-
2
-
-
84866851192
-
Concise review: personalized human bone grafts for reconstructing head and face
-
Bhumiratana S, Vunjak-Novakovic G. Concise review: personalized human bone grafts for reconstructing head and face. Stem Cells Trans Med. 2012;1:64–9.
-
(2012)
Stem Cells Trans Med.
, vol.1
, pp. 64-69
-
-
Bhumiratana, S.1
Vunjak-Novakovic, G.2
-
3
-
-
77952836095
-
Experimental and computational characterization of designed and fabricated 50:50 PLGA porous scaffolds for human trabecular bone applications, Journal of materials science
-
Saito E, Kang H, Taboas JM, Diggs A, Flanagan CL, Hollister SJ. Experimental and computational characterization of designed and fabricated 50:50 PLGA porous scaffolds for human trabecular bone applications, Journal of materials science. Mater Med. 2010;21(8):2371–83.
-
(2010)
Mater Med.
, vol.21
, Issue.8
, pp. 2371-2383
-
-
Saito, E.1
Kang, H.2
Taboas, J.M.3
Diggs, A.4
Flanagan, C.L.5
Hollister, S.J.6
-
4
-
-
84873412572
-
New paradigms in hierarchical porous scaffold design for tissue engineering
-
Yoo D. New paradigms in hierarchical porous scaffold design for tissue engineering. Mater Sci Eng C. 2013;33(3):1759–72.
-
(2013)
Mater Sci Eng C
, vol.33
, Issue.3
, pp. 1759-1772
-
-
Yoo, D.1
-
5
-
-
84896588824
-
Hierarchically engineered fibrous scaffolds for bone regeneration
-
Sachot N, Castaño O, Mateos-Timoneda MA, Engel E, Planell JA. Hierarchically engineered fibrous scaffolds for bone regeneration. J R Soc Interface. 2013;10(88):20130684.
-
(2013)
J R Soc Interface.
, vol.10
, Issue.88
, pp. 20130684
-
-
Sachot, N.1
Castaño, O.2
Mateos-Timoneda, M.A.3
Engel, E.4
Planell, J.A.5
-
6
-
-
84884816926
-
RhBMP-2-loaded calcium silicate/calcium phosphate cement scaffold with hierarchically porous structure for enhanced bone tissue regeneration
-
Zhang J, Zhou H, Yang K, Yuan Y, Liu C. RhBMP-2-loaded calcium silicate/calcium phosphate cement scaffold with hierarchically porous structure for enhanced bone tissue regeneration. Biomaterials. 2013;34(37):9381–92.
-
(2013)
Biomaterials
, vol.34
, Issue.37
, pp. 9381-9392
-
-
Zhang, J.1
Zhou, H.2
Yang, K.3
Yuan, Y.4
Liu, C.5
-
7
-
-
34247624498
-
Poly(propylene fumarate) bone tissue engineering scaffold fabrication using stereolithography: effects of resin formulations and laser parameters
-
Lee K-W, Wang S, Fox BC, Ritman EL, Yaszemski MJ, Lu L. Poly(propylene fumarate) bone tissue engineering scaffold fabrication using stereolithography: effects of resin formulations and laser parameters. Biomacromolecules. 2007;8(4):1077–84.
-
(2007)
Biomacromolecules
, vol.8
, Issue.4
, pp. 1077-1084
-
-
Lee, K.-W.1
Wang, S.2
Fox, B.C.3
Ritman, E.L.4
Yaszemski, M.J.5
Lu, L.6
-
9
-
-
14844322862
-
Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering
-
Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE, et al. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials. 2005;26(23):4817–27.
-
(2005)
Biomaterials
, vol.26
, Issue.23
, pp. 4817-4827
-
-
Williams, J.M.1
Adewunmi, A.2
Schek, R.M.3
Flanagan, C.L.4
Krebsbach, P.H.5
Feinberg, S.E.6
-
10
-
-
85027928361
-
Osteogenesis of adipose-derived stem cells on polycaprolactone–β-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I
-
Liao HT, Lee MY, Tsai WW, Wang HC, Lu WC. Osteogenesis of adipose-derived stem cells on polycaprolactone–β-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I. J Tissue Eng Regen Med. 2013. doi:10.1002/term.1811.
-
(2013)
J Tissue Eng Regen Med.
-
-
Liao, H.T.1
Lee, M.Y.2
Tsai, W.W.3
Wang, H.C.4
Lu, W.C.5
-
11
-
-
0035094757
-
Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling
-
Hutmacher DW, Schantz T, Zein I, Ng KW, Teoh SH, Tan KC. Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J Biomed Mater Res. 2001;55(2):203–16.
-
(2001)
J Biomed Mater Res.
, vol.55
, Issue.2
, pp. 203-216
-
-
Hutmacher, D.W.1
Schantz, T.2
Zein, I.3
Ng, K.W.4
Teoh, S.H.5
Tan, K.C.6
-
12
-
-
33846971987
-
Evaluation of the growth of chondrocytes and osteoblasts seeded into precision scaffolds fabricated by fused deposition manufacturing
-
Hsu S, Yen H, Tseng C, Cheng C, Tsai C. Evaluation of the growth of chondrocytes and osteoblasts seeded into precision scaffolds fabricated by fused deposition manufacturing. J Biomed Mater Res. 2007;80(2):519–27.
