메뉴 건너뛰기




Volumn 26, Issue 2, 2015, Pages 1-12

Hierarchical polymeric scaffolds support the growth of MC3T3-E1 cells

Author keywords

[No Author keywords available]

Indexed keywords

CELL ADHESION; CELL CULTURE; CELL ENGINEERING; CELL PROLIFERATION; CELLS; PHASE SEPARATION; PORE SIZE; TISSUE; TISSUE REGENERATION;

EID: 84922793986     PISSN: 09574530     EISSN: 15734838     Source Type: Journal    
DOI: 10.1007/s10856-015-5453-z     Document Type: Article
Times cited : (29)

References (80)
  • 2
    • 84866851192 scopus 로고    scopus 로고
    • Concise review: personalized human bone grafts for reconstructing head and face
    • Bhumiratana S, Vunjak-Novakovic G. Concise review: personalized human bone grafts for reconstructing head and face. Stem Cells Trans Med. 2012;1:64–9.
    • (2012) Stem Cells Trans Med. , vol.1 , pp. 64-69
    • Bhumiratana, S.1    Vunjak-Novakovic, G.2
  • 3
    • 77952836095 scopus 로고    scopus 로고
    • Experimental and computational characterization of designed and fabricated 50:50 PLGA porous scaffolds for human trabecular bone applications, Journal of materials science
    • Saito E, Kang H, Taboas JM, Diggs A, Flanagan CL, Hollister SJ. Experimental and computational characterization of designed and fabricated 50:50 PLGA porous scaffolds for human trabecular bone applications, Journal of materials science. Mater Med. 2010;21(8):2371–83.
    • (2010) Mater Med. , vol.21 , Issue.8 , pp. 2371-2383
    • Saito, E.1    Kang, H.2    Taboas, J.M.3    Diggs, A.4    Flanagan, C.L.5    Hollister, S.J.6
  • 4
    • 84873412572 scopus 로고    scopus 로고
    • New paradigms in hierarchical porous scaffold design for tissue engineering
    • Yoo D. New paradigms in hierarchical porous scaffold design for tissue engineering. Mater Sci Eng C. 2013;33(3):1759–72.
    • (2013) Mater Sci Eng C , vol.33 , Issue.3 , pp. 1759-1772
    • Yoo, D.1
  • 6
    • 84884816926 scopus 로고    scopus 로고
    • RhBMP-2-loaded calcium silicate/calcium phosphate cement scaffold with hierarchically porous structure for enhanced bone tissue regeneration
    • Zhang J, Zhou H, Yang K, Yuan Y, Liu C. RhBMP-2-loaded calcium silicate/calcium phosphate cement scaffold with hierarchically porous structure for enhanced bone tissue regeneration. Biomaterials. 2013;34(37):9381–92.
    • (2013) Biomaterials , vol.34 , Issue.37 , pp. 9381-9392
    • Zhang, J.1    Zhou, H.2    Yang, K.3    Yuan, Y.4    Liu, C.5
  • 7
    • 34247624498 scopus 로고    scopus 로고
    • Poly(propylene fumarate) bone tissue engineering scaffold fabrication using stereolithography: effects of resin formulations and laser parameters
    • Lee K-W, Wang S, Fox BC, Ritman EL, Yaszemski MJ, Lu L. Poly(propylene fumarate) bone tissue engineering scaffold fabrication using stereolithography: effects of resin formulations and laser parameters. Biomacromolecules. 2007;8(4):1077–84.
    • (2007) Biomacromolecules , vol.8 , Issue.4 , pp. 1077-1084
    • Lee, K.-W.1    Wang, S.2    Fox, B.C.3    Ritman, E.L.4    Yaszemski, M.J.5    Lu, L.6
  • 9
    • 14844322862 scopus 로고    scopus 로고
    • Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering
    • Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE, et al. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials. 2005;26(23):4817–27.
    • (2005) Biomaterials , vol.26 , Issue.23 , pp. 4817-4827
    • Williams, J.M.1    Adewunmi, A.2    Schek, R.M.3    Flanagan, C.L.4    Krebsbach, P.H.5    Feinberg, S.E.6
  • 10
    • 85027928361 scopus 로고    scopus 로고
    • Osteogenesis of adipose-derived stem cells on polycaprolactone–β-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I
    • Liao HT, Lee MY, Tsai WW, Wang HC, Lu WC. Osteogenesis of adipose-derived stem cells on polycaprolactone–β-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I. J Tissue Eng Regen Med. 2013. doi:10.1002/term.1811.
    • (2013) J Tissue Eng Regen Med.
