-
1
-
-
77953710812
-
Nerve regeneration in the peripheral nervous system versus the central nervous system and the relevance to speech and hearing after nerve injuries
-
Gordon K, Gordon T. Nerve regeneration in the peripheral nervous system versus the central nervous system and the relevance to speech and hearing after nerve injuries. J. Commun. Dis. 43(4), 274-285 (2010).
-
(2010)
J. Commun. Dis
, vol.43
, Issue.4
, pp. 274-285
-
-
Gordon, K.1
Gordon, T.2
-
2
-
-
68549099506
-
Strategies for inducing the formation of bands of Bngner in peripheral nerve regeneration
-
Ribeiro-Resende VT, Koenig B, Nichterwitz S, Oberhoffner S, Schlosshauer B. Strategies for inducing the formation of bands of Bngner in peripheral nerve regeneration. Biomaterials 30(29), 5251-5259 (2009).
-
(2009)
Biomaterials
, vol.30
, Issue.29
, pp. 5251-5259
-
-
Ribeiro-Resende, V.T.1
Koenig, B.2
Nichterwitz, S.3
Oberhoffner, S.4
Schlosshauer, B.5
-
3
-
-
80052104308
-
Wallerian degeneration: The innate-immune response to traumatic nerve injury
-
Rotshenker S. Wallerian degeneration: the innate-immune response to traumatic nerve injury. J. Neuroinflammation 8(1), 109-109 (2011).
-
(2011)
J. Neuroinflammation
, vol.8
, Issue.1
, pp. 109-109
-
-
Rotshenker, S.1
-
4
-
-
70449678738
-
Molecular dissection of reactive astrogliosis and glial scar formation
-
Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 32(12), 638-647 (2009).
-
(2009)
Trends Neurosci
, vol.32
, Issue.12
, pp. 638-647
-
-
Sofroniew, M.V.1
-
5
-
-
0030784492
-
Neurosurgery of the peripheral nervous system: Injuries, degeneration, and regeneration of the peripheral nerves
-
DOI 10.1016/S0090-3019(96)00545-9, PII S0090301996005459
-
Fernandez E, Pallini R, Lauretti L, Scogna A. Neurosurgery of the peripheral nervous system: injuries, degeneration, and regeneration of the peripheral nerves. Surg. Neurol. 48(5), 446-447 (1997). (Pubitemid 27463168)
-
(1997)
Surgical Neurology
, vol.48
, Issue.5
, pp. 446-447
-
-
Fernandez, E.1
Pallini, R.2
Lauretti, L.3
Scogna, A.4
-
6
-
-
30344471823
-
Donor, recipient and nerve grafts in brachial plexus reconstruction: Anatomical and technical features for facilitating the exposure
-
DOI 10.1007/s00276-005-0024-5
-
Norkus T, Norkus M, Ramanauskas T. Donor, recipient and nerve grafts in brachial plexus reconstruction: anatomical and technical features for facilitating the exposure. Surg. Radiol. Anat. 27(6), 524-530 (2005). (Pubitemid 43055276)
-
(2005)
Surgical and Radiologic Anatomy
, vol.27
, Issue.6
, pp. 524-530
-
-
Norkus, T.1
Norkus, M.2
Ramanauskas, T.3
-
7
-
-
77950864710
-
Management of nerve gaps: Autografts, allografts, nerve transfers, and end-to-side neurorrhaphy
-
Ray WZ, Mackinnon SE. Management of nerve gaps: autografts, allografts, nerve transfers, and end-to-side neurorrhaphy. Exp. Neurol. 223(1), 77-85 (2010).
-
(2010)
Exp. Neurol
, vol.223
, Issue.1
, pp. 77-85
-
-
Ray, W.Z.1
Mackinnon, S.E.2
-
8
-
-
77955507139
-
The Role of nerve allografts and conduits for nerve injuries
-
Rivlin M, Sheikh E, Isaac R, Beredjiklian PK. The Role of nerve allografts and conduits for nerve injuries. Hand Clinics 26(3), 435-446 (2010).
-
(2010)
Hand Clinics
, vol.26
, Issue.3
, pp. 435-446
-
-
Rivlin, M.1
Sheikh, E.2
Isaac, R.3
Beredjiklian, P.K.4
-
9
-
-
0642366759
-
Neural tissue engineering: Strategies for repair and regeneration
-
DOI 10.1146/annurev.bioeng.5.011303.120731
-
Schmidt CE, Leach JB. Neural tissue engineering: strategies for repair and regeneration. Ann. Rev. Biomed. Eng. 5, 293-347 (2003). (Pubitemid 40125315)
-
(2003)
Annual Review of Biomedical Engineering
, vol.5
, pp. 293-347
-
-
Schmidt, C.E.1
Leach, J.B.2
-
10
-
-
85015486327
-
Bioengineered nerve conduits for nerve repair
-
Terenghi G. Bioengineered nerve conduits for nerve repair. Tissue Eng. 13(4), 869-870 (2007).
-
(2007)
Tissue Eng
, vol.13
, Issue.4
, pp. 869-870
-
-
Terenghi, G.1
-
11
-
-
55749100987
-
Nanotechnology and nanomaterials: Promises for improved tissue regeneration
-
Zhang L, Webster TJ. Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today 4(1), 66-80 (2009).
-
(2009)
Nano Today
, vol.4
, Issue.1
, pp. 66-80
-
-
Zhang, L.1
Webster, T.J.2
-
12
-
-
0027595948
-
Tissue engineering
-
Langer R, Vacanti JP. Tissue engineering. Science 260(5110), 920-926 (1993). (Pubitemid 23209960)
-
(1993)
Science
, vol.260
, Issue.5110
, pp. 920-926
-
-
Langer, R.1
Vacanti, J.P.2
-
13
-
-
33645132489
-
Methods for fabrication of nanoscale topography for tissue engineering scaffolds
-
Norman JJ, Desai TA. Methods for fabrication of nanoscale topography for tissue engineering scaffolds. Ann. Biomed. Eng. 34(1), 89-101 (2006).
-
(2006)
Ann. Biomed. Eng
, vol.34
, Issue.1
, pp. 89-101
-
-
Norman, J.J.1
Desai, T.A.2
-
14
-
-
34748838460
-
Smart biomaterials design for tissue engineering and regenerative medicine
-
DOI 10.1016/j.biomaterials.2007.07.042, PII S0142961207005625, Festschrift honouring Professor David F. Williams
-
Furth ME, Atala A, Van Dyke ME. Smart biomaterials design for tissue engineering and regenerative medicine. Biomaterials 28(34), 5068-5073 (2007). (Pubitemid 47488490)
-
(2007)
Biomaterials
, vol.28
, Issue.34
, pp. 5068-5073
-
-
Furth, M.E.1
Atala, A.2
Van Dyke, M.E.3
-
15
-
-
33745494668
-
Biomaterials and strategies for nerve regeneration
-
Huang Y-C, Huang Y-Y. Biomaterials and strategies for nerve regeneration. Artif. Organs 30(7), 514-514 (2006).
-
(2006)
Artif. Organs
, vol.30
, Issue.7
, pp. 514-514
-
-
Huang, Y.-C.1
Huang, Y.-Y.2
-
16
-
-
85015458507
-
Engineered nanofibrous scaffolds for nerve tissue engineering
-
Valmikinathan CM. Engineered nanofibrous scaffolds for nerve tissue engineering. Dissertation 71(11), 241 (2009).
-
(2009)
Dissertation
, vol.71
, Issue.11
, pp. 241
-
-
Valmikinathan, C.M.1
-
17
-
-
76249097337
-
Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration
-
Subramanian A, Krishnan UM, Sethuraman S. Development of biomaterial scaffold for nerve tissue engineering: biomaterial mediated neural regeneration. J. Biomed. Sci. 16, 108 (2009).