-
(2007)
J Biomed Mater Res.
, vol.80
, Issue.2
, pp. 519-527
-
-
Hsu, S.1
Yen, H.2
Tseng, C.3
Cheng, C.4
Tsai, C.5
-
13
-
-
0036888666
-
A three-dimensional osteochondral composite scaffold for articular cartilage repair
-
Sherwood JK, Riley SL, Palazzolo R, Brown SC, Monkhouse DC, Coates M, et al. A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials. 2002;23(24):4739–51.
-
(2002)
Biomaterials
, vol.23
, Issue.24
, pp. 4739-4751
-
-
Sherwood, J.K.1
Riley, S.L.2
Palazzolo, R.3
Brown, S.C.4
Monkhouse, D.C.5
Coates, M.6
-
14
-
-
77951170998
-
Solid freeform fabrication and characterization of porous calcium polyphosphate structures for tissue engineering purposes
-
Shanjani Y, De Croos JNA, Pilliar RM, Kandel RA, Toyserkani E. Solid freeform fabrication and characterization of porous calcium polyphosphate structures for tissue engineering purposes. J Biomed Mater Res B Appl Biomater. 2010;93(2):510–9.
-
(2010)
J Biomed Mater Res B Appl Biomater.
, vol.93
, Issue.2
, pp. 510-519
-
-
Shanjani, Y.1
De Croos, J.N.A.2
Pilliar, R.M.3
Kandel, R.A.4
Toyserkani, E.5
-
15
-
-
58049211520
-
Bioengineering strategies to generate vascularized soft tissue grafts with sustained shape
-
Stosich MS, Moioli EK, Wu JK, Lee CH, Rohde C, Yoursef AM, et al. Bioengineering strategies to generate vascularized soft tissue grafts with sustained shape. Methods. 2009;47(2):116–21.
-
(2009)
Methods
, vol.47
, Issue.2
, pp. 116-121
-
-
Stosich, M.S.1
Moioli, E.K.2
Wu, J.K.3
Lee, C.H.4
Rohde, C.5
Yoursef, A.M.6
-
16
-
-
78651480297
-
Design and dynamic culture of 3D-scaffolds for cartilage tissue engineering
-
El-Ayoubi R, DeGrandpré C, DiRaddo R, Yousefi A-M, Lavigne P. Design and dynamic culture of 3D-scaffolds for cartilage tissue engineering. J Biomater Appl. 2011;25(5):429–44.
-
(2011)
J Biomater Appl.
, vol.25
, Issue.5
, pp. 429-444
-
-
El-Ayoubi, R.1
DeGrandpré, C.2
DiRaddo, R.3
Yousefi, A.-M.4
Lavigne, P.5
-
17
-
-
39749088901
-
Preparation and properties of poly(lactide-co-glycolide) (PLGA)/nano-hydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit MSCs culture on scaffolds
-
Huang YX, Ren J, Chen C, Ren TB, Zhou XY. Preparation and properties of poly(lactide-co-glycolide) (PLGA)/nano-hydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit MSCs culture on scaffolds. J Biomater Appl. 2008;22(5):409–32.
-
(2008)
J Biomater Appl.
, vol.22
, Issue.5
, pp. 409-432
-
-
Huang, Y.X.1
Ren, J.2
Chen, C.3
Ren, T.B.4
Zhou, X.Y.5
-
18
-
-
38949189235
-
Novel fabrication techniques to produce microspheres by thermally induced phase separation for tissue engineering and drug delivery
-
Blaker JJ, Knowles JC, Day RM. Novel fabrication techniques to produce microspheres by thermally induced phase separation for tissue engineering and drug delivery. Acta Biomater. 2008;4(2):264–72.
-
(2008)
Acta Biomater.
, vol.4
, Issue.2
, pp. 264-272
-
-
Blaker, J.J.1
Knowles, J.C.2
Day, R.M.3
-
19
-
-
33747150856
-
Specially elaborated thermally induced phase separation to fabricate poly(L-lactic acid) scaffolds with ultra large pores and good interconnectivity
-
Gong Y, Ma Z, Gao C, Wang W, Shen J. Specially elaborated thermally induced phase separation to fabricate poly(L-lactic acid) scaffolds with ultra large pores and good interconnectivity. J Appl Polym Sci. 2006;101(5):3336–42.
-
(2006)
J Appl Polym Sci.
, vol.101
, Issue.5
, pp. 3336-3342
-
-
Gong, Y.1
Ma, Z.2
Gao, C.3
Wang, W.4
Shen, J.5
-
20
-
-
84860383551
-
Early stage structural evolution of PLLA porous scaffolds in thermally induced phase separation process and the corresponding biodegradability and biological property
-
Shao J, Chen C, Wang Y, Chen X, Du C. Early stage structural evolution of PLLA porous scaffolds in thermally induced phase separation process and the corresponding biodegradability and biological property. Polym Degrad Stab. 2012;97(6):955–63.
-
(2012)
Polym Degrad Stab.