    • Liao, H.T.1    Lee, M.Y.2    Tsai, W.W.3    Wang, H.C.4    Lu, W.C.5
  • 11
    • 0035094757 scopus 로고    scopus 로고
    • Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling
    • Hutmacher DW, Schantz T, Zein I, Ng KW, Teoh SH, Tan KC. Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J Biomed Mater Res. 2001;55(2):203–16.
    • (2001) J Biomed Mater Res. , vol.55 , Issue.2 , pp. 203-216
    • Hutmacher, D.W.1    Schantz, T.2    Zein, I.3    Ng, K.W.4    Teoh, S.H.5    Tan, K.C.6
  • 12
    • 33846971987 scopus 로고    scopus 로고
    • Evaluation of the growth of chondrocytes and osteoblasts seeded into precision scaffolds fabricated by fused deposition manufacturing
    • Hsu S, Yen H, Tseng C, Cheng C, Tsai C. Evaluation of the growth of chondrocytes and osteoblasts seeded into precision scaffolds fabricated by fused deposition manufacturing. J Biomed Mater Res. 2007;80(2):519–27.
    • (2007) J Biomed Mater Res. , vol.80 , Issue.2 , pp. 519-527
    • Hsu, S.1    Yen, H.2    Tseng, C.3    Cheng, C.4    Tsai, C.5
  • 13
  • 14
    • 77951170998 scopus 로고    scopus 로고
    • Solid freeform fabrication and characterization of porous calcium polyphosphate structures for tissue engineering purposes
    • Shanjani Y, De Croos JNA, Pilliar RM, Kandel RA, Toyserkani E. Solid freeform fabrication and characterization of porous calcium polyphosphate structures for tissue engineering purposes. J Biomed Mater Res B Appl Biomater. 2010;93(2):510–9.
    • (2010) J Biomed Mater Res B Appl Biomater. , vol.93 , Issue.2 , pp. 510-519
    • Shanjani, Y.1    De Croos, J.N.A.2    Pilliar, R.M.3    Kandel, R.A.4    Toyserkani, E.5
  • 15
    • 58049211520 scopus 로고    scopus 로고
    • Bioengineering strategies to generate vascularized soft tissue grafts with sustained shape
    • Stosich MS, Moioli EK, Wu JK, Lee CH, Rohde C, Yoursef AM, et al. Bioengineering strategies to generate vascularized soft tissue grafts with sustained shape. Methods. 2009;47(2):116–21.
    • (2009) Methods , vol.47 , Issue.2 , pp. 116-121
    • Stosich, M.S.1    Moioli, E.K.2    Wu, J.K.3    Lee, C.H.4    Rohde, C.5    Yoursef, A.M.6
  • 17
    • 39749088901 scopus 로고    scopus 로고
    • Preparation and properties of poly(lactide-co-glycolide) (PLGA)/nano-hydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit MSCs culture on scaffolds
    • Huang YX, Ren J, Chen C, Ren TB, Zhou XY. Preparation and properties of poly(lactide-co-glycolide) (PLGA)/nano-hydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit MSCs culture on scaffolds. J Biomater Appl. 2008;22(5):409–32.
    • (2008) J Biomater Appl. , vol.22 , Issue.5 , pp. 409-432
    • Huang, Y.X.1    Ren, J.2    Chen, C.3    Ren, T.B.4    Zhou, X.Y.5
  • 18
    • 38949189235 scopus 로고    scopus 로고
    • Novel fabrication techniques to produce microspheres by thermally induced phase separation for tissue engineering and drug delivery
    • Blaker JJ, Knowles JC, Day RM. Novel fabrication techniques to produce microspheres by thermally induced phase separation for tissue engineering and drug delivery. Acta Biomater. 2008;4(2):264–72.
    • (2008) Acta Biomater. , vol.4 , Issue.2 , pp. 264-272
    • Blaker, J.J.1    Knowles, J.C.2    Day, R.M.3
  • 19
    • 33747150856 scopus 로고    scopus 로고
    • Specially elaborated thermally induced phase separation to fabricate poly(L-lactic acid) scaffolds with ultra large pores and good interconnectivity
    • Gong Y, Ma Z, Gao C, Wang W, Shen J. Specially elaborated thermally induced phase separation to fabricate poly(L-lactic acid) scaffolds with ultra large pores and good interconnectivity. J Appl Polym Sci. 2006;101(5):3336–42.
