and extracellular matrix secretion. Cell Physiol Biochem 2014;33:557-68
    • (2014) Cell Physiol Biochem , vol.33 , pp. 557-568
    • Zhang, X.1    Zhang, T.2    Wu, J.3
  • 25
    • 84899044784 scopus 로고    scopus 로고
    • Cardiac fibroblast in development and wound healing
    • Deb A, Ubil E. Cardiac fibroblast in development and wound healing. J Mol Cell Cardiol 2014;70C:47-55
    • (2014) J Mol Cell Cardiol , vol.70 C , pp. 47-55
    • Deb, A.1    Ubil, E.2
  • 26
    • 84892425475 scopus 로고    scopus 로고
    • Fibroblast growth factor receptor 1 signaling in adult cardiomyocytes increases contractility and results in a hypertrophic cardiomyopathy
    • Cilvik SN, Wang JI, Lavine KJ, et al. Fibroblast growth factor receptor 1 signaling in adult cardiomyocytes increases contractility and results in a hypertrophic cardiomyopathy. PLoS One 2013;8:e82979
    • (2013) PLoS One , vol.8
    • Cilvik, S.N.1    Wang, J.I.2    Lavine, K.J.3
  • 27
    • 84871914561 scopus 로고    scopus 로고
    • Endogenous IRAK-M attenuates postinfarction remodeling through effects on macrophages and fibroblasts
    • Chen W, Saxena A, Li N, et al. Endogenous IRAK-M attenuates postinfarction remodeling through effects on macrophages and fibroblasts. Arterioscler Thromb Vasc Biol 2012;32:2598-608
    • (2012) Arterioscler Thromb Vasc Biol , vol.32 , pp. 2598-2608
    • Chen, W.1    Saxena, A.2    Li, N.3
  • 30
    • 84874969415 scopus 로고    scopus 로고
    • The role of cardiac fibroblasts in the transition from inflammation to fibrosis following myocardial infarction
    • van Nieuwenhoven FA, Turner NA. The role of cardiac fibroblasts in the transition from inflammation to fibrosis following myocardial infarction. Vascul Pharmacol 2013;58:182-8
    • (2013) Vascul Pharmacol , vol.58 , pp. 182-188
    • Van Nieuwenhoven, F.A.1    Turner, N.A.2
  • 31
    • 84855371090 scopus 로고    scopus 로고
    • Regulation of the inflammatory response in cardiac repair
    • Frangogiannis NG. Regulation of the inflammatory response in cardiac repair. Circ Res 2012;110:159-73
    • (2012) Circ Res , vol.110 , pp. 159-173
    • Frangogiannis, N.G.1
  • 32
    • 84897731251 scopus 로고    scopus 로고
    • Non-coding RNAs as epigenetic regulator of glioma stem-like cell differentiation
    • Katsushima K, Kondo Y. Non-coding RNAs as epigenetic regulator of glioma stem-like cell differentiation. Front Genet 2014;5:14
    • (2014) Front Genet , vol.5 , pp. 14
    • Katsushima, K.1    Kondo, Y.2
  • 33
    • 84885361567 scopus 로고    scopus 로고
    • Non-coding RNAs: The "dark matter" of cardiovascular pathophysiology
    • Iaconetti C, Gareri C, Polimeni A, et al. Non-coding RNAs: the "dark matter" of cardiovascular pathophysiology. Int J Mol Sci 2013;14:19987-20018
    • (2013) Int J Mol Sci , vol.14 , pp. 19987-20018
    • Iaconetti, C.1    Gareri, C.2    Polimeni, A.3
  • 34
    • 84875078530 scopus 로고    scopus 로고
    • Small and long non-coding RNAs in cardiac homeostasis and regeneration
    • Ounzain S, Crippa S, Pedrazzini T. Small and long non-coding RNAs in cardiac homeostasis and regeneration. Biochim Biophys Acta 2013;1833:923-33
    • (2013) Biochim Biophys Acta , vol.1833 , pp. 923-933
    • Ounzain, S.1    Crippa, S.2    Pedrazzini, T.3
  • 35
    • 79953888460 scopus 로고    scopus 로고
    • The functional role of long non-coding RNA in human carcinomas
    • Gibb EA, Brown CJ, Lam WL. The functional role of long non-coding RNA in human carcinomas. Mol Cancer 2011;10:38
    • (2011) Mol Cancer , vol.10 , pp. 38
    • Gibb, E.A.1    Brown, C.J.2    Lam, W.L.3
  • 36
    • 84904748043 scopus 로고    scopus 로고
    • Analysing the relationship between lncRNA and protein-coding gene and the role of lncRNA as ceRNA in pulmonary fibrosis
    • Song X, Cao G, Jing L, et al. Analysing the relationship between lncRNA and protein-coding gene and the role of lncRNA as ceRNA in pulmonary fibrosis. J Cell Mol Med 2014;18(6):991-1003
    • (2014) J Cell Mol Med , vol.18 , Issue.6 , pp. 991-1003
    • Song, X.1    Cao, G.2    Jing, L.3
  • 37
    • 84900415568 scopus 로고    scopus 로고
    • The SLE transcriptome exhibits evidence of chronic endotoxin exposure and has widespread dysregulation of non-coding and coding RNAs