-
(2009)
J. Biomed. Sci
, vol.16
, pp. 108
-
-
Subramanian, A.1
Krishnan, U.M.2
Sethuraman, S.3
-
18
-
-
84870561381
-
Nanomaterials design and tests for neural tissue engineering
-
Saracino GaA, Cigognini D, Silva D, Caprini A, Gelain F. Nanomaterials design and tests for neural tissue engineering. Chem. Soc. Rev. 42(1), 225-262 (2012).
-
(2012)
Chem. Soc. Rev
, vol.42
, Issue.1
, pp. 225-262
-
-
Gaa, S.1
Cigognini, D.2
Silva, D.3
Caprini, A.4
Gelain, F.5
-
19
-
-
84900330276
-
A process engineering perspective of scaffold fabrication methods in regenerative medicine: A review. Presented at: A
-
FL, USA 19-23 May 2012
-
Golbarg K-T, Chuang W, Rohan AS, Jingyan D. A process engineering perspective of scaffold fabrication methods in regenerative medicine: a review. Presented at: IIE Annual Conference. FL, USA, 19-23 May 2012.
-
IIE Annual Conference
-
-
Golbarg, K.-T.1
Chuang, W.2
Rohan, A.S.3
Jingyan, D.4
-
20
-
-
15944374297
-
Scaffold fabrication by indirect three-dimensional printing
-
DOI 10.1016/j.biomaterials.2004.10.040, PII S0142961204009603
-
Lee M, Dunn JCY, Wu BM. Scaffold fabrication by indirect three-dimensional printing. Biomaterials 26(20), 4281-4289 (2005). (Pubitemid 40430856)
-
(2005)
Biomaterials
, vol.26
, Issue.20
, pp. 4281-4289
-
-
Lee, M.1
Dunn, J.C.Y.2
Wu, B.M.3
-
21
-
-
84862606812
-
Advanced methods of hard tissue scaffold and implant fabrication
-
Lipowicz A. Advanced methods of hard tissue scaffold and implant fabrication. J. Biomech. 39(Suppl. 1), S216-S216 (2006).
-
(2006)
J. Biomech
, vol.39
, Issue.SUPPL. 1
-
-
Lipowicz, A.1
-
22
-
-
77954533805
-
Fiber scaffolds of polysialic acid via electrospinning for peripheral nerve regeneration
-
Assmann U, Szentivanyi A, Stark Y et al. Fiber scaffolds of polysialic acid via electrospinning for peripheral nerve regeneration. J. Mater. Sci. 21(7), 2115-2124 (2010).
-
(2010)
J. Mater. Sci
, vol.21
, Issue.7
, pp. 2115-2124
-
-
Assmann, U.1
Szentivanyi, A.2
Stark, Y.3
-
23
-
-
2442687840
-
Development of novel tissue engineering scaffolds via electrospinning
-
DOI 10.1517/14712598.4.5.659
-
Nair LS, Bhattacharyya S, Laurencin CT. Development of novel tissue engineering scaffolds via electrospinning. Expert Opin. Biol. Ther. 4(5), 659-668 (2004). (Pubitemid 38667811)
-
(2004)
Expert Opinion on Biological Therapy
, vol.4
, Issue.5
, pp. 659-668
-
-
Nair, L.S.1
Bhattacharyya, S.2
Laurencin, C.T.3
-
24
-
-
17144376020
-
Potential of nanofiber matrix as tissue-engineering scaffolds
-
DOI 10.1089/ten.2005.11.101
-
Ma Z, Kotaki M, Inai R, Ramakrishna S. Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Eng. 11(1-2), 101-109 (2005). (Pubitemid 40515178)
-
(2005)
Tissue Engineering
, vol.11
, Issue.1-2
, pp. 101-109
-
-
Ma, Z.1
Kotaki, M.2
Inai, R.3
Ramakrishna, S.4
-
25
-
-
70349826319
-
The application of nanofibrous scaffolds in neural tissue engineering
-
Cao HQ, Liu T, Chew SY. The application of nanofibrous scaffolds in neural tissue engineering. Adv. Drug Deliv. Rev. 61(12), 1055-1064 (2009).
-
(2009)
Adv. Drug Deliv. Rev
, vol.61
, Issue.12
, pp. 1055-1064
-
-
Cao, H.Q.1
Liu, T.2
Chew, S.Y.3
-
26
-
-
40049090999
-
Electrospinning: Applications in drug delivery and tissue engineering
-
Sill TJ, Von Recum HA. Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials 29(13), 1989-2006 (2008).
-
(2008)
Biomaterials
, vol.29
, Issue.13
, pp. 1989-2006
-
-
Sill, T.J.1
Von Recum, H.A.2
-
27
-
-
36549084632
-
The effect of the alignment of electrospun fibrous scaffolds on Schwann cell maturation
-
DOI 10.1016/j.biomaterials.2007.10.025, PII S0142961207008319
-
Chew SY, Mi R, Hoke A, Leong KW. The effect of the alignment of electrospun fibrous scaffolds on Schwann cell maturation. Biomaterials 29(6), 653-661 (2008). (Pubitemid 350181041)
-
(2008)
Biomaterials
, vol.29
, Issue.6
, pp. 653-661
-
-
Chew, S.Y.1
Mi, R.2
Hoke, A.3
Leong, K.W.4
-
28
-
-
55249093369
-
The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages
-
Xie J, Willerth SM, Li X et al. The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages. Biomaterials 30(3), 354-362 (2009).
-
(2009)
Biomaterials
, vol.30
, Issue.3
, pp. 354-362
-
-
Xie, J.1
Willerth, S.M.2
Li, X.3
-
29
-
-
56449118229
-
The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation
-
Christopherson GT, Song H, Mao HQ. The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation. Biomaterials 30(4), 556-564 (2009).
-
(2009)
Biomaterials
, vol.30
, Issue.4
, pp. 556-564
-
-
Christopherson, G.T.1
Song, H.2
Mao, H.Q.3
-
30
-
-
78049384204
-
Electrospun nanofibers for neural tissue engineering
-
Xie J, Macewan MR, Schwartz AG, Xia Y. Electrospun nanofibers for neural tissue engineering. Nanoscale 2(1), 35-44 (2010).
-
(2010)
Nanoscale
, vol.2
, Issue.1
, pp. 35-44
-
-
Xie, J.1
Macewan, M.R.2
Schwartz, A.G.3
Xia, Y.4
-
31
-
-
79851477670
-
Electrospun nanofibrous materials for neural tissue eng
-
Lee YS, Arinzeh TL. Electrospun nanofibrous materials for neural tissue eng. Polymers 3(1), 413-426 (2011).
-
(2011)
Polymers
, vol.3
, Issue.1
, pp. 413-426
-
-
Lee, Y.S.1
Arinzeh, T.L.2
-
32
-
-
54949090075
-
Electrospun biocomposite nanofibrous scaffolds for neural tissue eng
-
Prabhakaran MP, Venugopal JR, Ter Chyan T et al. Electrospun biocomposite nanofibrous scaffolds for neural tissue eng. Tissue Eng. Part A 14(11), 1787-1797 (2008).
-
(2008)
Tissue Eng. Part A
, vol.14
, Issue.11
, pp. 1787-1797
-
-
Prabhakaran, M.P.1
Venugopal, J.R.2
Ter Chyan, T.3
-
33
-
-
0035671158
-
The design of scaffolds for use in tissue engineering Part I Traditional factors
-
Yang SF, Leong KF, Du ZH, Chua CK. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng. 7(6), 679-689 (2001).