    • (2006) J Appl Polym Sci. , vol.101 , Issue.5 , pp. 3336-3342
    • Gong, Y.1    Ma, Z.2    Gao, C.3    Wang, W.4    Shen, J.5
  • 20
    • 84860383551 scopus 로고    scopus 로고
    • Early stage structural evolution of PLLA porous scaffolds in thermally induced phase separation process and the corresponding biodegradability and biological property
    • Shao J, Chen C, Wang Y, Chen X, Du C. Early stage structural evolution of PLLA porous scaffolds in thermally induced phase separation process and the corresponding biodegradability and biological property. Polym Degrad Stab. 2012;97(6):955–63.
    • (2012) Polym Degrad Stab. , vol.97 , Issue.6 , pp. 955-963
    • Shao, J.1    Chen, C.2    Wang, Y.3    Chen, X.4    Du, C.5
  • 21
    • 70349319369 scopus 로고    scopus 로고
    • A review on biodegradable polymeric materials for bone tissue engineering applications
    • Sabir MI, Xu X, Li L. A review on biodegradable polymeric materials for bone tissue engineering applications. J Mater Sci. 2009;44(21):5713–24.
    • (2009) J Mater Sci. , vol.44 , Issue.21 , pp. 5713-5724
    • Sabir, M.I.1    Xu, X.2    Li, L.3
  • 22
    • 84855373758 scopus 로고    scopus 로고
    • HA/nylon 6,6 porous scaffolds fabricated by salt-leaching/solvent casting technique: effect of nano-sized filler content on scaffold properties
    • Mehrabanian M, Nasr-Esfahani M. HA/nylon 6,6 porous scaffolds fabricated by salt-leaching/solvent casting technique: effect of nano-sized filler content on scaffold properties. Int J Nanomed. 2011;6:1651–9.
    • (2011) Int J Nanomed. , vol.6 , pp. 1651-1659
    • Mehrabanian, M.1    Nasr-Esfahani, M.2
  • 23
    • 77955884686 scopus 로고    scopus 로고
    • Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering
    • Eshraghi S, Das S. Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering. Acta Biomater. 2010;6(7):2467–76.
    • (2010) Acta Biomater. , vol.6 , Issue.7 , pp. 2467-2476
    • Eshraghi, S.1    Das, S.2
  • 24
    • 84855444893 scopus 로고    scopus 로고
    • Fabrication of poly-DLlactide/polyethylene glycol scaffolds using the gas foaming technique
    • Ji C, Annabi N, Hosseinkhani M, Sivaloganathan S, Dehghani F. Fabrication of poly-DLlactide/polyethylene glycol scaffolds using the gas foaming technique. Acta Biomater. 2012;8(2):570–8.
    • (2012) Acta Biomater. , vol.8 , Issue.2 , pp. 570-578
    • Ji, C.1    Annabi, N.2    Hosseinkhani, M.3    Sivaloganathan, S.4    Dehghani, F.5
  • 25
    • 70449709022 scopus 로고    scopus 로고
    • Microsphere-based scaffolds for cartilage tissue engineering: using subcritical CO(2) as a sintering agent
    • Singh M, Sandhu B, Scurto A, Berkland C, Detamore MS. Microsphere-based scaffolds for cartilage tissue engineering: using subcritical CO(2) as a sintering agent. Acta Biomater. 2010;6(1):137–43.
    • (2010) Acta Biomater. , vol.6 , Issue.1 , pp. 137-143
    • Singh, M.1    Sandhu, B.2    Scurto, A.3    Berkland, C.4    Detamore, M.S.5
  • 26
    • 80053383214 scopus 로고    scopus 로고
    • Current opinion in biotechnology
    • Dehghani F, Annabi N. Engineering porous scaffolds using gas-based techniques. Current opinion in biotechnology. Elsevier Ltd; 2011;22(5):661–666.
    • (2011) Elsevier Ltd , vol.22 , Issue.5 , pp. 661-666
    • Dehghani, F.1    techniques, A.B.N.E.-B.2
  • 27
    • 0029253379 scopus 로고
    • A novel method to fabricate bioabsorbable scaffolds
    • Whang K, Thomas CH, Healy KE, Nuber G. A novel method to fabricate bioabsorbable scaffolds. Polymer. 1995;36(4):837–842.
    • (1995) Polymer , vol.36 , Issue.4 , pp. 837-842
    • Whang, K.1    Thomas, C.H.2    Healy, K.E.3    Nuber, G.4
  • 28
    • 0032534524 scopus 로고    scopus 로고
    • Ectopic bone formation via rhBMP-2 delivery from porous bioabsorbable polymer scaffolds
    • Whang K, Tsai DC, Nam EK, Aitken M, Sprague SM, Patel PK, et al. Ectopic bone formation via rhBMP-2 delivery from porous bioabsorbable polymer scaffolds. J Biomed Mater Res. 1998;42(4):491–9.