    • Shi L, Zhang Z, Yu AM, et al. The SLE transcriptome exhibits evidence of chronic endotoxin exposure and has widespread dysregulation of non-coding and coding RNAs. PLoS One 2014;9:e93846
    • (2014) PLoS One , vol.9
    • Shi, L.1    Zhang, Z.2    Yu, A.M.3
  • 38
    • 84906938672 scopus 로고    scopus 로고
    • Extracellular vesicle non-coding RNA - New players in the diagnosis and pathogenesis of cholangiocarcinoma
    • Patel T. Extracellular vesicle non-coding RNA - new players in the diagnosis and pathogenesis of cholangiocarcinoma. Hepatology 2014;60(3):782-4
    • (2014) Hepatology , vol.60 , Issue.3 , pp. 782-784
    • Patel, T.1
  • 39
    • 84900031026 scopus 로고    scopus 로고
    • Indoleamine 2,3-dioxygenase inhibition alters the non-coding RNA transcriptome following renal ischemia-reperfusion injury
    • Merchen TD, Boesen EI, Gardner JR, et al. Indoleamine 2,3-dioxygenase inhibition alters the non-coding RNA transcriptome following renal ischemia-reperfusion injury. Transpl Immunol 2014;30(4):140-4
    • (2014) Transpl Immunol , vol.30 , Issue.4 , pp. 140-144
    • Merchen, T.D.1    Boesen, E.I.2    Gardner, J.R.3
  • 40
    • 84898671963 scopus 로고    scopus 로고
    • Microarray expression profile analysis of long noncoding RNAs in human gastric cardiac adenocarcinoma
    • Wang Y, Gao S, Liu G, et al. Microarray expression profile analysis of long noncoding RNAs in human gastric cardiac adenocarcinoma. Cell Physiol Biochem 2014;33:1225-38
    • (2014) Cell Physiol Biochem , vol.33 , pp. 1225-1238
    • Wang, Y.1    Gao, S.2    Liu, G.3
  • 41
    • 84891959206 scopus 로고    scopus 로고
    • In this issue of epigenetics: Special focus on non-coding RNAs in epigenetic regulation
    • Slack FJ. In this issue of epigenetics: special focus on non-coding RNAs in epigenetic regulation. Epigenetics 2014;9:1-2
    • (2014) Epigenetics , vol.9 , pp. 1-2
    • Slack, F.J.1
  • 42
    • 84900565779 scopus 로고    scopus 로고
    • Emerging insights into the role of MicroRNAs in the pathogenesis of cholangiocarcinoma
    • Haga H, Yan I, Takahashi K, et al. Emerging insights into the role of MicroRNAs in the pathogenesis of cholangiocarcinoma. Gene Expr 2014;16:93-9
    • (2014) Gene Expr , vol.16 , pp. 93-99
    • Haga, H.1    Yan, I.2    Takahashi, K.3
  • 43
    • 84880476558 scopus 로고    scopus 로고
    • The induction of miR-96 by mitochondrial dysfunction causes impaired glycogen synthesis through translational repression of IRS-1 in SKHep1 cells
    • Jeong HJ, Park SY, Yang WM, et al. The induction of miR-96 by mitochondrial dysfunction causes impaired glycogen synthesis through translational repression of IRS-1 in SKHep1 cells. Biochem Biophys Res Commun 2013;434:503-8
    • (2013) Biochem Biophys Res Commun , vol.434 , pp. 503-508
    • Jeong, H.J.1    Park, S.Y.2    Yang, W.M.3
  • 44
    • 84901020290 scopus 로고    scopus 로고
    • MiR-181c regulates the mitochondrial genome, bioenergetics, and propensity for heart failure in vivo
    • Das S, Bedja D, Campbell N, et al. miR-181c regulates the mitochondrial genome, bioenergetics, and propensity for heart failure in vivo. PLoS One 2014;9:e96820
    • (2014) PLoS One , vol.9
    • Das, S.1    Bedja, D.2    Campbell, N.3
  • 45
    • 84890891160 scopus 로고    scopus 로고
    • Genomewide mapping and screening of Kaposi's sarcoma-associated herpesvirus (KSHV) 3' untranslated regions identify bicistronic and polycistronic viral transcripts as frequent targets of KSHV microRNAs
    • Bai Z, Huang Y, Li W, et al. Genomewide mapping and screening of Kaposi's sarcoma-associated herpesvirus (KSHV) 3' untranslated regions identify bicistronic and polycistronic viral transcripts as frequent targets of KSHV microRNAs. J Virol 2014;88:377-92
    • (2014) J Virol , vol.88 , pp. 377-392
    • Bai, Z.1    Huang, Y.2    Li, W.3
  • 46
    • 82355171192 scopus 로고    scopus 로고
    • A systematic analysis of the 3'UTR of HNF4A mRNA reveals an interplay of regulatory elements including miRNA target sites
    • Wirsing A, Senkel S, Klein-Hitpass L, et al. A systematic analysis of the 3'UTR of HNF4A mRNA reveals an interplay of regulatory elements including miRNA target sites. PLoS One 2011;6:e27438
    • (2011) PLoS One , vol.6
    • Wirsing, A.1    Senkel, S.2    Klein-Hitpass, L.3
  • 47
    • 84895740923 scopus 로고    scopus 로고