-
(2001)
Tissue Eng
, vol.7
, Issue.6
, pp. 679-689
-
-
Yang, S.F.1
Leong, K.F.2
Zh, D.3
Chua, C.K.4
-
34
-
-
0036191695
-
The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques
-
DOI 10.1089/107632702753503009
-
Yang S, Leong K-F, Du Z, Chua C-K. The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng. 8(1), 1-11 (2002). (Pubitemid 34194659)
-
(2002)
Tissue Engineering
, vol.8
, Issue.1
, pp. 1-11
-
-
Yang, S.1
Leong, K.-F.2
Du, Z.3
Chua, C.-K.4
-
35
-
-
84890381496
-
Bone tissue engineering using 3D printing
-
Bose S, Vahabzadeh S, Bandyopadhyay A. Bone tissue engineering using 3D printing. Mater. Today 16(12), 496-504 (2013).
-
(2013)
Mater. Today
, vol.16
, Issue.12
, pp. 496-504
-
-
Bose, S.1
Vahabzadeh, S.2
Bandyopadhyay, A.3
-
36
-
-
84876231038
-
Three-dimensional printing of soy protein scaffolds for tissue regeneration
-
Chien KB, Makridakis E, Shah RN. Three-dimensional printing of soy protein scaffolds for tissue regeneration. Tissue Eng. Part C Methods 19(6), 417-426 (2013).
-
(2013)
Tissue Eng. Part C Methods
, vol.19
, Issue.6
, pp. 417-426
-
-
Chien, K.B.1
Makridakis, E.2
Shah, R.N.3
-
37
-
-
84890404273
-
Light-assisted direct-write of 3D functional biomaterials
-
Hribar KC, Soman P, Warner J, Chung P, Chen S. Light-assisted direct-write of 3D functional biomaterials. Lab Chip 14(2), 268-275 (2013).
-
(2013)
Lab Chip
, vol.14
, Issue.2
, pp. 268-275
-
-
Hribar, K.C.1
Soman, P.2
Warner, J.3
Chung, P.4
Chen, S.5
-
38
-
-
84889064340
-
Customized biomimetic scaffolds created by indirect three-dimensional printing for tissue engineering
-
Lee JY, Choi BY, Wu B, Lee M. Customized biomimetic scaffolds created by indirect three-dimensional printing for tissue engineering. Biofabrication 5(4), 045003 (2013).
-
(2013)
Biofabrication
, vol.5
, Issue.4
, pp. 045003
-
-
Lee, J.Y.1
Choi, B.Y.2
Wu, B.3
Lee, M.4
-
39
-
-
84879103253
-
3D printed bionic ears
-
Mannoor MS, Jiang Z, James T et al. 3D printed bionic ears. Nano Lett. 13(6), 2634-2639 (2013).
-
(2013)
Nano Lett
, vol.13
, Issue.6
, pp. 2634-2639
-
-
Mannoor, M.S.1
Jiang, Z.2
James, T.3
-
40
-
-
0242668870
-
Organ printing: Computer-aided jet-based 3D tissue engineering
-
DOI 10.1016/S0167-7799(03)00033-7, PII S0167779903000337
-
Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR. Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol. 21(4), 157-161 (2003). (Pubitemid 36397983)
-
(2003)
Trends in Biotechnology
, vol.21
, Issue.4
, pp. 157-161
-
-
Mironov, V.1
Boland, T.2
Trusk, T.3
Forgacs, G.4
Markwald, R.R.5
-
41
-
-
84880237098
-
Bioprinting toward organ fabrication: Challenges and future trends
-
Ozbolat IT, Yu Y. Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans. Biomed. Eng. 60(3), 691-699 (2013).
-
(2013)
IEEE Trans. Biomed. Eng
, vol.60
, Issue.3
, pp. 691-699
-
-
Ozbolat, I.T.1
Yu, Y.2
-
42
-
-
77951247563
-
Layer by layer three-dimensional tissue epitaxy by cell-laden hydrogel droplets
-
Moon S, Haeggstrom E, Khademhosseini A et al. Layer by layer three-dimensional tissue epitaxy by cell-laden hydrogel droplets. Tissue Eng. Part C Methods 16(1), 157-166 (2010).
-
(2010)
Tissue Eng. Part C Methods
, vol.16
, Issue.1
, pp. 157-166
-
-
Moon, S.1
Haeggstrom, E.2
Khademhosseini, A.3
-
43
-
-
84867802264
-
Optical proximity corrections for digital micromirror device-based maskless lithography
-
Hur J, Seo M. Optical proximity corrections for digital micromirror device-based maskless lithography. J. Opt. Soc. Korea 16(3), 221-227 (2012).
-
(2012)
J. Opt. Soc. Korea
, vol.16
, Issue.3
, pp. 221-227
-
-
Hur, J.1
Seo, M.2
-
44
-
-
84862909001
-
Solid freeform fabrication of designer scaffolds of hyaluronic acid for nerve tissue engineering
-
Suri S, Han L-H, Zhang W, Singh A, Chen S, Schmidt CE. Solid freeform fabrication of designer scaffolds of hyaluronic acid for nerve tissue engineering. Biomed. Microdevices 13(6), 983-993 (2011).
-
(2011)
Biomed. Microdevices
, vol.13
, Issue.6
, pp. 983-993
-
-
Suri, S.1
Han, L.-H.2
Zhang, W.3
Singh, A.4
Chen, S.5
Schmidt, C.E.6
-
45
-
-
80355125390
-
Fabrication of micropatterned hydrogels for neural culture systems using dynamic mask projection photolithography
-
Curley JL, Jennings SR, Moore MJ. Fabrication of micropatterned hydrogels for neural culture systems using dynamic mask projection photolithography. J. Vis. Exp. 48, 2636 (2011).
-
(2011)
J. Vis. Exp
, vol.48
, Issue.2636
-
-
Curley, J.L.1
Jennings, S.R.2
Moore, M.J.3
-
46
-
-
33645883539
-
Viability and electrophysiology of neural cell structures generated by the inkjet printing method
-
Xu T, Gregory CA, Molnar P et al. Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials 27(19), 3580-3588 (2006).
-
(2006)
Biomaterials
, vol.27
, Issue.19
, pp. 3580-3588
-
-
Xu, T.1
Gregory, C.A.2
Molnar, P.3
-
47
-
-
84875008763
-
Het Panhuis M. Bio-ink for on-demand printing of living cells
-
Ferris CJ, Gilmore KJ, Beirne S, McCallum D, Wallace GG, In Het Panhuis M. Bio-ink for on-demand printing of living cells. Biomater. Sci. 1(2), 224 (2013).
-
(2013)
Biomater. Sci
, vol.1
, Issue.2
, pp. 224
-
-
Ferris, C.J.1
Gilmore, K.J.2
Beirne, S.3
McCallum, D.4
Wallace, G.G.5
-
48
-
-
84889012321
-
Biofabrication and testing of a fully cellular nerve graft
-
Owens CM, Marga F, Forgacs G, Heesch CM. Biofabrication and testing of a fully cellular nerve graft. Biofabrication 5(4), 045007 (2013).
-
(2013)
Biofabrication
, vol.5
, Issue.4
, pp. 045007
-
-
Owens, C.M.1
Marga, F.2
Forgacs, G.3
Heesch, C.M.4
-
49
-
-
31044432259
-
Survival and proliferative ability of various living cell types after laser-induced forward transfer
-
DOI 10.1089/ten.2005.11.1817
-
Hopp B, Smausz T, Kresz N et al. Survival and proliferative ability of various living cell types after laser-induced forward transfer. Tissue Eng. 11(11-12), 1817-1823 (2005). (Pubitemid 43120193)
-
(2005)
Tissue Engineering
, vol.11
, Issue.11-12
, pp. 1817-1823
-
-
Hopp, B.1
Smausz, T.2
Kresz, N.3
Barna, N.4
Bor, Z.5
Kolozsvari, L.6
Chrisey, D.B.7
Szabo, A.8
Nogradi, A.9
-
50
-
-
84875940912
-
Advanced nanobiomaterial strategies for the development of organized tissue engineering constructs
-
An J, Chua CK, Yu T, Li HQ, Tan LP. Advanced nanobiomaterial strategies for the development of organized tissue engineering constructs. Nanomedicine 8(4), 591-602 (2013).