    • (1998) J Biomed Mater Res. , vol.42 , Issue.4 , pp. 491-499
    • Whang, K.1    Tsai, D.C.2    Nam, E.K.3    Aitken, M.4    Sprague, S.M.5    Patel, P.K.6
  • 29
    • 68949150891 scopus 로고    scopus 로고
    • The nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with L-lactic acid oligomer for bone repair
    • Cui Y, Liu Y, Cui Y, Jing X, Zhang P, Chen X. The nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with L-lactic acid oligomer for bone repair. Acta Biomater. 2009;5(7):2680–92.
    • (2009) Acta Biomater. , vol.5 , Issue.7 , pp. 2680-2692
    • Cui, Y.1    Liu, Y.2    Cui, Y.3    Jing, X.4    Zhang, P.5    Chen, X.6
  • 30
    • 78649918365 scopus 로고    scopus 로고
    • Degradation behavior of 3D porous polydioxanone-b-polycaprolactone scaffolds fabricated using the melt-molding particulate-leaching method
    • Oh SH, Park SC, Kim HK, Koh YJ, Lee J-H, Lee MC, et al. Degradation behavior of 3D porous polydioxanone-b-polycaprolactone scaffolds fabricated using the melt-molding particulate-leaching method. J Biomater Sci Polym Ed. 2010;22:225–37.
    • (2010) J Biomater Sci Polym Ed. , vol.22 , pp. 225-237
    • Oh, S.H.1    Park, S.C.2    Kim, H.K.3    Koh, Y.J.4    Lee, J.-H.5    Lee, M.C.6
  • 31
    • 0037400540 scopus 로고    scopus 로고
    • A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering
    • Yoshimoto H, Shin YM, Terai H, Vacanti JP. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials. 2003;24(12):2077–82.
    • (2003) Biomaterials , vol.24 , Issue.12 , pp. 2077-2082
    • Yoshimoto, H.1    Shin, Y.M.2    Terai, H.3    Vacanti, J.P.4
  • 32
    • 77952281085 scopus 로고    scopus 로고
    • Fabrication and characterization of electrospun PLGA/MWNTs/hydroxyapatite biocomposite scaffolds for bone tissue engineering
    • Zhang H, Chen Z. Fabrication and characterization of electrospun PLGA/MWNTs/hydroxyapatite biocomposite scaffolds for bone tissue engineering. J Bioact Compat Polym. 2010;25(3):241–59.
    • (2010) J Bioact Compat Polym. , vol.25 , Issue.3 , pp. 241-259
    • Zhang, H.1    Chen, Z.2
  • 33
    • 77949652722 scopus 로고    scopus 로고
    • Electrospinning: a fascinating fiber fabrication technique
    • Bhardwaj N, Kundu SC. Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv. 2010;28(3):325–47.
    • (2010) Biotechnol Adv. , vol.28 , Issue.3 , pp. 325-347
    • Bhardwaj, N.1    Kundu, S.C.2
  • 34
    • 0036191695 scopus 로고    scopus 로고
    • The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques
    • Yang S, Leong KF, Du Z, Chua CK. The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng. 2002;8(1):1–11.
    • (2002) Tissue Eng , vol.8 , Issue.1 , pp. 1-11
    • Yang, S.1    Leong, K.F.2    Du, Z.3    Chua, C.K.4
  • 35
    • 11144357256 scopus 로고    scopus 로고
    • Analysis of 3D bone ingrowth into polymer scaffolds via micro-computed tomography imaging
    • Jones AC, Milthorpe B, Averdunk H, Limaye A, Senden TJ, Sakellariou A, et al. Analysis of 3D bone ingrowth into polymer scaffolds via micro-computed tomography imaging. Biomaterials. 2004;25(20):4947–54.
    • (2004) Biomaterials , vol.25 , Issue.20 , pp. 4947-4954
    • Jones, A.C.1    Milthorpe, B.2    Averdunk, H.3    Limaye, A.4    Senden, T.J.5    Sakellariou, A.6
  • 36
    • 77955565285 scopus 로고    scopus 로고
    • Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study
    • Lee CH, Cook JL, Mendelson A, Moioli EK, Yao H, Mao JJ. Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study. Lancet. 2010;376:440–8.
    • (2010) Lancet , vol.376 , pp. 440-448
    • Lee, C.H.1    Cook, J.L.2    Mendelson, A.3    Moioli, E.K.4    Yao, H.5    Mao, J.J.6
  • 38
    • 79956196821 scopus 로고    scopus 로고
    • Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering
    • Park SA, Lee SH, Kim WD. Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering. Bioprocess Biosyst Eng. 2011;34(4):505–13.