, vol.97
, Issue.6
, pp. 955-963
-
-
Shao, J.1
Chen, C.2
Wang, Y.3
Chen, X.4
Du, C.5
-
21
-
-
70349319369
-
A review on biodegradable polymeric materials for bone tissue engineering applications
-
Sabir MI, Xu X, Li L. A review on biodegradable polymeric materials for bone tissue engineering applications. J Mater Sci. 2009;44(21):5713–24.
-
(2009)
J Mater Sci.
, vol.44
, Issue.21
, pp. 5713-5724
-
-
Sabir, M.I.1
Xu, X.2
Li, L.3
-
22
-
-
84855373758
-
HA/nylon 6,6 porous scaffolds fabricated by salt-leaching/solvent casting technique: effect of nano-sized filler content on scaffold properties
-
Mehrabanian M, Nasr-Esfahani M. HA/nylon 6,6 porous scaffolds fabricated by salt-leaching/solvent casting technique: effect of nano-sized filler content on scaffold properties. Int J Nanomed. 2011;6:1651–9.
-
(2011)
Int J Nanomed.
, vol.6
, pp. 1651-1659
-
-
Mehrabanian, M.1
Nasr-Esfahani, M.2
-
23
-
-
77955884686
-
Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering
-
Eshraghi S, Das S. Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering. Acta Biomater. 2010;6(7):2467–76.
-
(2010)
Acta Biomater.
, vol.6
, Issue.7
, pp. 2467-2476
-
-
Eshraghi, S.1
Das, S.2
-
24
-
-
84855444893
-
Fabrication of poly-DLlactide/polyethylene glycol scaffolds using the gas foaming technique
-
Ji C, Annabi N, Hosseinkhani M, Sivaloganathan S, Dehghani F. Fabrication of poly-DLlactide/polyethylene glycol scaffolds using the gas foaming technique. Acta Biomater. 2012;8(2):570–8.
-
(2012)
Acta Biomater.
, vol.8
, Issue.2
, pp. 570-578
-
-
Ji, C.1
Annabi, N.2
Hosseinkhani, M.3
Sivaloganathan, S.4
Dehghani, F.5
-
25
-
-
70449709022
-
Microsphere-based scaffolds for cartilage tissue engineering: using subcritical CO(2) as a sintering agent
-
Singh M, Sandhu B, Scurto A, Berkland C, Detamore MS. Microsphere-based scaffolds for cartilage tissue engineering: using subcritical CO(2) as a sintering agent. Acta Biomater. 2010;6(1):137–43.
-
(2010)
Acta Biomater.
, vol.6
, Issue.1
, pp. 137-143
-
-
Singh, M.1
Sandhu, B.2
Scurto, A.3
Berkland, C.4
Detamore, M.S.5
-
26
-
-
80053383214
-
Current opinion in biotechnology
-
Dehghani F, Annabi N. Engineering porous scaffolds using gas-based techniques. Current opinion in biotechnology. Elsevier Ltd; 2011;22(5):661–666.
-
(2011)
Elsevier Ltd
, vol.22
, Issue.5
, pp. 661-666
-
-
Dehghani, F.1
techniques, A.B.N.E.-B.2
-
27
-
-
0029253379
-
A novel method to fabricate bioabsorbable scaffolds
-
Whang K, Thomas CH, Healy KE, Nuber G. A novel method to fabricate bioabsorbable scaffolds. Polymer. 1995;36(4):837–842.
-
(1995)
Polymer
, vol.36
, Issue.4
, pp. 837-842
-
-
Whang, K.1
Thomas, C.H.2
Healy, K.E.3
Nuber, G.4
-
28
-
-
0032534524
-
Ectopic bone formation via rhBMP-2 delivery from porous bioabsorbable polymer scaffolds
-
Whang K, Tsai DC, Nam EK, Aitken M, Sprague SM, Patel PK, et al. Ectopic bone formation via rhBMP-2 delivery from porous bioabsorbable polymer scaffolds. J Biomed Mater Res. 1998;42(4):491–9.
-
(1998)
J Biomed Mater Res.
, vol.42
, Issue.4
, pp. 491-499
-
-
Whang, K.1
Tsai, D.C.2
Nam, E.K.3
Aitken, M.4
Sprague, S.M.5
Patel, P.K.6
-
29
-
-
68949150891
-
The nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with L-lactic acid oligomer for bone repair
-
Cui Y, Liu Y, Cui Y, Jing X, Zhang P, Chen X. The nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with L-lactic acid oligomer for bone repair. Acta Biomater. 2009;5(7):2680–92.
-
(2009)
Acta Biomater.
, vol.5
, Issue.7
, pp. 2680-2692
-
-
Cui, Y.1
Liu, Y.2
Cui, Y.3
Jing, X.4
Zhang, P.5
Chen, X.6
-
30
-
-
78649918365
-
Degradation behavior of 3D porous polydioxanone-b-polycaprolactone scaffolds fabricated using the melt-molding particulate-leaching method
-
Oh SH, Park SC, Kim HK, Koh YJ, Lee J-H, Lee MC, et al. Degradation behavior of 3D porous polydioxanone-b-polycaprolactone scaffolds fabricated using the melt-molding particulate-leaching method. J Biomater Sci Polym Ed. 2010;22:225–37.
-
(2010)
J Biomater Sci Polym Ed.