    • MeCP2 suppresses nuclear microRNA processing and dendritic growth by regulating the DGCR8/ Drosha complex
    • Cheng TL, Wang Z, Liao Q, et al. MeCP2 suppresses nuclear microRNA processing and dendritic growth by regulating the DGCR8/ Drosha complex. Dev Cell 2014;28:547-60
    • (2014) Dev Cell , vol.28 , pp. 547-560
    • Cheng, T.L.1    Wang, Z.2    Liao, Q.3
  • 48
    • 84934434793 scopus 로고    scopus 로고
    • Construction of ligand-responsive microRNAs that operate through inhibition of Drosha processing
    • Beisel CL, Bloom RJ, Smolke CD. Construction of ligand-responsive microRNAs that operate through inhibition of Drosha processing. Methods Mol Biol 2014;1111:259-67
    • (2014) Methods Mol Biol , vol.1111 , pp. 259-267
    • Beisel, C.L.1    Bloom, R.J.2    Smolke, C.D.3
  • 49
    • 84905569650 scopus 로고    scopus 로고
    • Non-coding RNA interact to regulate neuronal development and function
    • Iyengar BR, Choudhary A, Sarangdhar MA, et al. Non-coding RNA interact to regulate neuronal development and function. Front Cell Neurosci 2014;8:47
    • (2014) Front Cell Neurosci , vol.8 , pp. 47
    • Iyengar, B.R.1    Choudhary, A.2    Sarangdhar, M.A.3
  • 50
    • 84893027964 scopus 로고    scopus 로고
    • Wolbachia interferes with the intracellular distribution of Argonaute 1 in the dengue vector Aedes aegypti by manipulating the host microRNAs
    • Hussain M, O'Neill SL, Asgari S. Wolbachia interferes with the intracellular distribution of Argonaute 1 in the dengue vector Aedes aegypti by manipulating the host microRNAs. RNA Biol 2013;10:1868-75
    • (2013) RNA Biol , vol.10 , pp. 1868-1875
    • Hussain, M.1    O'neill, S.L.2    Asgari, S.3
  • 51
    • 84898993533 scopus 로고    scopus 로고
    • Differential RISC association of endogenous human microRNAs predicts their inhibitory potential
    • Flores O, Kennedy EM, Skalsky RL, et al. Differential RISC association of endogenous human microRNAs predicts their inhibitory potential. Nucleic Acids Res 2014;42:4629-39
    • (2014) Nucleic Acids Res , vol.42 , pp. 4629-4639
    • Flores, O.1    Kennedy, E.M.2    Skalsky, R.L.3
  • 52
    • 84880348047 scopus 로고    scopus 로고
    • Role of microRNAs in atrial fibrillation: New insights and perspectives
    • Shi KH, Tao H, Yang JJ, et al. Role of microRNAs in atrial fibrillation: new insights and perspectives. Cell Signal 2013;25:2079-84
    • (2013) Cell Signal , vol.25 , pp. 2079-2084
    • Shi, K.H.1    Tao, H.2    Yang, J.J.3
  • 53
    • 84882797818 scopus 로고    scopus 로고
    • Targeting translational control as a novel way to treat inflammatory disease: The emerging role of microRNAs
    • Plank M, Maltby S, Mattes J, et al. Targeting translational control as a novel way to treat inflammatory disease: the emerging role of microRNAs. Clin Exp Allergy 2013;43:981-99
    • (2013) Clin Exp Allergy , vol.43 , pp. 981-999
    • Plank, M.1    Maltby, S.2    Mattes, J.3
  • 54
    • 84899128394 scopus 로고    scopus 로고
    • Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy
    • Bang C, Batkai S, Dangwal S, et al. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Invest 2014;124:2136-46
    • (2014) J Clin Invest , vol.124 , pp. 2136-2146
    • Bang, C.1    Batkai, S.2    Dangwal, S.3
  • 55
    • 84894577814 scopus 로고    scopus 로고
    • Cardiac miR-133a overexpression prevents early cardiac fibrosis in diabetes
    • Chen S, Puthanveetil P, Feng B, et al. Cardiac miR-133a overexpression prevents early cardiac fibrosis in diabetes. J Cell Mol Med 2014;18:415-21
    • (2014) J Cell Mol Med , vol.18 , pp. 415-421
    • Chen, S.1    Puthanveetil, P.2    Feng, B.3
  • 56
    • 84922393142 scopus 로고    scopus 로고
    • Long non-coding RNA MVIH indicates a poor prognosis for non-small cell lung cancer and promotes cell proliferation and invasion
    • Nie FQ, Zhu Q, Xu TP, et al. Long non-coding RNA MVIH indicates a poor prognosis for non-small cell lung cancer and promotes cell proliferation and invasion. Tumour Biol 2014;35(8):7587-94
    • (2014) Tumour Biol , vol.35 , Issue.8 , pp. 7587-7594
    • Nie, F.Q.1    Zhu, Q.2    Xu, T.P.3
  • 57
    • 84890409577 scopus 로고    scopus 로고
    • Promoter RNA links transcriptional regulation of inflammatory pathway genes