    • (2011) Bioprocess Biosyst Eng. , vol.34 , Issue.4 , pp. 505-513
    • Park, S.A.1    Lee, S.H.2    Kim, W.D.3
  • 39
    • 0037210053 scopus 로고    scopus 로고
    • Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds
    • Taboas JM, Maddox RD, Krebsbach PH, Hollister SJ. Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds. Biomaterials. 2003;24(1):181–94.
    • (2003) Biomaterials , vol.24 , Issue.1 , pp. 181-194
    • Taboas, J.M.1    Maddox, R.D.2    Krebsbach, P.H.3    Hollister, S.J.4
  • 40
    • 80255132041 scopus 로고    scopus 로고
    • Polyoxymethylene-homopolymer/hydroxyapatite nanocomposites for biomedical applications
    • Pielichowska K. Polyoxymethylene-homopolymer/hydroxyapatite nanocomposites for biomedical applications. J Appl Polym Sci. 2012;123(4):2234–43.
    • (2012) J Appl Polym Sci. , vol.123 , Issue.4 , pp. 2234-2243
    • Pielichowska, K.1
  • 41
    • 0033559073 scopus 로고    scopus 로고
    • Poly(alpha-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology
    • Zhang R, Ma PX. Poly(alpha-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. J Biomed Mater Res. 1999;44:446–55.
    • (1999) J Biomed Mater Res. , vol.44 , pp. 446-455
    • Zhang, R.1    Ma, P.X.2
  • 42
    • 0032874505 scopus 로고    scopus 로고
    • Biodegradable polymeric microcellular foams by modified thermally induced phase separation method
    • Nam YS, Park TG. Biodegradable polymeric microcellular foams by modified thermally induced phase separation method. Biomaterials. 1999;20:1783–90.
    • (1999) Biomaterials , vol.20 , pp. 1783-1790
    • Nam, Y.S.1    Park, T.G.2
  • 43
    • 0002969423 scopus 로고    scopus 로고
    • Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation
    • Nam YS, Park TG. Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation. J Biomed Mater Res. 1999;47(1):8–17.
    • (1999) J Biomed Mater Res. , vol.47 , Issue.1 , pp. 8-17
    • Nam, Y.S.1    Park, T.G.2
  • 45
    • 60849124196 scopus 로고    scopus 로고
    • The influence of three-dimensional nanofibrous scaffolds on the osteogenic differentiation of embryonic stem cells
    • Smith LA, Liu X, Hu J, Ma PX. The influence of three-dimensional nanofibrous scaffolds on the osteogenic differentiation of embryonic stem cells. Biomaterials. 2009;30:2516–22.
    • (2009) Biomaterials , vol.30 , pp. 2516-2522
    • Smith, L.A.1    Liu, X.2    Hu, J.3    Ma, P.X.4
  • 46
    • 78651397136 scopus 로고    scopus 로고
    • Effect of some factors on fabrication of poly(L-lactic acid) microporous foams by thermally induced phase separation using N,N-dimethylacetamide as solvent
    • Li S, Chen X, Li M. Effect of some factors on fabrication of poly(L-lactic acid) microporous foams by thermally induced phase separation using N,N-dimethylacetamide as solvent. Prep Biochem Biotechnol. 2011;41:53–72.
    • (2011) Prep Biochem Biotechnol. , vol.41 , pp. 53-72
    • Li, S.1    Chen, X.2    Li, M.3
  • 47
    • 3042778829 scopus 로고    scopus 로고
    • Engineering principles of clinical cell-based tissue engineering
    • Muschler GE, Nakamoto C, Griffith LG. Engineering principles of clinical cell-based tissue engineering. J Bone Joint Surg Am. 2004;86A:1541–58.
    • (2004) J Bone Joint Surg Am. , vol.86A , pp. 1541-1558
    • Muschler, G.E.1    Nakamoto, C.2    Griffith, L.G.3
  • 48
    • 84861801335 scopus 로고    scopus 로고
    • Bone regeneration in a rabbit critical-sized calvarial model using tyrosine-derived polycarbonate scaffolds
    • Kim J, Magno MH, Waters H, Doll BA, McBride S, Alvarez P, et al. Bone regeneration in a rabbit critical-sized calvarial model using tyrosine-derived polycarbonate scaffolds. Tissue Eng Part A. 2012;18:1132–9.
    • (2012) Tissue Eng Part A. , vol.18 , pp. 1132-1139
    • Kim, J.1    Magno, M.H.2    Waters, H.3    Doll, B.A.4    McBride, S.5    Alvarez, P.6
  • 49
    • 84861838534 scopus 로고    scopus 로고
    • 3D PLLA/nano-hydroxyapatite scaffolds with hierarchical porous structure fabricated by low-temperature deposition manufacturing
    • Liang Y, Zheng X, Zhai W, Sun T. 3D PLLA/nano-hydroxyapatite scaffolds with hierarchical porous structure fabricated by low-temperature deposition manufacturing. J Wuhan Univ Technol Mater Sci. 2012;27(2):265–9.