, vol.22
, pp. 225-237
-
-
Oh, S.H.1
Park, S.C.2
Kim, H.K.3
Koh, Y.J.4
Lee, J.-H.5
Lee, M.C.6
-
31
-
-
0037400540
-
A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering
-
Yoshimoto H, Shin YM, Terai H, Vacanti JP. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials. 2003;24(12):2077–82.
-
(2003)
Biomaterials
, vol.24
, Issue.12
, pp. 2077-2082
-
-
Yoshimoto, H.1
Shin, Y.M.2
Terai, H.3
Vacanti, J.P.4
-
32
-
-
77952281085
-
Fabrication and characterization of electrospun PLGA/MWNTs/hydroxyapatite biocomposite scaffolds for bone tissue engineering
-
Zhang H, Chen Z. Fabrication and characterization of electrospun PLGA/MWNTs/hydroxyapatite biocomposite scaffolds for bone tissue engineering. J Bioact Compat Polym. 2010;25(3):241–59.
-
(2010)
J Bioact Compat Polym.
, vol.25
, Issue.3
, pp. 241-259
-
-
Zhang, H.1
Chen, Z.2
-
33
-
-
77949652722
-
Electrospinning: a fascinating fiber fabrication technique
-
Bhardwaj N, Kundu SC. Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv. 2010;28(3):325–47.
-
(2010)
Biotechnol Adv.
, vol.28
, Issue.3
, pp. 325-347
-
-
Bhardwaj, N.1
Kundu, S.C.2
-
34
-
-
0036191695
-
The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques
-
Yang S, Leong KF, Du Z, Chua CK. The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng. 2002;8(1):1–11.
-
(2002)
Tissue Eng
, vol.8
, Issue.1
, pp. 1-11
-
-
Yang, S.1
Leong, K.F.2
Du, Z.3
Chua, C.K.4
-
35
-
-
11144357256
-
Analysis of 3D bone ingrowth into polymer scaffolds via micro-computed tomography imaging
-
Jones AC, Milthorpe B, Averdunk H, Limaye A, Senden TJ, Sakellariou A, et al. Analysis of 3D bone ingrowth into polymer scaffolds via micro-computed tomography imaging. Biomaterials. 2004;25(20):4947–54.
-
(2004)
Biomaterials
, vol.25
, Issue.20
, pp. 4947-4954
-
-
Jones, A.C.1
Milthorpe, B.2
Averdunk, H.3
Limaye, A.4
Senden, T.J.5
Sakellariou, A.6
-
36
-
-
77955565285
-
Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study
-
Lee CH, Cook JL, Mendelson A, Moioli EK, Yao H, Mao JJ. Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study. Lancet. 2010;376:440–8.
-
(2010)
Lancet
, vol.376
, pp. 440-448
-
-
Lee, C.H.1
Cook, J.L.2
Mendelson, A.3
Moioli, E.K.4
Yao, H.5
Mao, J.J.6
-
37
-
-
24344458170
-
Engineering craniofacial scaffolds
-
Hollister SJ, Lin CY, Saito E, Schek RD, Taboas JM, Williams JM, et al. Engineering craniofacial scaffolds. Orthod Craniofac Res. 2005;8(3):162–73.
-
(2005)
Orthod Craniofac Res.
, vol.8
, Issue.3
, pp. 162-173
-
-
Hollister, S.J.1
Lin, C.Y.2
Saito, E.3
Schek, R.D.4
Taboas, J.M.5
Williams, J.M.6
-
38
-
-
79956196821
-
Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering
-
Park SA, Lee SH, Kim WD. Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering. Bioprocess Biosyst Eng. 2011;34(4):505–13.
-
(2011)
Bioprocess Biosyst Eng.
, vol.34
, Issue.4
, pp. 505-513
-
-
Park, S.A.1
Lee, S.H.2
Kim, W.D.3
-
39
-
-
0037210053
-
Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds
-
Taboas JM, Maddox RD, Krebsbach PH, Hollister SJ. Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds. Biomaterials. 2003;24(1):181–94.
-
(2003)
Biomaterials
, vol.24
, Issue.1
, pp. 181-194
-
-
Taboas, J.M.1
Maddox, R.D.2
Krebsbach, P.H.3
Hollister, S.J.4
-
40
-
-
80255132041
-
Polyoxymethylene-homopolymer/hydroxyapatite nanocomposites for biomedical applications
-
Pielichowska K. Polyoxymethylene-homopolymer/hydroxyapatite nanocomposites for biomedical applications. J Appl Polym Sci. 2012;123(4):2234–43.
-
(2012)
J Appl Polym Sci.
, vol.123
, Issue.4
, pp. 2234-2243
-
-
Pielichowska, K.1
-
41
-
-
0033559073
-
Poly(alpha-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology
-
Zhang R, Ma PX. Poly(alpha-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. J Biomed Mater Res. 1999;44:446–55.
-
(1999)
J Biomed Mater Res.
, vol.44
, pp. 446-455
-
-
Zhang, R.1
Ma, P.X.2
-
42
-
-
0032874505
-
Biodegradable polymeric microcellular foams by modified thermally induced phase separation method
-
Nam YS, Park TG. Biodegradable polymeric microcellular foams by modified thermally induced phase separation method. Biomaterials. 1999;20:1783–90.