    • Matsui M, Chu Y, Zhang H, et al. Promoter RNA links transcriptional regulation of inflammatory pathway genes. Nucleic Acids Res 2013;41:10086-109
    • (2013) Nucleic Acids Res , vol.41 , pp. 10086-10109
    • Matsui, M.1    Chu, Y.2    Zhang, H.3
  • 58
    • 84883496216 scopus 로고    scopus 로고
    • Predicting long non-coding RNAs using RNA sequencing
    • Ilott NE, Ponting CP. Predicting long non-coding RNAs using RNA sequencing. Methods 2013;63:50-9
    • (2013) Methods , vol.63 , pp. 50-59
    • Ilott, N.E.1    Ponting, C.P.2
  • 59
    • 84871424664 scopus 로고    scopus 로고
    • Long non-coding RNAs in stem cell pluripotency
    • Ng SY, Stanton LW. Long non-coding RNAs in stem cell pluripotency. Wiley Interdiscip Rev RNA 2013;4:121-8
    • (2013) Wiley Interdiscip Rev RNA , vol.4 , pp. 121-128
    • Ng, S.Y.1    Stanton, L.W.2
  • 60
    • 84858700038 scopus 로고    scopus 로고
    • Noncoding RNAs involved in mammary gland development and tumorigenesis: There's a long way to go
    • Shore AN, Herschkowitz JI, Rosen JM. Noncoding RNAs involved in mammary gland development and tumorigenesis: there's a long way to go. J Mammary Gland Biol Neoplasia 2012;17:43-58
    • (2012) J Mammary Gland Biol Neoplasia , vol.17 , pp. 43-58
    • Shore, A.N.1    Herschkowitz, J.I.2    Rosen, J.M.3
  • 61
    • 84874547925 scopus 로고    scopus 로고
    • Regulatory mechanisms of long noncoding RNAs in vertebrate central nervous system development and function
    • Knauss JL, Sun T. Regulatory mechanisms of long noncoding RNAs in vertebrate central nervous system development and function. Neuroscience 2013;235:200-14
    • (2013) Neuroscience , vol.235 , pp. 200-214
    • Knauss, J.L.1    Sun, T.2
  • 62
    • 84881478367 scopus 로고    scopus 로고
    • A long noncoding RNA mediates both activation and repression of immune response genes
    • Carpenter S, Aiello D, Atianand MK, et al. A long noncoding RNA mediates both activation and repression of immune response genes. Science 2013;341:789-92
    • (2013) Science , vol.341 , pp. 789-792
    • Carpenter, S.1    Aiello, D.2    Atianand, M.K.3
  • 63
    • 77955323879 scopus 로고    scopus 로고
    • A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response
    • Huarte M, Guttman M, Feldser D, et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 2010;142:409-19
    • (2010) Cell , vol.142 , pp. 409-419
    • Huarte, M.1    Guttman, M.2    Feldser, D.3
  • 64
    • 77954572735 scopus 로고    scopus 로고
    • Long noncoding RNA as modular scaffold of histone modification complexes
    • Tsai MC, Manor O, Wan Y, et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science 2010;329:689-93
    • (2010) Science , vol.329 , pp. 689-693
    • Tsai, M.C.1    Manor, O.2    Wan, Y.3
  • 65
    • 84859731822 scopus 로고    scopus 로고
    • Epigenetic modifications in cardiovascular disease
    • Lorenzen JM, Martino F, Thum T. Epigenetic modifications in cardiovascular disease. Basic Res Cardiol 2012;107:245
    • (2012) Basic Res Cardiol , vol.107 , pp. 245
    • Lorenzen, J.M.1    Martino, F.2    Thum, T.3
  • 66
    • 62249133709 scopus 로고    scopus 로고
    • Chromatin signature reveals over a thousand highly conserved large noncoding RNAs in mammals
    • Guttman M, Amit I, Garber M, et al. Chromatin signature reveals over a thousand highly conserved large noncoding RNAs in mammals. Nature 2009;458:223-7
    • (2009) Nature , vol.458 , pp. 223-227
    • Guttman, M.1    Amit, I.2    Garber, M.3
  • 67
    • 84861904178 scopus 로고    scopus 로고
    • Genome regulation by long noncoding RNAs
    • Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem 2012;81:145-66
    • (2012) Annu Rev Biochem , vol.81 , pp. 145-166
    • Rinn, J.L.1    Chang, H.Y.2
  • 68
    • 84895908120 scopus 로고    scopus 로고
    • The evolution of lncRNA repertoires and expression patterns in tetrapods
    • Necsulea A, Soumillon M, Warnefors M, et al. The evolution of lncRNA repertoires and expression patterns in tetrapods. Nature 2014;505:635-40
    • (2014) Nature , vol.505 , pp. 635-640
    • Necsulea, A.1    Soumillon, M.2    Warnefors, M.3
  • 69
    • 84897478712 scopus 로고    scopus 로고
    • Long noncoding RNA plays a key role in metastasis and prognosis of hepatocellular carcinoma