-
(2013)
Nanomedicine
, vol.8
, Issue.4
, pp. 591-602
-
-
An, J.1
Chua, C.K.2
Yu, T.3
Li, H.Q.4
Tan, L.P.5
-
51
-
-
84862648665
-
Additive manufacturing of tissues and organs
-
Melchels FPW, Domingos MaN, Klein TJ, Malda J, Bartolo PJ, Hutmacher DW. Additive manufacturing of tissues and organs. Prog. Polym. Sci. 37(8), 1079-1104 (2012).
-
(2012)
Prog. Polym. Sci
, vol.37
, Issue.8
, pp. 1079-1104
-
-
Fpw, M.1
Man, D.2
Klein, T.J.3
Malda, J.4
Bartolo, P.J.5
Hutmacher, D.W.6
-
52
-
-
71449126497
-
Biomanufacturing for tissue engineering: Present and future trends
-
Bártolo PJ, Chua CK, Almeida HA, Chou SM, Lim ASC. Biomanufacturing for tissue engineering: present and future trends. Virtual Phys. Prototyp. 4(4), 203-216 (2009).
-
(2009)
Virtual Phys. Prototyp
, vol.4
, Issue.4
, pp. 203-216
-
-
Bártolo, P.J.1
Chua, C.K.2
Almeida, H.A.3
Chou, S.M.4
Asc, L.5
-
53
-
-
70849112627
-
Inspiration and application in the evolution of biomaterials
-
Huebsch N, Mooney DJ. Inspiration and application in the evolution of biomaterials. Nature 462(7272), 426-432 (2009).
-
(2009)
Nature
, vol.462
, Issue.7272
, pp. 426-432
-
-
Huebsch, N.1
Mooney, D.J.2
-
54
-
-
77954946648
-
Designer self-assembling peptide nanofiber biological materials
-
Hauser CA, Zhang S. Designer self-assembling peptide nanofiber biological materials. Chem. Soc. Rev. 39(8), 2780-2790 (2010).
-
(2010)
Chem. Soc. Rev
, vol.39
, Issue.8
, pp. 2780-2790
-
-
Hauser, C.A.1
Zhang, S.2
-
55
-
-
42949154178
-
Nanostructured scaffolds for neural applications
-
DOI 10.2217/17435889.3.2.183
-
Seidlits SK, Lee JY, Schmidt CE. Nanostructured scaffolds for neural applications. Nanomedicine 3(2), 183-199 (2008). (Pubitemid 351611855)
-
(2008)
Nanomedicine
, vol.3
, Issue.2
, pp. 183-199
-
-
Seidlits, S.K.1
Lee, J.Y.2
Schmidt, C.E.3
-
56
-
-
1442281238
-
Selective Differentiation of Neural Progenitor Cells by High-Epitope Density Nanofibers
-
DOI 10.1126/science.1093783
-
Silva GA, Czeisler C, Niece KL et al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303(5662), 1352-1355 (2004). (Pubitemid 38269424)
-
(2004)
Science
, vol.303
, Issue.5662
, pp. 1352-1355
-
-
Silva, G.A.1
Czeisler, C.2
Niece, K.L.3
Beniash, E.4
Harrington, D.A.5
Kessler, J.A.6
Stupp, S.I.7
-
57
-
-
54949097679
-
Designer self-assembling peptide nanofiber scaffolds for adult mouse neural stem cell 3-dimensional cultures
-
Gelain F, Bottai D, Vescovi A, Zhang S. Designer self-assembling peptide nanofiber scaffolds for adult mouse neural stem cell 3-dimensional cultures. PLoS ONE 1(2), e119 (2006).
-
(2006)
PLoS ONE
, vol.1
, Issue.2
-
-
Gelain, F.1
Bottai, D.2
Vescovi, A.3
Zhang, S.4
-
58
-
-
84875506888
-
Nanofiber scaffolds facilitate functional regeneration of peripheral nerve injury
-
Zhan X, Zhang W, Guo J et al. Nanofiber scaffolds facilitate functional regeneration of peripheral nerve injury. Nanomedicine 9(3), 305-315 (2013).
-
(2013)
Nanomedicine
, vol.9
, Issue.3
, pp. 305-315
-
-
Zhan, X.1
Zhang, W.2
Guo, J.3
-
59
-
-
0342819025
-
Helical microtubules of graphitic carbon
-
Iijima S. Helical microtubules of graphitic carbon. Nature 354(6348), 56-58 (1991). (Pubitemid 21896780)
-
(1991)
Nature
, vol.354
, Issue.6348
, pp. 56-58
-
-
Iijima, S.1
-
60
-
-
59849104708
-
Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts
-
Cellot G, Scaini D, Gelain F et al. Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts. Nat. Nanotechnol. 4(2), 126-133 (2009).
-
(2009)
Nat. Nanotechnol
, vol.4
, Issue.2
, pp. 126-133
-
-
Cellot, G.1
Scaini, D.2
Gelain, F.3
-
61
-
-
84863837374
-
Directional neurite outgrowth on superaligned carbon nanotube yarn patterned substrate
-
Fan L, Feng C, Zhao W, Qian L, Wang Y, Li Y. Directional neurite outgrowth on superaligned carbon nanotube yarn patterned substrate. Nano Lett. 12(7), 3668-3673 (2012).
-
(2012)
Nano Lett
, vol.12
, Issue.7
, pp. 3668-3673
-
-
Fan, L.1
Feng, C.2
Zhao, W.3
Qian, L.4
Wang, Y.5
Li, Y.6
-
62
-
-
33846284218
-
Synthesis and characterization of porous carbon nanofibers with hollow cores through the thermal treatment of electrospun copolymeric nanofiber webs
-
DOI 10.1002/smll.200600243
-
Kim C, Jeong YI, Ngoc BTN et al. Synthesis and characterization of porous carbon nanofibers with hollow cores through the thermal treatment of electrospun copolymeric nanofiber webs. Small 3(1), 91-95 (2007). (Pubitemid 46114272)
-
(2007)
Small
, vol.3
, Issue.1
, pp. 91-95
-
-
Kim, C.1
Jeong, Y.I.2
Ngoc, B.T.N.3
Yang, K.S.4
Kojima, M.5
Kim, Y.A.6
Endo, M.7
Lee, J.-W.8
-
63
-
-
0033836999
-
Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth
-
Mattson MP, Haddon RC, Rao AM. Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth. J. Mol. Neurosci.14(3), 175-182 (2000). (Pubitemid 30660807)
-
(2000)
Journal of Molecular Neuroscience
, vol.14
, Issue.3
, pp. 175-182
-
-
Mattson, M.P.1
Haddon, R.C.2
Rao, A.M.3
-
64
-
-
1642528413
-
Chemically functionalized carbon nanotubes as substrates for neuronal growth
-
DOI 10.1021/nl035193d
-
Hu H, Ni Y, Montana V, Haddon RC, Parpura V. Chemically functionalized carbon nanotubes as substrates for neuronal growth. Nano Lett. 4(3), 507-511 (2004). (Pubitemid 38402642)
-
(2004)
Nano Letters
, vol.4
, Issue.3
, pp. 507-511
-
-
Hu, H.1
Ni, Y.2
Montana, V.3
Haddon, R.C.4
Parpura, V.5
-
65
-
-
15944404939
-
Polyethyleneimine functionalized single-walled carbon nanotubes as a substrate for neuronal growth
-
DOI 10.1021/jp0441137
-
Hu H, Ni Y, Mandal SK et al. Polyethyleneimine functionalized single-walled carbon nanotubes as a substrate for neuronal growth. J. Phys. Chem. B 109(10), 4285-4289 (2005). (Pubitemid 40429281)
-
(2005)
Journal of Physical Chemistry B
, vol.109
, Issue.10
, pp. 4285-4289
-
-
Hu, H.1
Ni, Y.2
Mandal, S.K.3
Montana, V.4
Zhao, B.5
Haddon, R.C.6
Parpura, V.7
-
66
-
-
77349095059
-
Stimulation of neuronal neurite outgrowth using functionalized carbon nanotubes
-
Matsumoto K, Sato C, Naka Y, Whitby R, Shimizu N. Stimulation of neuronal neurite outgrowth using functionalized carbon nanotubes. Nanotechnology 21(11), 115101 (2010).