-
(1999)
Biomaterials
, vol.20
, pp. 1783-1790
-
-
Nam, Y.S.1
Park, T.G.2
-
43
-
-
0002969423
-
Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation
-
Nam YS, Park TG. Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation. J Biomed Mater Res. 1999;47(1):8–17.
-
(1999)
J Biomed Mater Res.
, vol.47
, Issue.1
, pp. 8-17
-
-
Nam, Y.S.1
Park, T.G.2
-
44
-
-
84889677654
-
Scaffolds for Tissue Engineering Via Thermally Induced Phase Separation
-
Martínez-Pérez CA, Olivas-Armendariz I, Castro-Carmona JS, García-Casillas PE. 2011, Scaffolds for Tissue Engineering Via Thermally Induced Phase Separation. Advances in regenerative medicine, Wislet-Gendebien S (Ed.), ISBN: 978-953-307-732-1, 2011; InTech. doi:10.5772/25476.
-
(2011)
Advances in regenerative medicine
-
-
Martínez-Pérez, C.A.1
Olivas-Armendariz, I.2
Castro-Carmona, J.S.3
García-Casillas, P.E.4
-
45
-
-
60849124196
-
The influence of three-dimensional nanofibrous scaffolds on the osteogenic differentiation of embryonic stem cells
-
Smith LA, Liu X, Hu J, Ma PX. The influence of three-dimensional nanofibrous scaffolds on the osteogenic differentiation of embryonic stem cells. Biomaterials. 2009;30:2516–22.
-
(2009)
Biomaterials
, vol.30
, pp. 2516-2522
-
-
Smith, L.A.1
Liu, X.2
Hu, J.3
Ma, P.X.4
-
46
-
-
78651397136
-
Effect of some factors on fabrication of poly(L-lactic acid) microporous foams by thermally induced phase separation using N,N-dimethylacetamide as solvent
-
Li S, Chen X, Li M. Effect of some factors on fabrication of poly(L-lactic acid) microporous foams by thermally induced phase separation using N,N-dimethylacetamide as solvent. Prep Biochem Biotechnol. 2011;41:53–72.
-
(2011)
Prep Biochem Biotechnol.
, vol.41
, pp. 53-72
-
-
Li, S.1
Chen, X.2
Li, M.3
-
47
-
-
3042778829
-
Engineering principles of clinical cell-based tissue engineering
-
Muschler GE, Nakamoto C, Griffith LG. Engineering principles of clinical cell-based tissue engineering. J Bone Joint Surg Am. 2004;86A:1541–58.
-
(2004)
J Bone Joint Surg Am.
, vol.86A
, pp. 1541-1558
-
-
Muschler, G.E.1
Nakamoto, C.2
Griffith, L.G.3
-
48
-
-
84861801335
-
Bone regeneration in a rabbit critical-sized calvarial model using tyrosine-derived polycarbonate scaffolds
-
Kim J, Magno MH, Waters H, Doll BA, McBride S, Alvarez P, et al. Bone regeneration in a rabbit critical-sized calvarial model using tyrosine-derived polycarbonate scaffolds. Tissue Eng Part A. 2012;18:1132–9.
-
(2012)
Tissue Eng Part A.
, vol.18
, pp. 1132-1139
-
-
Kim, J.1
Magno, M.H.2
Waters, H.3
Doll, B.A.4
McBride, S.5
Alvarez, P.6
-
49
-
-
84861838534
-
3D PLLA/nano-hydroxyapatite scaffolds with hierarchical porous structure fabricated by low-temperature deposition manufacturing
-
Liang Y, Zheng X, Zhai W, Sun T. 3D PLLA/nano-hydroxyapatite scaffolds with hierarchical porous structure fabricated by low-temperature deposition manufacturing. J Wuhan Univ Technol Mater Sci. 2012;27(2):265–9.
-
(2012)
J Wuhan Univ Technol Mater Sci.
, vol.27
, Issue.2
, pp. 265-269
-
-
Liang, Y.1
Zheng, X.2
Zhai, W.3
Sun, T.4
-
50
-
-
0033104406
-
Effects of synthetic micro- and nano-structured surfaces on cell behavior
-
Flemming RG, Murphy CJ, Abrams GA, Goodman SL, Nealey PF. Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials. 1999;20(6):573–88.
-
(1999)
Biomaterials
, vol.20
, Issue.6
, pp. 573-588
-
-
Flemming, R.G.1
Murphy, C.J.2
Abrams, G.A.3
Goodman, S.L.4
Nealey, P.F.5
-
51
-
-
26944442373
-
Bone tissue engineering evaluation based on rat calvaria stromal cells cultured on modified PLGA scaffolds
-
Wu YC, Shaw SY, Lin HR, Lee TM, Yang CY. Bone tissue engineering evaluation based on rat calvaria stromal cells cultured on modified PLGA scaffolds. Biomaterials. 2006;27:896–904.