    • Li G, Zhang H, Wan X, et al. Long noncoding RNA plays a key role in metastasis and prognosis of hepatocellular carcinoma. BioMed Res Int 2014;2014:780521
    • (2014) BioMed Res Int , vol.2014 , pp. 780521
    • Li, G.1    Zhang, H.2    Wan, X.3
  • 70
    • 78649339069 scopus 로고    scopus 로고
    • Long noncoding RNA in genome regulation: Prospects and mechanisms
    • Hung T, Chang HY. Long noncoding RNA in genome regulation: prospects and mechanisms. RNA Biol 2010;7:582-5
    • (2010) RNA Biol , vol.7 , pp. 582-585
    • Hung, T.1    Chang, H.Y.2
  • 71
    • 56549111129 scopus 로고    scopus 로고
    • The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin
    • Nagano T, Mitchell JA, Sanz LA, et al. The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science 2008;322:1717-20
    • (2008) Science , vol.322 , pp. 1717-1720
    • Nagano, T.1    Mitchell, J.A.2    Sanz, L.A.3
  • 72
    • 84870293419 scopus 로고    scopus 로고
    • Epigenetic mechanisms and the development of asthma
    • Yang IV, Schwartz DA. Epigenetic mechanisms and the development of asthma. J Allergy Clin Immunol 2012;130:1243-55
    • (2012) J Allergy Clin Immunol , vol.130 , pp. 1243-1255
    • Yang, I.V.1    Schwartz, D.A.2
  • 73
    • 84901375255 scopus 로고    scopus 로고
    • Methylome diversification through changes in DNA methyltransferase sequence specificity
    • Furuta Y, Namba-Fukuyo H, Shibata TF, et al. Methylome diversification through changes in DNA methyltransferase sequence specificity. PLoS Genet 2014;10:e1004272
    • (2014) PLoS Genet , vol.10
    • Furuta, Y.1    Namba-Fukuyo, H.2    Shibata, T.F.3
  • 75
    • 84900429337 scopus 로고    scopus 로고
    • Epigenetic-based immune intervention for rheumatic diseases
    • Gray SG. Epigenetic-based immune intervention for rheumatic diseases. Epigenomics 2014;6:253-71
    • (2014) Epigenomics , vol.6 , pp. 253-271
    • Gray, S.G.1
  • 76
    • 84901227834 scopus 로고    scopus 로고
    • Epigenetic silencing of EYA2 in pancreatic adenocarcinomas promotes tumor growth
    • Vincent A, Hong SM, Hu C, et al. Epigenetic silencing of EYA2 in pancreatic adenocarcinomas promotes tumor growth. Oncotarget 2014;5(9):2575-87
    • (2014) Oncotarget , vol.5 , Issue.9 , pp. 2575-2587
    • Vincent, A.1    Hong, S.M.2    Hu, C.3
  • 77
    • 84901484322 scopus 로고    scopus 로고
    • Epigenetic regulation of sox30 is associated with testis development in mice
    • Han F, Dong Y, Liu W, et al. Epigenetic regulation of sox30 is associated with testis development in mice. PLoS One 2014;9:e97203
    • (2014) PLoS One , vol.9
    • Han, F.1    Dong, Y.2    Liu, W.3
  • 78
    • 84905452505 scopus 로고    scopus 로고
    • Nucleosome repositioning links DNA (de)methylation and differential CTCF binding during stem cell development
    • Teif VB, Beshnova DA, Vainshtein Y, et al. Nucleosome repositioning links DNA (de)methylation and differential CTCF binding during stem cell development. Genome Res 2014;24(8):1285-95
    • (2014) Genome Res , vol.24 , Issue.8 , pp. 1285-1295
    • Teif, V.B.1    Beshnova, D.A.2    Vainshtein, Y.3
  • 79
    • 84894624462 scopus 로고    scopus 로고
    • Expression of exogenous DNA methyltransferases: Application in molecular and cell biology
    • Dyachenko OV, Tarlachkov SV, Marinitch DV, et al. Expression of exogenous DNA methyltransferases: application in molecular and cell biology. Biochemistry(Mosc) 2014;79:77-87
    • (2014) Biochemistry(Mosc) , vol.79 , pp. 77-87
    • Dyachenko, O.V.1    Tarlachkov, S.V.2    Marinitch, D.V.3
  • 80
    • 84904570517 scopus 로고    scopus 로고
    • DNA methylation in cardiac fibrosis: New advances and perspectives
    • Tao H, Yang JJ, Shi KH, et al. DNA methylation in cardiac fibrosis: New advances and perspectives. Toxicology 2014;323:125-9
    • (2014) Toxicology , vol.323 , pp. 125-129
    • Tao, H.1    Yang, J.J.2    Shi, K.H.3
  • 81
    • 84897933013 scopus 로고    scopus 로고
    • Helicobacter pylori DNA methyltransferases and the epigenetic field effect in cancerization
    • Sitaraman R. Helicobacter pylori DNA methyltransferases and the epigenetic field effect in cancerization. Front Microbiol 2014;5:115
    • (2014) Front Microbiol , vol.5 , pp. 115
    • Sitaraman, R.1
  • 82
    • 84903200325 scopus 로고    scopus 로고