-
(2010)
Nanotechnology
, vol.21
, Issue.11
, pp. 115101
-
-
Matsumoto, K.1
Sato, C.2
Naka, Y.3
Whitby, R.4
Shimizu, N.5
-
67
-
-
78650396154
-
Application of nanomaterials in tissue eng
-
Zhang JC, Liu DD, Zhou GQ, Shen SG. Application of nanomaterials in tissue eng. Prog. Chem. 22(11), 2232-2237 (2010).
-
(2010)
Prog. Chem
, vol.22
, Issue.11
, pp. 2232-2237
-
-
Zhang, J.C.1
Liu, D.D.2
Zhou, G.Q.3
Shen, S.G.4
-
68
-
-
0036877926
-
Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites
-
Mamedov AA, Kotov NA, Prato M, Guldi DM, Wicksted JP, Hirsch A. Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites. Nat. Mater. 1(3), 190-194 (2002).
-
(2002)
Nat. Mater
, vol.1
, Issue.3
, pp. 190-194
-
-
Mamedov, A.A.1
Kotov, N.A.2
Prato, M.3
Guldi, D.M.4
Wicksted, J.P.5
Hirsch, A.6
-
69
-
-
7544244907
-
Layer-by-layer assembled composites from multiwall carbon nanotubes with different morphologies
-
Olek M, Ostrander J, Jurga S et al. Layer-by-layer assembled composites from multiwall carbon nanotubes with different morphologies. Nano Lett. 4(10), 1889-1895 (2004).
-
(2004)
Nano Lett
, vol.4
, Issue.10
, pp. 1889-1895
-
-
Olek, M.1
Ostrander, J.2
Jurga, S.3
-
70
-
-
27944507962
-
Single-walled carbon nanotube polyelectrolyte multilayers and freestanding films as a biocompatible platform for neuroprosthetic implants
-
DOI 10.1002/adma.200500366
-
Gheith MK, Sinani VA, Wicksted JP, Matts RL, Kotov NA. Single-walled carbon nanotube polyelectrolyte multilayers and freestanding films as a biocompatible platform for neuroprosthetic implants. Adv. Mater. 17(22), 2663-2670 (2005). (Pubitemid 41677568)
-
(2005)
Advanced Materials
, vol.17
, Issue.22
, pp. 2663-2670
-
-
Gheith, M.K.1
Sinani, V.A.2
Wicksted, J.P.3
Matts, R.L.4
Kotov, N.A.5
-
71
-
-
33845194733
-
Stimulation of neural cells by lateral currents in conductive layer-by-layer films of single-walled carbon nanotubes
-
DOI 10.1002/adma.200600878
-
Gheith MK, Pappas TC, Liopo AV et al. Stimulation of neural cells by lateral currents in conductive layer-by-layer films of single-walled carbon nanotubes. Adv. Mater. 18(22), 2975-2979 (2006). (Pubitemid 44852476)
-
(2006)
Advanced Materials
, vol.18
, Issue.22
, pp. 2975-2979
-
-
Gheith, M.K.1
Pappas, T.C.2
Liopo, A.V.3
Sinani, V.A.4
Shim, B.S.5
Motamedi, M.6
Wicksted, J.P.7
Kotov, N.A.8
-
72
-
-
21644474768
-
Carbon nanotube substrates boost neuronal electrical signaling
-
DOI 10.1021/nl050637m
-
Lovat V, Pantarotto D, Lagostena L et al. Carbon nanotube substrates boost neuronal electrical signaling. Nano Lett. 5(6), 1107-1110 (2005). (Pubitemid 40925424)
-
(2005)
Nano Letters
, vol.5
, Issue.6
, pp. 1107-1110
-
-
Lovat, V.1
Pantarotto, D.2
Lagostena, L.3
Cacciari, B.4
Grandolfo, M.5
Righi, M.6
Spalluto, G.7
Prato, M.8
Ballerini, L.9
-
73
-
-
61649097567
-
Conductive single-walled carbon nanotube substrates modulate neuronal growth
-
Malarkey EB, Fisher KA, Bekyarova E, Liu W, Haddon RC, Parpura V. Conductive single-walled carbon nanotube substrates modulate neuronal growth. Nano Lett. 9(1), 264-268 (2009).
-
(2009)
Nano Lett
, vol.9
, Issue.1
, pp. 264-268
-
-
Malarkey, E.B.1
Fisher, K.A.2
Bekyarova, E.3
Liu, W.4
Haddon, R.C.5
Parpura, V.6
-
74
-
-
34249737007
-
Successful differentiation of mouse neural stem cells on layer-by-layer assembled single-walled carbon nanotube composite
-
DOI 10.1021/nl0620132
-
Jan E, Kotov NA. Successful differentiation of mouse neural stem cells on layer-by-layer assembled single-walled carbon nanotube composite. Nano Lett. 7(5), 1123-1128 (2007). (Pubitemid 46834384)
-
(2007)
Nano Letters
, vol.7
, Issue.5
, pp. 1123-1128
-
-
Jan, E.1
Kotov, N.A.2
-
75
-
-
70349823235
-
Carbon nanofibers and carbon nanotubes in regenerative medicine
-
Tran PA, Zhang L, Webster TJ. Carbon nanofibers and carbon nanotubes in regenerative medicine. Adv. Drug Deliv. Rev. 61(12), 1097-1114 (2009).
-
(2009)
Adv. Drug Deliv. Rev
, vol.61
, Issue.12
, pp. 1097-1114
-
-
Tran, P.A.1
Zhang, L.2
Webster, T.J.3
-
76
-
-
34249287687
-
Vertically aligned carbon nanofiber architecture as a multifunctional 3-D neural electrical interface
-
DOI 10.1109/TBME.2007.891169
-
Nguyen-Vu TDB, Chen H. Vertically aligned carbon nanofiber architecture as a multifunctional 3-D neural electrical interface. IEEE Trans. Biomed. Eng. 54(6), 1121-1128 (2007). (Pubitemid 46815121)
-
(2007)
IEEE Transactions on Biomedical Engineering
, vol.54
, Issue.6
, pp. 1121-1128
-
-
Nguyen-Vu, T.D.B.1
Chen, H.2
Cassell, A.M.3
Andrews, R.J.4
Meyyappan, M.5
Li, J.6
-
77
-
-
32044462723
-
Vertically aligned carbon nanoflber arrays: An advance toward electrical-neural interfaces
-
DOI 10.1002/smll.200500175
-
Nguyen-Vu TDB, Chen H, Cassell AM, Andrews R, Meyyappan M, Li J. Vertically aligned carbon nanofiber arrays: an advance toward electrical-neural interfaces. Small 2(1), 89-94 (2006). (Pubitemid 43198000)
-
(2006)
Small
, vol.2
, Issue.1
, pp. 89-94
-
-
Barbara Nguyen-Vu, T.D.1
Chen, H.2
Cassell, A.M.3
Andrews, R.4
Meyyappan, M.5
Li, J.6
-
78
-
-
33749343236
-
Stem cell impregnated carbon nanofibers/nanotubes for healing damaged neural tissue
-
Lee JE, Khang D, Kim YE, Webster TJ. Stem cell impregnated carbon nanofibers/nanotubes for healing damaged neural tissue. Mater. Res. Soc. Proc. 915 (2006)
-
(2006)
Mater. Res. Soc. Proc
, vol.915
-
-
Lee, J.E.1
Khang, D.2
Kim, Y.E.3
Webster, T.J.4
-
79
-
-
84893839104
-
Maintaining cytocompatibility of biopolymers through a graphene layer for electrical stimulation of nerve cells
-
Sherrell PC, Thompson BC, Wassei JK et al. Maintaining cytocompatibility of biopolymers through a graphene layer for electrical stimulation of nerve cells. Adv. Funct. Mater. 24(6), 769-776 (2013).