-
(2006)
Biomaterials
, vol.27
, pp. 896-904
-
-
Wu, Y.C.1
Shaw, S.Y.2
Lin, H.R.3
Lee, T.M.4
Yang, C.Y.5
-
52
-
-
57349173536
-
Multinozzle low-temperature deposition system for construction of gradient tissue engineering scaffolds
-
Liu L, Xiong Z, Yan Y, Zhang R, Wang X, Jin L. Multinozzle low-temperature deposition system for construction of gradient tissue engineering scaffolds. J Biomed Mater Res B Appl Biomater. 2009;88(1):254–63.
-
(2009)
J Biomed Mater Res B Appl Biomater
, vol.88
, Issue.1
, pp. 254-263
-
-
Liu, L.1
Xiong, Z.2
Yan, Y.3
Zhang, R.4
Wang, X.5
Jin, L.6
-
53
-
-
84873307992
-
Effects of designed PLLA and 50:50 PLGA scaffold architectures on bone formation in vivo
-
Saito E, Liao EE, Hu WW, Krebsbach PH, Hollister SJ. Effects of designed PLLA and 50:50 PLGA scaffold architectures on bone formation in vivo. J Tissue Eng Regen Med. 2013;7(2):99–111.
-
(2013)
J Tissue Eng Regen Med.
, vol.7
, Issue.2
, pp. 99-111
-
-
Saito, E.1
Liao, E.E.2
Hu, W.W.3
Krebsbach, P.H.4
Hollister, S.J.5
-
54
-
-
21844438003
-
Porous scaffold design for tissue engineering
-
Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater. 2005;4(7):518–24.
-
(2005)
Nat Mater.
, vol.4
, Issue.7
, pp. 518-524
-
-
Hollister, S.J.1
-
55
-
-
84904036060
-
Effects of processing parameters in thermally induced phase separation technique on porous architecture of scaffolds for bone tissue engineering
-
Akbarzadeh R, Yousefi AM. Effects of processing parameters in thermally induced phase separation technique on porous architecture of scaffolds for bone tissue engineering. J Biomed Mater Res B-Appl Biomater; 2014. doi:10.1002/jbm.b.33101.
-
(2014)
J Biomed Mater Res B-Appl Biomater
-
-
Akbarzadeh, R.1
Yousefi, A.M.2
-
56
-
-
34248211259
-
Design and fabrication of 3d-plotted polymeric scaffolds in functional tissue engineering
-
Yousefi AM, Gauvin C, Sun L, DiRaddo RW, Fernandes J. Design and fabrication of 3d-plotted polymeric scaffolds in functional tissue engineering. Polym Eng Sci. 2007;47:608–18.
-
(2007)
Polym Eng Sci.
, vol.47
, pp. 608-618
-
-
Yousefi, A.M.1
Gauvin, C.2
Sun, L.3
DiRaddo, R.W.4
Fernandes, J.5
-
57
-
-
23644441508
-
Three-dimensional growth of differentiating MC3T3-E1 pre-osteoblasts on porous titanium scaffolds
-
St-Pierre J-P, Gauthier M, Lefebvre L-P, Tabrizian M. Three-dimensional growth of differentiating MC3T3-E1 pre-osteoblasts on porous titanium scaffolds. Biomaterials. 2005;26(35):7319–28.
-
(2005)
Biomaterials
, vol.26
, Issue.35
, pp. 7319-7328
-
-
St-Pierre, J.-P.1
Gauthier, M.2
Lefebvre, L.-P.3
Tabrizian, M.4
-
58
-
-
0346634885
-
Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering
-
Landers R, Hübner U, Schmelzeisen R, Mülhaupt R. Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials. 2002;23(23):4437–47.
-
(2002)
Biomaterials
, vol.23
, Issue.23
, pp. 4437-4447
-
-
Landers, R.1
Hübner, U.2
Schmelzeisen, R.3
Mülhaupt, R.4
-
59
-
-
33748316443
-
Polymer hollow fiber three-dimensional matrices with controllable cavity and shell thickness
-
Moroni L, Schotel R, Sohier J, de Wijn JR, van Blitterswijk CA. Polymer hollow fiber three-dimensional matrices with controllable cavity and shell thickness. Biomaterials. 2006;27(35):5918–26.
-
(2006)
Biomaterials
, vol.27
, Issue.35
, pp. 5918-5926
-
-
Moroni, L.1
Schotel, R.2
Sohier, J.3
de Wijn, J.R.4
van Blitterswijk, C.A.5
-
60
-
-
27644577737
-
Combined use of designed scaffolds and adenoviral gene therapy for skeletal tissue engineering
-
Schek RM, Wilke EN, Hollister SJ, Krebsbach PH. Combined use of designed scaffolds and adenoviral gene therapy for skeletal tissue engineering. Biomaterials. 2006;27:1160–6.
-
(2006)
Biomaterials
, vol.27
, pp. 1160-1166
-
-
Schek, R.M.1
Wilke, E.N.2
Hollister, S.J.3
Krebsbach, P.H.4
-
61
-
-
33947722555
-
Bone ingrowth in porous titanium implants produced by 3D fiber deposition
-
Li JP, Habibovic P, van den Doel M, et al. Bone ingrowth in porous titanium implants produced by 3D fiber deposition. Biomaterials. 2007;28:2810–20.