    • Aberrant repair initiated by mismatchspecific thymine-DNA glycosylases provides a mechanism for the mutational bias observed in CpG islands
    • Talhaoui I, Couve S, Gros L, et al. Aberrant repair initiated by mismatchspecific thymine-DNA glycosylases provides a mechanism for the mutational bias observed in CpG islands. Nucleic Acids Res 2014;42(10):6300-13
    • (2014) Nucleic Acids Res , vol.42 , Issue.10 , pp. 6300-6313
    • Talhaoui, I.1    Couve, S.2    Gros, L.3
  • 83
    • 84877350648 scopus 로고    scopus 로고
    • Holocarboxylase synthetase synergizes with methyl CpG binding protein 2 and DNA methyltransferase 1 in the transcriptional repression of longterminal repeats
    • Xue J, Wijeratne SS, Zempleni J. Holocarboxylase synthetase synergizes with methyl CpG binding protein 2 and DNA methyltransferase 1 in the transcriptional repression of longterminal repeats. Epigenetics 2013;8:504-11
    • (2013) Epigenetics , vol.8 , pp. 504-511
    • Xue, J.1    Wijeratne, S.S.2    Zempleni, J.3
  • 84
    • 84876299211 scopus 로고    scopus 로고
    • Nucleosome structural changes induced by binding of non-histone chromosomal proteins HMGN1 and HMGN2
    • Shimahara H, Hirano T, Ohya K, et al. Nucleosome structural changes induced by binding of non-histone chromosomal proteins HMGN1 and HMGN2. FEBS Open Bio 2013;3:184-91
    • (2013) FEBS Open Bio , vol.3 , pp. 184-191
    • Shimahara, H.1    Hirano, T.2    Ohya, K.3
  • 85
    • 84859485912 scopus 로고    scopus 로고
    • Monoubiquitinated histone H2A destabilizes photolesion-containing nucleosomes with concomitant release of UV-damaged DNA-binding protein E3 ligase
    • Lan L, Nakajima S, Kapetanaki MG, et al. Monoubiquitinated histone H2A destabilizes photolesion-containing nucleosomes with concomitant release of UV-damaged DNA-binding protein E3 ligase. J Biol Chem 2012;287:12036-49
    • (2012) J Biol Chem , vol.287 , pp. 12036-12049
    • Lan, L.1    Nakajima, S.2    Kapetanaki, M.G.3
  • 86
    • 84878441552 scopus 로고    scopus 로고
    • Epigenetic memory in the context of nuclear reprogramming and cancer
    • Halley-Stott RP, Gurdon JB. Epigenetic memory in the context of nuclear reprogramming and cancer. Brief Funct Genomics 2013;12:164-73
    • (2013) Brief Funct Genomics , vol.12 , pp. 164-173
    • Halley-Stott, R.P.1    Gurdon, J.B.2
  • 87
    • 32844459336 scopus 로고    scopus 로고
    • The Polycomb group protein EZH2 directly controls DNA methylation
    • Vire E, Brenner C, Deplus R, et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature 2006;439:871-4
    • (2006) Nature , vol.439 , pp. 871-874
    • Vire, E.1    Brenner, C.2    Deplus, R.3
  • 88
    • 84905254858 scopus 로고    scopus 로고
    • Epigenetic targets and drug discovery: Part 1: Histone methylation
    • Liu Y, Liu K, Qin S, et al. Epigenetic targets and drug discovery: Part 1: histone methylation. Pharmacol Ther 2014;143(3):275-94
    • (2014) Pharmacol Ther , vol.143 , Issue.3 , pp. 275-294
    • Liu, Y.1    Liu, K.2    Qin, S.3
  • 89
    • 84880864749 scopus 로고    scopus 로고
    • Histone modifications for human epigenome analysis
    • Kimura H. Histone modifications for human epigenome analysis. J Hum Genet 2013;58:439-45
    • (2013) J Hum Genet , vol.58 , pp. 439-445
    • Kimura, H.1
  • 90
    • 84879784053 scopus 로고    scopus 로고
    • Epigenetic regulation of cardiac fibrosis
    • Tao H, Shi KH, Yang JJ, et al. Epigenetic regulation of cardiac fibrosis. Cell Signal 2013;25:1932-8
    • (2013) Cell Signal , vol.25 , pp. 1932-1938
    • Tao, H.1    Shi, K.H.2    Yang, J.J.3
  • 91
    • 84867130276 scopus 로고    scopus 로고
    • Packaging the fly genome: Domains and dynamics
    • White R. Packaging the fly genome: domains and dynamics. Brief Funct Genomics 2012;11:347-55
    • (2012) Brief Funct Genomics , vol.11 , pp. 347-355
    • White, R.1
  • 92
    • 33744906046 scopus 로고    scopus 로고
    • Genomic models of metastatic cancer: Functional analysis of death-from-cancer signature genes reveals aneuploid, anoikis-resistant, metastasisenabling phenotype with altered cell cycle control and activated Polycomb Group (PcG) protein chromatin silencing pathway
    • Glinsky GV. Genomic models of metastatic cancer: functional analysis of death-from-cancer signature genes reveals aneuploid, anoikis-resistant, metastasisenabling phenotype with altered cell cycle control and activated Polycomb Group (PcG) protein chromatin silencing pathway. Cell Cycle 2006;5:1208-16