    • (2012) J Wuhan Univ Technol Mater Sci. , vol.27 , Issue.2 , pp. 265-269
    • Liang, Y.1    Zheng, X.2    Zhai, W.3    Sun, T.4
  • 51
    • 26944442373 scopus 로고    scopus 로고
    • Bone tissue engineering evaluation based on rat calvaria stromal cells cultured on modified PLGA scaffolds
    • Wu YC, Shaw SY, Lin HR, Lee TM, Yang CY. Bone tissue engineering evaluation based on rat calvaria stromal cells cultured on modified PLGA scaffolds. Biomaterials. 2006;27:896–904.
    • (2006) Biomaterials , vol.27 , pp. 896-904
    • Wu, Y.C.1    Shaw, S.Y.2    Lin, H.R.3    Lee, T.M.4    Yang, C.Y.5
  • 52
    • 57349173536 scopus 로고    scopus 로고
    • Multinozzle low-temperature deposition system for construction of gradient tissue engineering scaffolds
    • Liu L, Xiong Z, Yan Y, Zhang R, Wang X, Jin L. Multinozzle low-temperature deposition system for construction of gradient tissue engineering scaffolds. J Biomed Mater Res B Appl Biomater. 2009;88(1):254–63.
    • (2009) J Biomed Mater Res B Appl Biomater , vol.88 , Issue.1 , pp. 254-263
    • Liu, L.1    Xiong, Z.2    Yan, Y.3    Zhang, R.4    Wang, X.5    Jin, L.6
  • 53
    • 84873307992 scopus 로고    scopus 로고
    • Effects of designed PLLA and 50:50 PLGA scaffold architectures on bone formation in vivo
    • Saito E, Liao EE, Hu WW, Krebsbach PH, Hollister SJ. Effects of designed PLLA and 50:50 PLGA scaffold architectures on bone formation in vivo. J Tissue Eng Regen Med. 2013;7(2):99–111.
    • (2013) J Tissue Eng Regen Med. , vol.7 , Issue.2 , pp. 99-111
    • Saito, E.1    Liao, E.E.2    Hu, W.W.3    Krebsbach, P.H.4    Hollister, S.J.5
  • 54
    • 21844438003 scopus 로고    scopus 로고
    • Porous scaffold design for tissue engineering
    • Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater. 2005;4(7):518–24.
    • (2005) Nat Mater. , vol.4 , Issue.7 , pp. 518-524
    • Hollister, S.J.1
  • 55
    • 84904036060 scopus 로고    scopus 로고
    • Effects of processing parameters in thermally induced phase separation technique on porous architecture of scaffolds for bone tissue engineering
    • Akbarzadeh R, Yousefi AM. Effects of processing parameters in thermally induced phase separation technique on porous architecture of scaffolds for bone tissue engineering. J Biomed Mater Res B-Appl Biomater; 2014. doi:10.1002/jbm.b.33101.
    • (2014) J Biomed Mater Res B-Appl Biomater
    • Akbarzadeh, R.1    Yousefi, A.M.2
  • 56
    • 34248211259 scopus 로고    scopus 로고
    • Design and fabrication of 3d-plotted polymeric scaffolds in functional tissue engineering
    • Yousefi AM, Gauvin C, Sun L, DiRaddo RW, Fernandes J. Design and fabrication of 3d-plotted polymeric scaffolds in functional tissue engineering. Polym Eng Sci. 2007;47:608–18.
    • (2007) Polym Eng Sci. , vol.47 , pp. 608-618
    • Yousefi, A.M.1    Gauvin, C.2    Sun, L.3    DiRaddo, R.W.4    Fernandes, J.5
  • 57
    • 23644441508 scopus 로고    scopus 로고
    • Three-dimensional growth of differentiating MC3T3-E1 pre-osteoblasts on porous titanium scaffolds
    • St-Pierre J-P, Gauthier M, Lefebvre L-P, Tabrizian M. Three-dimensional growth of differentiating MC3T3-E1 pre-osteoblasts on porous titanium scaffolds. Biomaterials. 2005;26(35):7319–28.
    • (2005) Biomaterials , vol.26 , Issue.35 , pp. 7319-7328
    • St-Pierre, J.-P.1    Gauthier, M.2    Lefebvre, L.-P.3    Tabrizian, M.4
  • 58
    • 0346634885 scopus 로고    scopus 로고
    • Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering
    • Landers R, Hübner U, Schmelzeisen R, Mülhaupt R. Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials. 2002;23(23):4437–47.