-
(2007)
Biomaterials
, vol.28
, pp. 2810-2820
-
-
Li, J.P.1
Habibovic, P.2
van den Doel, M.3
-
62
-
-
17844400927
-
Porosity of 3D biomaterial scaffolds and osteogenesis
-
Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26(27):5474–91.
-
(2005)
Biomaterials
, vol.26
, Issue.27
, pp. 5474-5491
-
-
Karageorgiou, V.1
Kaplan, D.2
-
63
-
-
0028338446
-
Engineering cell shape and function
-
Singhvi R, Kumar A, Lopez GP, Stephanopoulos GN, Wang DI, Whitesides GM, Ingber DE. Engineering cell shape and function. Science. 1994;264(5159):696–8.
-
(1994)
Science
, vol.264
, Issue.5159
, pp. 696-698
-
-
Singhvi, R.1
Kumar, A.2
Lopez, G.P.3
Stephanopoulos, G.N.4
Wang, D.I.5
Whitesides, G.M.6
Ingber, D.E.7
-
64
-
-
0034765279
-
Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition
-
Zeltinger J, Sherwood JK, Graham DA, Müeller R, Griffith LG. Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Eng. 2001;7(5):557–72.
-
(2001)
Tissue Eng.
, vol.7
, Issue.5
, pp. 557-572
-
-
Zeltinger, J.1
Sherwood, J.K.2
Graham, D.A.3
Müeller, R.4
Griffith, L.G.5
-
65
-
-
79959793218
-
Mesenchymal stem cell assays and applications, methods in molecular biology; Mohan C
-
Grayson WL, Bhumiratana S, Cannizzaro C, Vunjak-Novakovic G. Bioreactor cultivation of functional bone grafts. In: Mesenchymal stem cell assays and applications, methods in molecular biology; Mohan C. Vemuri et al (eds.); 2011, vol 698, p. 231–241.
-
Vemuri et al(eds.); 2011
, vol.698
, pp. 231-241
-
-
Grayson, W.L.1
Bhumiratana, S.2
Cannizzaro, C.3
Vunjak-Novakovic, G.4
-
67
-
-
84877279662
-
Direct-write assembly of 3D silk/hydroxyapatite scaffolds for bone co-cultures
-
Sun L, Parker ST, Syoji D, Wang X, Lewis JA, Kaplan DL. Direct-write assembly of 3D silk/hydroxyapatite scaffolds for bone co-cultures. Adv Healthc Mater. 2012;1:729–35.
-
(2012)
Adv Healthc Mater.
, vol.1
, pp. 729-735
-
-
Sun, L.1
Parker, S.T.2
Syoji, D.3
Wang, X.4
Lewis, J.A.5
Kaplan, D.L.6
-
68
-
-
84883496381
-
Geometry-driven cell organization determines tissue growths in scaffold pores: consequences for fibronectin organization
-
Joly P, Duda GN, Schöne M, Welzel PB, Freudenberg U, Werner C, Petersen A. Geometry-driven cell organization determines tissue growths in scaffold pores: consequences for fibronectin organization. PLoS ONE. 2013;8:e73545.
-
(2013)
PLoS ONE
, vol.8
, pp. e73545
-
-
Joly, P.1
Duda, G.N.2
Schöne, M.3
Welzel, P.B.4
Freudenberg, U.5
Werner, C.6
Petersen, A.7
-
69
-
-
49949086830
-
The effect of geometry on three-dimensional tissue growth
-
Rumpler M, Woesz A, Dunlop JW, van Dongen JT, Fratzl P. The effect of geometry on three-dimensional tissue growth. J R Soc Interface. 2008;5:1173–80.
-
(2008)
J R Soc Interface.
, vol.5
, pp. 1173-1180
-
-
Rumpler, M.1
Woesz, A.2
Dunlop, J.W.3
van Dongen, J.T.4
Fratzl, P.5
-
70
-
-
84862869528
-
A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering
-
Billiet T, Vandenhaute M, Schelfhout J, Van Vlierberghe S, Dubruel P. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials. 2012;33(26):6020–41.
-
(2012)
Biomaterials
, vol.33
, Issue.26
, pp. 6020-6041
-
-
Billiet, T.1
Vandenhaute, M.2
Schelfhout, J.3
Van Vlierberghe, S.4
Dubruel, P.5
-
71
-
-
27944466697
-
Exploring and engineering the cell surface interface
-
Stevens MM, George JH. Exploring and engineering the cell surface interface. Science. 2005;310(5751):1135–8.
-
(2005)
Science
, vol.310
, Issue.5751
, pp. 1135-1138
-
-
Stevens, M.M.1
George, J.H.2
-
72
-
-
84867366681
-
Three-dimensional fibrous scaffolds with microstructures and nanotextures for tissue engineering
-
Ng R, Zang R, Yang KK, Liu N, Yang S-T. Three-dimensional fibrous scaffolds with microstructures and nanotextures for tissue engineering. RSC Adv. 2014;2:10110–24.
-
(2014)
RSC Adv.