    • (2006) Cell Cycle , vol.5 , pp. 1208-1216
    • Glinsky, G.V.1
  • 93
    • 84868475728 scopus 로고    scopus 로고
    • MicroRNA therapeutics for cardiovascular disease: Opportunities and obstacles
    • van Rooij E, Olson EN. MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nat Rev Drug Discov 2012;11:860-72
    • (2012) Nat Rev Drug Discov , vol.11 , pp. 860-872
    • Van Rooij, E.1    Olson, E.N.2
  • 95
    • 84891340358 scopus 로고    scopus 로고
    • Therapeutic resistance in cancer: MicroRNA regulation of EGFR signaling networks
    • Gomez GG, Wykosky J, Zanca C, et al. Therapeutic resistance in cancer: microRNA regulation of EGFR signaling networks. Cancer Biol Med 2013;10:192-205
    • (2013) Cancer Biol Med , vol.10 , pp. 192-205
    • Gomez, G.G.1    Wykosky, J.2    Zanca, C.3
  • 96
    • 84883189850 scopus 로고    scopus 로고
    • MicroRNA-128 coordinately targets Polycomb Repressor Complexes in glioma stem cells
    • Peruzzi P, Bronisz A, Nowicki MO, et al. MicroRNA-128 coordinately targets Polycomb Repressor Complexes in glioma stem cells. Neuro-oncol 2013;15:1212-24
    • (2013) Neuro-oncol , vol.15 , pp. 1212-1224
    • Peruzzi, P.1    Bronisz, A.2    Nowicki, M.O.3
  • 97
    • 84893302190 scopus 로고    scopus 로고
    • The primary microRNA-208b interacts with Polycomb-group protein, Ezh2, to regulate gene expression in the heart
    • Mathiyalagan P, Okabe J, Chang L, et al. The primary microRNA-208b interacts with Polycomb-group protein, Ezh2, to regulate gene expression in the heart. Nucleic Acids Res 2014;42:790-803
    • (2014) Nucleic Acids Res , vol.42 , pp. 790-803
    • Mathiyalagan, P.1    Okabe, J.2    Chang, L.3
  • 98
    • 84880045471 scopus 로고    scopus 로고
    • MicroRNA-214 provokes cardiac hypertrophy via repression of EZH2
    • Yang T, Zhang GF, Chen XF, et al. MicroRNA-214 provokes cardiac hypertrophy via repression of EZH2. Biochem Biophys Res Commun 2013;436:578-84
    • (2013) Biochem Biophys Res Commun , vol.436 , pp. 578-584
    • Yang, T.1    Zhang, G.F.2    Chen, X.F.3
  • 99
    • 84890819225 scopus 로고    scopus 로고
    • Cardiomyogenesis is controlled by the miR-99a/let-7c cluster and epigenetic modifications
    • Coppola A, Romito A, Borel C, et al. Cardiomyogenesis is controlled by the miR-99a/let-7c cluster and epigenetic modifications. Stem Cell Res 2014;12:323-37
    • (2014) Stem Cell Res , vol.12 , pp. 323-337
    • Coppola, A.1    Romito, A.2    Borel, C.3
  • 100
    • 80052908737 scopus 로고    scopus 로고
    • MicroRNA-195 promotes palmitateinduced apoptosis in cardiomyocytes by down-regulating Sirt1
    • Zhu H, Yang Y, Wang Y, et al. MicroRNA-195 promotes palmitateinduced apoptosis in cardiomyocytes by down-regulating Sirt1. Cardiovasc Res 2011;92:75-84
    • (2011) Cardiovasc Res , vol.92 , pp. 75-84
    • Zhu, H.1    Yang, Y.2    Wang, Y.3
  • 101
    • 84877583076 scopus 로고    scopus 로고
    • MicroRNA-22 regulates cardiac hypertrophy and remodeling in response to stress
    • Huang ZP, Chen J, Seok HY, et al. MicroRNA-22 regulates cardiac hypertrophy and remodeling in response to stress. Circ Res 2013;112:1234-43
    • (2013) Circ Res , vol.112 , pp. 1234-1243
    • Huang, Z.P.1    Chen, J.2    Seok, H.Y.3
  • 102
    • 84872317879 scopus 로고    scopus 로고
    • Synergistic induction of miR-126 by hypoxia and HDAC inhibitors in cardiac myocytes
    • Shi H, Chen L, Wang H, et al. Synergistic induction of miR-126 by hypoxia and HDAC inhibitors in cardiac myocytes. Biochem Biophys Res Commun 2013;430:827-32
    • (2013) Biochem Biophys Res Commun , vol.430 , pp. 827-832
    • Shi, H.1    Chen, L.2    Wang, H.3
  • 103
    • 84872409477 scopus 로고    scopus 로고
    • MiR-150 regulates high glucose-induced cardiomyocyte hypertrophy by targeting the transcriptional co-activator p300
    • Duan Y, Zhou B, Su H, et al. miR-150 regulates high glucose-induced cardiomyocyte hypertrophy by targeting the transcriptional co-activator p300. Exp Cell Res 2013;319:173-84
    • (2013) Exp Cell Res , vol.319 , pp. 173-184
    • Duan, Y.1    Zhou, B.2    Su, H.3
  • 104
    • 84857111170 scopus 로고    scopus 로고