-
(2013)
Adv. Funct. Mater
, vol.24
, Issue.6
, pp. 769-776
-
-
Sherrell, P.C.1
Thompson, B.C.2
Wassei, J.K.3
-
80
-
-
80053588247
-
The promotion of neurite sprouting and outgrowth of mouse hippocampal cells in culture by graphene substrates
-
Li N, Zhang X, Song Q et al. The promotion of neurite sprouting and outgrowth of mouse hippocampal cells in culture by graphene substrates. Biomaterials 32(35), 9374-9382 (2011).
-
(2011)
Biomaterials
, vol.32
, Issue.35
, pp. 9374-9382
-
-
Li, N.1
Zhang, X.2
Song, Q.3
-
81
-
-
52049100789
-
Electrospun poly(ε- caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering
-
Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani M-H, Ramakrishna S. Electrospun poly(ε- caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials 29(34), 4532-4539 (2008).
-
(2008)
Biomaterials
, vol.29
, Issue.34
, pp. 4532-4539
-
-
Ghasemi-Mobarakeh, L.1
Prabhakaran, M.P.2
Morshed, M.3
Nasr-Esfahani, M.-H.4
Ramakrishna, S.5
-
82
-
-
78650590580
-
Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration
-
Gu X, Ding F, Yang Y, Liu J. Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration. Prog. Neurobiol. 93(2), 204-230 (2011).
-
(2011)
Prog. Neurobiol
, vol.93
, Issue.2
, pp. 204-230
-
-
Gu, X.1
Ding, F.2
Yang, Y.3
Liu, J.4
-
83
-
-
0242362678
-
Biologic gels in tissue engineering
-
DOI 10.1016/S0094-1298(03)00078-6
-
Mann BK. Biologic gels in tissue engineering. Clin. Plast. Surg. 30(4), 601-609 (2003). (Pubitemid 37351932)
-
(2003)
Clinics in Plastic Surgery
, vol.30
, Issue.4
, pp. 601-609
-
-
Mann, B.K.1
-
84
-
-
84870561381
-
Nanomaterials design and tests for neural tissue engineering
-
Saracino GaA, Cigognini D, Silva D, Caprini A, Gelain F. Nanomaterials design and tests for neural tissue engineering. Chem. Soc. Rev. 42(1), 225-262 (2013).
-
(2013)
Chem. Soc. Rev
, vol.42
, Issue.1
, pp. 225-262
-
-
Gaa, S.1
Cigognini, D.2
Silva, D.3
Caprini, A.4
Gelain, F.5
-
85
-
-
77952545276
-
Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture
-
Lee YB, Polio S, Lee W et al. Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture. Exp. Neurol. 223(2), 645-652 (2010).
-
(2010)
Exp. Neurol
, vol.223
, Issue.2
, pp. 645-652
-
-
Lee, Y.B.1
Polio, S.2
Lee, W.3
-
86
-
-
77956472536
-
Photochemical crosslinked electrospun collagen nanofibers: Synthesis, characterization and neural stem cell interactions
-
Liu T, Teng WK, Chan BP, Chew SY. Photochemical crosslinked electrospun collagen nanofibers: synthesis, characterization and neural stem cell interactions. J. Biomed. Mater. Res. A 95(1), 276-282 (2010).
-
(2010)
J. Biomed. Mater. Res. A
, vol.95
, Issue.1
, pp. 276-282
-
-
Liu, T.1
Teng, W.K.2
Chan, B.P.3
Chew, S.Y.4
-
87
-
-
80051599047
-
Fabrication of nano-structured electrospun collagen scaffold intended for nerve tissue engineering
-
Timnak A, Gharebaghi FY, Shariati RP et al. Fabrication of nano-structured electrospun collagen scaffold intended for nerve tissue engineering. J. Mater. Sci. 22(6), 1555-1567 (2011).
-
(2011)
J. Mater. Sci
, vol.22
, Issue.6
, pp. 1555-1567
-
-
Timnak, A.1
Gharebaghi, F.Y.2
Shariati, R.P.3
-
88
-
-
84888866606
-
Electrospun biocomposite polycaprolactone/collagen tubes as scaffolds for neural stem cell differentiation
-
Hackett JM, Dang TT, Tsai EC, Cao X. Electrospun biocomposite polycaprolactone/collagen tubes as scaffolds for neural stem cell differentiation. Materials 3(6), 3714-3728 (2010).
-
(2010)
Materials
, vol.3
, Issue.6
, pp. 3714-3728
-
-
Hackett, J.M.1
Dang, T.T.2
Tsai, E.C.3
Cao, X.4
-
89
-
-
67849109814
-
Mesenchymal stem cell differentiation to neuronal cells on electrospun nanofibrous substrates for nerve tissue engineering
-
Prabhakaran MP, Venugopal JR, Ramakrishna S. Mesenchymal stem cell differentiation to neuronal cells on electrospun nanofibrous substrates for nerve tissue engineering. Biomaterials 30(28), 4996-5003 (2009).
-
(2009)
Biomaterials
, vol.30
, Issue.28
, pp. 4996-5003
-
-
Prabhakaran, M.P.1
Venugopal, J.R.2
Ramakrishna, S.3
-
90
-
-
79960566188
-
Sciatic nerve regeneration in rats by a promising electrospun collagen/poly(ε-caprolactone) nerve conduit with tailored degradation rate
-
Yu W, Zhao W, Zhu C et al. Sciatic nerve regeneration in rats by a promising electrospun collagen/poly(ε-caprolactone) nerve conduit with tailored degradation rate. BMC Neurosci. 12(1), 68-68 (2011).
-
(2011)
BMC Neurosci
, vol.12
, Issue.1
, pp. 68-68
-
-
Yu, W.1
Zhao, W.2
Zhu, C.3
-
91
-
-
84859404787
-
Preparation and characterization of biomimetic silk fibroin/chitosan composite nanofibers by electrospinning for osteoblasts culture
-
Chen J-P, Chen S-H, Lai G-J. Preparation and characterization of biomimetic silk fibroin/chitosan composite nanofibers by electrospinning for osteoblasts culture. Nanoscale Res. Lett. 7(1), 1-11 (2012).
-
(2012)
Nanoscale Res. Lett
, vol.7
, Issue.1
, pp. 1-11
-
-
Chen, J.-P.1
Chen, S.-H.2
Lai, G.-J.3
-
92
-
-
0037290140
-
Silk-based biomaterials
-
DOI 10.1016/S0142-9612(02)00353-8, PII S0142961202003538
-
Altman GH, Diaz F, Jakuba C et al. Silk-based biomaterials. Biomaterials 24(3), 401-416 (2003). (Pubitemid 35291198)
-
(2003)
Biomaterials
, vol.24
, Issue.3
, pp. 401-416
-
-
Altman, G.H.1
Diaz, F.2
Jakuba, C.3
Calabro, T.4
Horan, R.L.5
Chen, J.6
Lu, H.7
Richmond, J.8
Kaplan, D.L.9
-
93
-
-
84863896364
-
Electrospun silk fibroin nanofibers promote Schwann cell adhesion, growth and proliferation
-
Hu AJ, Zuo BQ, Zhang F, Lan Q, Zhang HX. Electrospun silk fibroin nanofibers promote Schwann cell adhesion, growth and proliferation. Neural Regeneration Res. 7(15), 1171-1178 (2012).