, vol.2
, pp. 10110-10124
-
-
Ng, R.1
Zang, R.2
Yang, K.K.3
Liu, N.4
Yang, S.-T.5
-
73
-
-
84899538239
-
Functionalized carbon nanotube reinforced scaffolds for bone regenerative engineering: fabrication, in vitro and in vivo evaluation
-
Mikael PE, Amini AR, Basu J, Josefina Arellano-Jimenez M, Laurencin CT, Sanders MM, Barry Carter C, Nukavarapu SP. Functionalized carbon nanotube reinforced scaffolds for bone regenerative engineering: fabrication, in vitro and in vivo evaluation. Biomed Mater. 2014;9(3):035001.
-
(2014)
Biomed Mater.
, vol.9
, Issue.3
, pp. 035001
-
-
Mikael, P.E.1
Amini, A.R.2
Basu, J.3
Josefina Arellano-Jimenez, M.4
Laurencin, C.T.5
Sanders, M.M.6
Barry Carter, C.7
Nukavarapu, S.P.8
-
74
-
-
84880170524
-
Collagen/alginate scaffolds comprising core (PCL)–shell (collagen/alginate) struts for hard tissue regeneration: fabrication, characterisation, and cellular activities
-
Kim Y, Kim G. Collagen/alginate scaffolds comprising core (PCL)–shell (collagen/alginate) struts for hard tissue regeneration: fabrication, characterisation, and cellular activities. J. Mater Chem B. 2013;1:3185–94.
-
(2013)
J. Mater Chem B
, vol.1
, pp. 3185-3194
-
-
Kim, Y.1
Kim, G.2
-
75
-
-
84862931627
-
Rapid mineralization of porous gelatin scaffolds by electrodeposition for bone tissue engineering
-
He C, Zhang F, Cao L, Feng W, Qiu K, Zhang Y, Wang J. Rapid mineralization of porous gelatin scaffolds by electrodeposition for bone tissue engineering. J Mater Chem. 2012;22:2111–9.
-
(2012)
J Mater Chem
, vol.22
, pp. 2111-2119
-
-
He, C.1
Zhang, F.2
Cao, L.3
Feng, W.4
Qiu, K.5
Zhang, Y.6
Wang, J.7
-
76
-
-
84905046620
-
A novel two-step sintering for nano-hydroxyapatite scaffolds for bone tissue engineering
-
Feng P, Niu M, Gao C, Peng S, Shuai C. A novel two-step sintering for nano-hydroxyapatite scaffolds for bone tissue engineering. Sci Rep. 2014;4(5599):1–10.
-
(2014)
Sci Rep.
, vol.4
, Issue.5599
, pp. 1-10
-
-
Feng, P.1
Niu, M.2
Gao, C.3
Peng, S.4
Shuai, C.5
-
77
-
-
45749091716
-
Design and fabrication of 3D porous scaffolds to promote cell-based gene therapy
-
El-Ayoubi R, Eliopoulos N, DiRaddo R, Galipeau J, Yousefi AM. Design and fabrication of 3D porous scaffolds to promote cell-based gene therapy. Tissue Eng. 2008;14:1037–48.
-
(2008)
Tissue Eng.
, vol.14
, pp. 1037-1048
-
-
El-Ayoubi, R.1
Eliopoulos, N.2
DiRaddo, R.3
Galipeau, J.4
Yousefi, A.M.5
-
78
-
-
78349307822
-
Engineering optimized 3D biocompatible porous scaffolds for mesenchymal stromal cell-based gene therapy of hemophilia B
-
Coutu DL, Cuerquis J, El-Ayoubi R, Forner KA, Roy R, Francois M, Hyatt A, Griffith M, Yousefi AM, Blostein MD, Galipeau J. Engineering optimized 3D biocompatible porous scaffolds for mesenchymal stromal cell-based gene therapy of hemophilia B. Biomaterials. 2011;32:295–305.
-
(2011)
Biomaterials
, vol.32
, pp. 295-305
-
-
Coutu, D.L.1
Cuerquis, J.2
El-Ayoubi, R.3
Forner, K.A.4
Roy, R.5
Francois, M.6
Hyatt, A.7
Griffith, M.8
Yousefi, A.M.9
Blostein, M.D.10
Galipeau, J.11
-
79
-
-
1042266511
-
In vitro and in vivo degradation of mineralized collagen-based composite scaffold: nanohydroxyapatite/collagen/poly(L-lactide)
-
Liao SS, Cui FZ. In vitro and in vivo degradation of mineralized collagen-based composite scaffold: nanohydroxyapatite/collagen/poly(L-lactide). Tissue Eng. 2004;10:73–80.
-
(2004)
Tissue Eng.
, vol.10
, pp. 73-80
-
-
Liao, S.S.1
Cui, F.Z.2
-
80
-
-
79251627040
-
Early osteogenic signal expression of rat bone marrow stromal cells is influenced by both hydroxyapatite nanoparticle content and initial cell seeding density in biodegradable nanocomposite scaffolds
-
Kim K, Dean D, Lu A, Mikos AG, Fisher JP. Early osteogenic signal expression of rat bone marrow stromal cells is influenced by both hydroxyapatite nanoparticle content and initial cell seeding density in biodegradable nanocomposite scaffolds. Acta Biomater. 2011;7:1249–64.
-
(2011)
Acta Biomater.
, vol.7
, pp. 1249-1264
-
-
Kim, K.1
Dean, D.2
Lu, A.3
Mikos, A.G.4
Fisher, J.P.5
|