    • (2002) Biomaterials , vol.23 , Issue.23 , pp. 4437-4447
    • Landers, R.1    Hübner, U.2    Schmelzeisen, R.3    Mülhaupt, R.4
  • 59
    • 33748316443 scopus 로고    scopus 로고
    • Polymer hollow fiber three-dimensional matrices with controllable cavity and shell thickness
    • Moroni L, Schotel R, Sohier J, de Wijn JR, van Blitterswijk CA. Polymer hollow fiber three-dimensional matrices with controllable cavity and shell thickness. Biomaterials. 2006;27(35):5918–26.
    • (2006) Biomaterials , vol.27 , Issue.35 , pp. 5918-5926
    • Moroni, L.1    Schotel, R.2    Sohier, J.3    de Wijn, J.R.4    van Blitterswijk, C.A.5
  • 60
    • 27644577737 scopus 로고    scopus 로고
    • Combined use of designed scaffolds and adenoviral gene therapy for skeletal tissue engineering
    • Schek RM, Wilke EN, Hollister SJ, Krebsbach PH. Combined use of designed scaffolds and adenoviral gene therapy for skeletal tissue engineering. Biomaterials. 2006;27:1160–6.
    • (2006) Biomaterials , vol.27 , pp. 1160-1166
    • Schek, R.M.1    Wilke, E.N.2    Hollister, S.J.3    Krebsbach, P.H.4
  • 61
    • 33947722555 scopus 로고    scopus 로고
    • Bone ingrowth in porous titanium implants produced by 3D fiber deposition
    • Li JP, Habibovic P, van den Doel M, et al. Bone ingrowth in porous titanium implants produced by 3D fiber deposition. Biomaterials. 2007;28:2810–20.
    • (2007) Biomaterials , vol.28 , pp. 2810-2820
    • Li, J.P.1    Habibovic, P.2    van den Doel, M.3
  • 62
    • 17844400927 scopus 로고    scopus 로고
    • Porosity of 3D biomaterial scaffolds and osteogenesis
    • Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26(27):5474–91.
    • (2005) Biomaterials , vol.26 , Issue.27 , pp. 5474-5491
    • Karageorgiou, V.1    Kaplan, D.2
  • 64
    • 0034765279 scopus 로고    scopus 로고
    • Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition
    • Zeltinger J, Sherwood JK, Graham DA, Müeller R, Griffith LG. Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Eng. 2001;7(5):557–72.
    • (2001) Tissue Eng. , vol.7 , Issue.5 , pp. 557-572
    • Zeltinger, J.1    Sherwood, J.K.2    Graham, D.A.3    Müeller, R.4    Griffith, L.G.5
  • 65
    • 79959793218 scopus 로고    scopus 로고
    • Mesenchymal stem cell assays and applications, methods in molecular biology; Mohan C
    • Grayson WL, Bhumiratana S, Cannizzaro C, Vunjak-Novakovic G. Bioreactor cultivation of functional bone grafts. In: Mesenchymal stem cell assays and applications, methods in molecular biology; Mohan C. Vemuri et al (eds.); 2011, vol 698, p. 231–241.
    • Vemuri et al(eds.); 2011 , vol.698 , pp. 231-241
    • Grayson, W.L.1    Bhumiratana, S.2    Cannizzaro, C.3    Vunjak-Novakovic, G.4
  • 68
    • 84883496381 scopus 로고    scopus 로고
    • Geometry-driven cell organization determines tissue growths in scaffold pores: consequences for fibronectin organization
    • Joly P, Duda GN, Schöne M, Welzel PB, Freudenberg U, Werner C, Petersen A. Geometry-driven cell organization determines tissue growths in scaffold pores: consequences for fibronectin organization. PLoS ONE. 2013;8:e73545.
    • (2013) PLoS ONE , vol.8 , pp. e73545
    • Joly, P.1    Duda, G.N.2    Schöne, M.3    Welzel, P.B.4    Freudenberg, U.5    Werner, C.6    Petersen, A.7
  • 70
    • 84862869528 scopus 로고    scopus 로고
    • A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering
    • Billiet T, Vandenhaute M, Schelfhout J, Van Vlierberghe S, Dubruel P. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials. 2012;33(26):6020–41.
    • (2012) Biomaterials , vol.33 , Issue.26 , pp. 6020-6041
    • Billiet, T.1    Vandenhaute, M.2    Schelfhout, J.3    Van Vlierberghe, S.4    Dubruel, P.5
  • 71
    • 27944466697 scopus 로고    scopus 로고
    • Exploring and engineering the cell surface interface
    • Stevens MM, George JH. Exploring and engineering the cell surface interface. Science. 2005;310(5751):1135–8.