-
(2012)
Neural Regeneration Res
, vol.7
, Issue.15
, pp. 1171-1178
-
-
Hu, A.J.1
Zuo, B.Q.2
Zhang, F.3
Lan, Q.4
Zhang, H.X.5
-
94
-
-
33749820322
-
Neural stem cell affinity of chitosan and feasibility of chitosan-based porous conduits as scaffolds for nerve tissue engineering
-
DOI 10.1016/S1007-0214(06)70210-3
-
Wang A, Ao Q, He Q et al. Neural stem cell affinity of chitosan and feasibility of chitosan-based porous conduits as scaffolds for nerve tissue eng. Tsinghua Sci. Technol. 11(4), 415-420 (2006). (Pubitemid 44557664)
-
(2006)
Tsinghua Science and Technology
, vol.11
, Issue.4
, pp. 415-420
-
-
Wang, A.1
Ao, Q.2
He, Q.3
Gong, X.4
Gong, K.5
Gong, Y.6
Zhao, N.7
Zhang, X.8
-
95
-
-
33748995090
-
Porous chitosan tubular scaffolds with knitted outer wall and controllable inner structure for nerve tissue engineering
-
DOI 10.1002/jbm.a.30683
-
Wang AJ, Ao Q, Cao WL et al. Porous chitosan tubular scaffolds with knitted outer wall and controllable inner structure for nerve tissue engineering. J. Biomed. Mater. Res. A 79(1), 36-46 (2006). (Pubitemid 44452852)
-
(2006)
Journal of Biomedical Materials Research - Part A
, vol.79
, Issue.1
, pp. 36-46
-
-
Wang, A.1
Ao, Q.2
Cao, W.3
Yu, M.4
He, Q.5
Kong, L.6
Zhang, L.7
Gong, Y.8
Zhang, X.9
-
96
-
-
33644821487
-
Peripheral nerve regeneration through nerve conduit composed of alginate-collagen-chitosan
-
Kim SW, Bae HK, Nam HS, Chung DJ, Choung PH. Peripheral nerve regeneration through nerve conduit composed of alginate-collagen-chitosan. Macromol. Res. 14(1), 94-100 (2006). (Pubitemid 43357133)
-
(2006)
Macromolecular Research
, vol.14
, Issue.1
, pp. 94-100
-
-
Kim, S.W.1
Bae, H.K.2
Nam, H.S.3
Chung, D.J.4
Choung, P.H.5
-
97
-
-
84860863436
-
Hyaluronic acid-based scaffold for central neural tissue engineering
-
Wang X, He J, Wang Y, Cui F-Z. Hyaluronic acid-based scaffold for central neural tissue engineering. Interface Focus 2(3), 278-291 (2012).
-
(2012)
Interface Focus
, vol.2
, Issue.3
, pp. 278-291
-
-
Wang, X.1
He, J.2
Wang, Y.3
Cui, F.-Z.4
-
98
-
-
79957912490
-
Biohybrid carbon nanotube/agarose fibers for neural tissue eng
-
Lewitus DY, Landers J, Branch J et al. Biohybrid carbon nanotube/agarose fibers for neural tissue eng. Adv. Funct. Mater. 21(14), 2624-2632 (2011).
-
(2011)
Adv. Funct. Mater
, vol.21
, Issue.14
, pp. 2624-2632
-
-
Lewitus, D.Y.1
Landers, J.2
Branch, J.3
-
99
-
-
0033151372
-
In vivo evaluation of poly(L-lactic acid) porous conduits for peripheral nerve regeneration
-
DOI 10.1016/S0142-9612(99)00010-1, PII S0142961299000101
-
Evans GRD, Grlek A, Nabawi A et al. In vivo evaluation of poly(l-lactic acid) porous conduits for peripheral nerve regeneration. Biomaterials 20(12), 1109-1115 (1999). (Pubitemid 29229497)
-
(1999)
Biomaterials
, vol.20
, Issue.12
, pp. 1109-1115
-
-
Evans, G.R.D.1
Brandt, K.2
Widmer, M.S.3
Lu, L.4
Meszlenyi, R.K.5
Gupta, P.K.6
Mikos, A.G.7
Hodges, J.8
Williams, J.9
Gurlek, A.10
Nabawi, A.11
Lohman, R.12
Patrick Jr., C.W.13
-
100
-
-
18844477518
-
Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration
-
PII S0142961298000994
-
Widmer MS, Mikos AG, Gupta PK et al. Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration. Biomaterials 19(21), 1945-1955 (1998). (Pubitemid 28528796)
-
(1998)
Biomaterials
, vol.19
, Issue.21
, pp. 1945-1955
-
-
Widmer, M.S.1
Gupta, P.K.2
Lu, L.3
Meszlenyi, R.K.4
Evans, G.R.D.5
Brandt, K.6
Savel, T.7
Gurlek, A.8
Patrick Jr., C.W.9
Mikos, A.G.10
-
101
-
-
58149234291
-
Surface modified electrospun nanofibrous scaffolds for nerve tissue engineering
-
Prabhakaran MP, Venugopal J, Chan CK, Ramakrishna S. Surface modified electrospun nanofibrous scaffolds for nerve tissue engineering. Nanotechnology 19(45), 455102 (2008).
-
(2008)
Nanotechnology
, vol.19
, Issue.45
, pp. 455102
-
-
Prabhakaran, M.P.1
Venugopal, J.2
Chan, C.K.3
Ramakrishna, S.4
-
102
-
-
84873583130
-
-
Springer Berlin Heidelberg, Berlin, Germany
-
Wolfe PS, Sell SA, Bowlin GL. Natural and Synthetic Scaffolds. Springer Berlin Heidelberg, Berlin, Germany, 41-67 (2011).
-
(2011)
Natural and Synthetic Scaffolds
, pp. 41-67
-
-
Wolfe, P.S.1
Sell, S.A.2
Bowlin, G.L.3
-
103
-
-
10044289544
-
Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering
-
DOI 10.1016/j.biomaterials.2004.06.051, PII S0142961204008567
-
Yang F, Murugan R, Wang S, Ramakrishna S. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26(15), 2603-2610 (2005). (Pubitemid 39600712)
-
(2005)
Biomaterials
, vol.26
, Issue.15
, pp. 2603-2610
-
-
Yang, F.1
Murugan, R.2
Wang, S.3
Ramakrishna, S.4
-
104
-
-
9744227221
-
Electrospun poly(L-lactide-co-glycolide) biodegradable polymer nanofibre tubes for peripheral nerve regeneration
-
Bini TB, Gao S, Tan TC et al. Electrospun poly(L-lactide-co-glycolide) biodegradable polymer nanofibre tubes for peripheral nerve regeneration. Nanotechnology 15(11), 1459-1464 (2004).
-
(2004)
Nanotechnology
, vol.15
, Issue.11
, pp. 1459-1464
-
-
Bini, T.B.1
Gao, S.2
Tan, T.C.3
-
105
-
-
32544445559
-
Conductive polypyrrole nanofibers via electrospinning: Electrical and morphological properties
-
DOI 10.1016/j.polymer.2006.01.032, PII S0032386106000504
-
Chronakis IS, Grapenson S, Jakob A. Conductive polypyrrole nanofibers via electrospinning: electrical and morphological properties. Polymer 47(5), 1597-1603 (2006). (Pubitemid 43238201)
-
(2006)
Polymer
, vol.47
, Issue.5
, pp. 1597-1603
-
-
Chronakis, I.S.1
Grapenson, S.2
Jakob, A.3
-
106
-
-
72649100133
-
Electrical stimulation of nerve cells using conductive nanofibrous scaffolds for nerve tissue engineering
-
Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Ramakrishna S. Electrical stimulation of nerve cells using conductive nanofibrous scaffolds for nerve tissue engineering. Tissue Eng. Part A 15(11), 3605-3619 (2009).