    • Molecular basis of cardiac endothelial-to-mesenchymal transition (EndMT): Differential expression of microRNAs during EndMT
    • Ghosh AK, Nagpal V, Covington JW, et al. Molecular basis of cardiac endothelial-to-mesenchymal transition (EndMT): differential expression of microRNAs during EndMT. Cell Signal 2012;24:1031-6
    • (2012) Cell Signal , vol.24 , pp. 1031-1036
    • Ghosh, A.K.1    Nagpal, V.2    Covington, J.W.3
  • 105
    • 84865565944 scopus 로고    scopus 로고
    • MicroRNA-133a regulates DNA methylation in diabetic cardiomyocytes
    • Chavali V, Tyagi SC, Mishra PK. MicroRNA-133a regulates DNA methylation in diabetic cardiomyocytes. Biochem Biophys Res Commun 2012;425:668-72
    • (2012) Biochem Biophys Res Commun , vol.425 , pp. 668-672
    • Chavali, V.1    Tyagi, S.C.2    Mishra, P.K.3
  • 106
    • 84867073340 scopus 로고    scopus 로고
    • Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage
    • Wamstad JA, Alexander JM, Truty RM, et al. Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage. Cell 2012;151:206-20
    • (2012) Cell , vol.151 , pp. 206-220
    • Wamstad, J.A.1    Alexander, J.M.2    Truty, R.M.3
  • 107
    • 84887987876 scopus 로고    scopus 로고
    • Roles of microRNAs in pressure overload- and ischemia-related myocardial remodeling
    • Zhou S, Liu Y, Prater K, et al. Roles of microRNAs in pressure overload- and ischemia-related myocardial remodeling. Life Sci 2013;93:855-62
    • (2013) Life Sci , vol.93 , pp. 855-862
    • Zhou, S.1    Liu, Y.2    Prater, K.3
  • 108
    • 84897128298 scopus 로고    scopus 로고
    • The noncoding RNA revolution-trashing old rules to forge new ones
    • Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to forge new ones. Cell 2014;157:77-94
    • (2014) Cell , vol.157 , pp. 77-94
    • Cech, T.R.1    Steitz, J.A.2
  • 109
    • 84899912204 scopus 로고    scopus 로고
    • The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489
    • Wang K, Liu F, Zhou LY, et al. The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circ Res 2014;114:1377-88
    • (2014) Circ Res , vol.114 , pp. 1377-1388
    • Wang, K.1    Liu, F.2    Zhou, L.Y.3
  • 110
    • 84873829893 scopus 로고    scopus 로고
    • The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse
    • Grote P, Wittler L, Hendrix D, et al. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell 2013;24:206-14
    • (2013) Dev Cell , vol.24 , pp. 206-214
    • Grote, P.1    Wittler, L.2    Hendrix, D.3
  • 111
    • 84908418805 scopus 로고    scopus 로고
    • CARL lncRNA inhibits anoxia-induced mitochondrial fission and apoptosis in cardiomyocytes by impairing miR-539-dependent PHB2 downregulation
    • Wang K, Long B, Zhou LY, et al. CARL lncRNA inhibits anoxia-induced mitochondrial fission and apoptosis in cardiomyocytes by impairing miR-539-dependent PHB2 downregulation. Nat Commun 2014;5:3596
    • (2014) Nat Commun , vol.5 , pp. 3596
    • Wang, K.1    Long, B.2    Zhou, L.Y.3
  • 112
    • 77649253288 scopus 로고    scopus 로고
    • MicroRNAs add a new dimension to cardiovascular disease
    • Small EM, Frost RJ, Olson EN. MicroRNAs add a new dimension to cardiovascular disease. Circulation 2010;121:1022-32
    • (2010) Circulation , vol.121 , pp. 1022-1032
    • Small, E.M.1    Frost, R.J.2    Olson, E.N.3
  • 113
    • 77950841042 scopus 로고    scopus 로고
    • Transcriptional gene silencing through epigenetic changes mediated by non-coding RNAs
    • Malecova B, Morris KV. Transcriptional gene silencing through epigenetic changes mediated by non-coding RNAs. Curr Opin Mol Ther 2010;12:214-22
    • (2010) Curr Opin Mol Ther , vol.12 , pp. 214-222
    • Malecova, B.1    Morris, K.V.2
  • 114
    • 79953858658 scopus 로고    scopus 로고
    • No-nonsense functions for long noncoding RNAs
    • Nagano T, Fraser P. No-nonsense functions for long noncoding RNAs. Cell 2011;145:178-81
    • (2011) Cell , vol.145 , pp. 178-181
    • Nagano, T.1    Fraser, P.2
  • 115
    • 84891936130 scopus 로고    scopus 로고
    • Non-coding RNAs as direct and indirect modulators of epigenetic regulation
    • Peschansky VJ, Wahlestedt C. Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics 2014;9:3-12
    • (2014) Epigenetics , vol.9 , pp. 3-12
    • Peschansky, V.J.1    Wahlestedt, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.