    • (2005) Science , vol.310 , Issue.5751 , pp. 1135-1138
    • Stevens, M.M.1    George, J.H.2
  • 72
    • 84867366681 scopus 로고    scopus 로고
    • Three-dimensional fibrous scaffolds with microstructures and nanotextures for tissue engineering
    • Ng R, Zang R, Yang KK, Liu N, Yang S-T. Three-dimensional fibrous scaffolds with microstructures and nanotextures for tissue engineering. RSC Adv. 2014;2:10110–24.
    • (2014) RSC Adv. , vol.2 , pp. 10110-10124
    • Ng, R.1    Zang, R.2    Yang, K.K.3    Liu, N.4    Yang, S.-T.5
  • 74
    • 84880170524 scopus 로고    scopus 로고
    • Collagen/alginate scaffolds comprising core (PCL)–shell (collagen/alginate) struts for hard tissue regeneration: fabrication, characterisation, and cellular activities
    • Kim Y, Kim G. Collagen/alginate scaffolds comprising core (PCL)–shell (collagen/alginate) struts for hard tissue regeneration: fabrication, characterisation, and cellular activities. J. Mater Chem B. 2013;1:3185–94.
    • (2013) J. Mater Chem B , vol.1 , pp. 3185-3194
    • Kim, Y.1    Kim, G.2
  • 75
    • 84862931627 scopus 로고    scopus 로고
    • Rapid mineralization of porous gelatin scaffolds by electrodeposition for bone tissue engineering
    • He C, Zhang F, Cao L, Feng W, Qiu K, Zhang Y, Wang J. Rapid mineralization of porous gelatin scaffolds by electrodeposition for bone tissue engineering. J Mater Chem. 2012;22:2111–9.
    • (2012) J Mater Chem , vol.22 , pp. 2111-2119
    • He, C.1    Zhang, F.2    Cao, L.3    Feng, W.4    Qiu, K.5    Zhang, Y.6    Wang, J.7
  • 76
    • 84905046620 scopus 로고    scopus 로고
    • A novel two-step sintering for nano-hydroxyapatite scaffolds for bone tissue engineering
    • Feng P, Niu M, Gao C, Peng S, Shuai C. A novel two-step sintering for nano-hydroxyapatite scaffolds for bone tissue engineering. Sci Rep. 2014;4(5599):1–10.
    • (2014) Sci Rep. , vol.4 , Issue.5599 , pp. 1-10
    • Feng, P.1    Niu, M.2    Gao, C.3    Peng, S.4    Shuai, C.5
  • 77
    • 45749091716 scopus 로고    scopus 로고
    • Design and fabrication of 3D porous scaffolds to promote cell-based gene therapy
    • El-Ayoubi R, Eliopoulos N, DiRaddo R, Galipeau J, Yousefi AM. Design and fabrication of 3D porous scaffolds to promote cell-based gene therapy. Tissue Eng. 2008;14:1037–48.
    • (2008) Tissue Eng. , vol.14 , pp. 1037-1048
    • El-Ayoubi, R.1    Eliopoulos, N.2    DiRaddo, R.3    Galipeau, J.4    Yousefi, A.M.5
  • 79
    • 1042266511 scopus 로고    scopus 로고
    • In vitro and in vivo degradation of mineralized collagen-based composite scaffold: nanohydroxyapatite/collagen/poly(L-lactide)
    • Liao SS, Cui FZ. In vitro and in vivo degradation of mineralized collagen-based composite scaffold: nanohydroxyapatite/collagen/poly(L-lactide). Tissue Eng. 2004;10:73–80.
    • (2004) Tissue Eng. , vol.10 , pp. 73-80
    • Liao, S.S.1    Cui, F.Z.2
  • 80
    • 79251627040 scopus 로고    scopus 로고
    • Early osteogenic signal expression of rat bone marrow stromal cells is influenced by both hydroxyapatite nanoparticle content and initial cell seeding density in biodegradable nanocomposite scaffolds
    • Kim K, Dean D, Lu A, Mikos AG, Fisher JP. Early osteogenic signal expression of rat bone marrow stromal cells is influenced by both hydroxyapatite nanoparticle content and initial cell seeding density in biodegradable nanocomposite scaffolds. Acta Biomater. 2011;7:1249–64.
    • (2011) Acta Biomater. , vol.7 , pp. 1249-1264
    • Kim, K.1    Dean, D.2    Lu, A.3    Mikos, A.G.4    Fisher, J.P.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.