-
(2009)
Tissue Eng. Part A
, vol.15
, Issue.11
, pp. 3605-3619
-
-
Ghasemi-Mobarakeh, L.1
Prabhakaran, M.P.2
Morshed, M.3
Nasr-Esfahani, M.H.4
Ramakrishna, S.5
-
107
-
-
84865132287
-
A novel fluffy conductive polypyrrole nano-layer Coated PLLA fibrous scaffold for nerve tissue engineering
-
Jin L, Feng ZQ, Zhu ML, Wang T, Leach MK, Jiang Q. A novel fluffy conductive polypyrrole nano-layer Coated PLLA fibrous scaffold for nerve tissue engineering. J. Biomed. Nanotechnol. 8(5), 779-785 (2012).
-
(2012)
J. Biomed. Nanotechnol
, vol.8
, Issue.5
, pp. 779-785
-
-
Jin, L.1
Feng, Z.Q.2
Zhu, M.L.3
Wang, T.4
Leach, M.K.5
Jiang, Q.6
-
108
-
-
67650438901
-
Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications
-
Lee JY, Bashur CA, Goldstein AS, Schmidt CE. Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials 30(26), 4325-4335 (2009).
-
(2009)
Biomaterials
, vol.30
, Issue.26
, pp. 4325-4335
-
-
Lee, J.Y.1
Bashur, C.A.2
Goldstein, A.S.3
Schmidt, C.E.4
-
109
-
-
79956100532
-
Implantable microdevice for peripheral nerve regeneration: Materials and fabrications
-
Bennet D, Kim S. Implantable microdevice for peripheral nerve regeneration: materials and fabrications. J. Mater. Sci. 46(14), 4723-4740 (2011).
-
(2011)
J. Mater. Sci
, vol.46
, Issue.14
, pp. 4723-4740
-
-
Bennet, D.1
Kim, S.2
-
110
-
-
0347989153
-
Neurotrophic Factors: Pathophysiology and Therapeutic Applications in Traumatic Brain Injury
-
DOI 10.1007/s00068-003-1335-z
-
Conte V, Royo NC, Shimizu S et al. Neurotrophic factors: pathophysiology and therapeutic applications in traumatic brain injury. Eur. J. Trauma 29(6), 335-355 (2003). (Pubitemid 38055542)
-
(2003)
European Journal of Trauma
, vol.29
, Issue.6
, pp. 335-355
-
-
Conte, V.1
Royo, N.C.2
Shimizu, S.3
Saatman, K.E.4
Watson, D.J.5
Graham, D.I.6
Stocchetti, N.7
McIntosh, T.K.8
-
111
-
-
0032413178
-
Schwann cells, neurotrophic factors, and peripheral nerve regeneration
-
DOI 10.1002/(SICI)1098-2752(1998)18:7<397::AID-MICR2>3.0.CO;2-F
-
Frostick SP, Yin Q, Kemp GJ. Schwann cells, neurotrophic factors, and peripheral nerve regeneration. Microsurgery 18(7), 397-405 (1998). (Pubitemid 29014397)
-
(1998)
Microsurgery
, vol.18
, Issue.7
, pp. 397-405
-
-
Frostick, S.P.1
Yin, Q.2
Kemp, G.J.3
-
112
-
-
33645509696
-
Immobilized concentration gradients of neurotrophic factors guide neurite outgrowth of primary neurons in macroporous scaffolds
-
Moore K, Macsween M, Shoichet M. Immobilized concentration gradients of neurotrophic factors guide neurite outgrowth of primary neurons in macroporous scaffolds. Tissue Eng. 12(2), 267-278 (2006).
-
(2006)
Tissue Eng
, vol.12
, Issue.2
, pp. 267-278
-
-
Moore, K.1
Macsween, M.2
Shoichet, M.3
-
113
-
-
81155153045
-
Microfluidic generation of haptotactic gradients through 3d collagen gels for enhanced neurite growth
-
Sundararaghavan HG, Masand SN, Shreiber DI. Microfluidic generation of haptotactic gradients through 3d collagen gels for enhanced neurite growth. J. Neurotrauma 28(11), 2377-2387 (2011).
-
(2011)
J. Neurotrauma
, vol.28
, Issue.11
, pp. 2377-2387
-
-
Sundararaghavan, H.G.1
Masand, S.N.2
Shreiber, D.I.3
-
114
-
-
35248848917
-
Mathematical modeling of guided neurite extension in an engineered conduit with multiple concentration gradients of Nerve Growth Factor (NGF)
-
DOI 10.1007/s10439-007-9328-4
-
Tse THZ, Chan BP, Chan CM, Lam J. Mathematical modeling of guided neurite extension in an engineered conduit with multiple concentration gradients of nerve growth factor (NGF). Ann. Biomed. Eng. 35(9), 1561-1572 (2007). (Pubitemid 350103109)
-
(2007)
Annals of Biomedical Engineering
, vol.35
, Issue.9
, pp. 1561-1572
-
-
Tse, T.H.Z.1
Chan, B.P.2
Chan, C.M.3
Lam, J.4
-
115
-
-
0035925694
-
Defining the concentration gradient of nerve growth factor for guided neurite outgrowth
-
DOI 10.1016/S0306-4522(01)00029-X, PII S030645220100029X
-
Cao X, Shoichet MS. Defining the concentration gradient of nerve growth factor for guided neurite outgrowth. Neuroscience 103(3), 831-840 (2001). (Pubitemid 32239344)
-
(2001)
Neuroscience
, vol.103
, Issue.3
, pp. 831-840
-
-
Cao, X.1
Shoichet, M.S.2
-
116
-
-
84869052220
-
Strategic design and recent fabrication techniques for bioengineered tissue scaffolds to improve peripheral nerve regeneration
-
Rajaram A, Chen XB, Schreyer DJ. Strategic design and recent fabrication techniques for bioengineered tissue scaffolds to improve peripheral nerve regeneration. Tissue Eng. Part B Rev. 18(6), 454-467 (2012).
-
(2012)
Tissue Eng. Part B Rev
, vol.18
, Issue.6
, pp. 454-467
-
-
Rajaram, A.1
Chen, X.B.2
Schreyer, D.J.3
-
117
-
-
0344420156
-
Hydroxyapatite-coated tendon chitosan tubes with adsorbed laminin peptides facilitate nerve regeneration in vivo
-
DOI 10.1016/j.brainres.2003.09.003
-
Itoh S, Yamaguchi I, Suzuki M et al. Hydroxyapatite-coated tendon chitosan tubes with adsorbed laminin peptides facilitate nerve regeneration in vivo. Brain Res. 993(1-2), 111-123 (2003). (Pubitemid 37464588)
-
(2003)
Brain Research
, vol.993
, Issue.1-2
, pp. 111-123
-
-
Itoh, S.1
Yamaguchi, I.2
Suzuki, M.3
Ichinose, S.4
Takakuda, K.5
Kobayashi, H.6
Shinomiya, K.7
Tanaka, J.8
-
118
-
-
0344851656
-
Peripheral nerve regeneration in RGD peptide incorporated collagen tubes
-
DOI 10.1016/j.brainres.2003.08.057
-
Rafiuddin Ahmed M, Jayakumar R. Peripheral nerve regeneration in RGD peptide incorporated collagen tubes. Brain Res. 993(1), 208-216 (2003). (Pubitemid 37464599)
-
(2003)
Brain Research
, vol.993
, Issue.1-2
, pp. 208-216
-
-
Rafiuddin Ahmed, M.1
Jayakumar, R.2
|