-
1
-
-
79955962101
-
Physiology of the gonadotrophin-releasing hormone (GnRH) neurone: Studies from embryonic GnRH neurones
-
Constantin S. Physiology of the gonadotrophin-releasing hormone (GnRH) neurone: studies from embryonic GnRH neurones. J Neuroendocrinol. 2011;23:542–553.
-
(2011)
J Neuroendocrinol
, vol.23
, pp. 542-553
-
-
Constantin, S.1
-
2
-
-
78751621790
-
A genetic basis for functional hypothalamic amenorrhea
-
Caronia LM, Martin C, Welt CK, et al. A genetic basis for functional hypothalamic amenorrhea. N Engl J Med. 2011;364:215–225.
-
(2011)
N Engl J Med
, vol.364
, pp. 215-225
-
-
Caronia, L.M.1
Martin, C.2
Welt, C.K.3
-
3
-
-
84877260745
-
Mutations in FGF17, IL17RD, DUSP6, SPRY4, and FLRT3 are identified in individuals with congenital hypogonadotropic hypogonadism
-
Miraoui H, Dwyer AA, Sykiotis GP, et al. Mutations in FGF17, IL17RD, DUSP6, SPRY4, and FLRT3 are identified in individuals with congenital hypogonadotropic hypogonadism. Am J Hum Genet. 2013;92:725–743.
-
(2013)
Am J Hum Genet
, vol.92
, pp. 725-743
-
-
Miraoui, H.1
Dwyer, A.A.2
Sykiotis, G.P.3
-
4
-
-
78651413983
-
Gonadotropin-releasing hormone (GnRH) neuron migration: Initiation, maintenance and cessation as critical steps to ensure normal reproductive function
-
Wierman ME, Kiseljak-Vassiliades K, Tobet S. Gonadotropin-releasing hormone (GnRH) neuron migration: initiation, maintenance and cessation as critical steps to ensure normal reproductive function. Front Neuroendocrinol. 2011;32:43–52.
-
(2011)
Front Neuroendocrinol
, vol.32
, pp. 43-52
-
-
Wierman, M.E.1
Kiseljak-Vassiliades, K.2
Tobet, S.3
-
5
-
-
48749120107
-
Decreased FGF8 signaling causes deficiency of gonadotropin-releasing hormone in humans and mice
-
Falardeau J, Chung WC, Beenken A, et al. Decreased FGF8 signaling causes deficiency of gonadotropin-releasing hormone in humans and mice. J Clin Invest. 2008;118:2822–2831.
-
(2008)
J Clin Invest
, vol.118
, pp. 2822-2831
-
-
Falardeau, J.1
Chung, W.C.2
Beenken, A.3
-
6
-
-
78650528556
-
Defective gonadotropinreleasing hormone neuron migration in mice lacking SEMA3A signalling through NRP1 and NRP2: Implications for the aetiology of hypogonadotropic hypogonadism
-
Cariboni A, Davidson K, Rakic S, et al. Defective gonadotropinreleasing hormone neuron migration in mice lacking SEMA3A signalling through NRP1 and NRP2: implications for the aetiology of hypogonadotropic hypogonadism. Hum Mol Genet. 2011;20:336–344.
-
(2011)
Hum Mol Genet
, vol.20
, pp. 336-344
-
-
Cariboni, A.1
Davidson, K.2
Rakic, S.3
-
7
-
-
28044462207
-
Reelin provides an inhibitory signal in the migration of gonadotropin-releasing hormone neurons
-
Cariboni A, Rakic S, Liapi A, et al. Reelin provides an inhibitory signal in the migration of gonadotropin-releasing hormone neurons. Development. 2005;132:4709–4718.
-
(2005)
Development
, vol.132
, pp. 4709-4718
-
-
Cariboni, A.1
Rakic, S.2
Liapi, A.3
-
8
-
-
84865222103
-
Slit2 and Robo3 modulate the migration of GnRH-secreting neurons
-
Cariboni A, Andrews WD, Memi F, et al. Slit2 and Robo3 modulate the migration of GnRH-secreting neurons. Development. 2012; 139:3326–3331.
-
(2012)
Development
, vol.139
, pp. 3326-3331
-
-
Cariboni, A.1
Rews, W.D.2
Memi, F.3
-
9
-
-
35648970517
-
Sirtuins, nuclear hormone receptor acetylation and transcriptional regulation
-
Whittle JR, Powell MJ, Popov VM, et al. Sirtuins, nuclear hormone receptor acetylation and transcriptional regulation. Trends Endocrinol Metab. 2007;18:356–364.
-
(2007)
Trends Endocrinol Metab
, vol.18
, pp. 356-364
-
-
Whittle, J.R.1
Powell, M.J.2
Popov, V.M.3
-
10
-
-
84855421642
-
Sirtuin 1 in immune regulation and autoimmunity
-
Kong S, McBurney MW, Fang D. Sirtuin 1 in immune regulation and autoimmunity. Immunol Cell Biol. 2012;90:6–13.
-
(2012)
Immunol Cell Biol
, vol.90
, pp. 6-13
-
-
Kong, S.1
McBurney, M.W.2
Fang, D.3
-
11
-
-
0037207475
-
The mammalian SIR2_ protein has a role in embryogenesis and gametogenesis
-
McBurney MW, Yang X, Jardine K, et al. The mammalian SIR2_ protein has a role in embryogenesis and gametogenesis. Mol Cell Biol. 2003;23:38–54.
-
(2003)
Mol Cell Biol
, vol.23
, pp. 38-54
-
-
McBurney, M.W.1
Yang, X.2
Jardine, K.3
-
12
-
-
77956185062
-
A novel pathway regulates memory and plasticity via SIRT1 and miR-134
-
Gao J, Wang WY, Mao YW, et al. A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature. 2010;466: 1105–1109.
-
(2010)
Nature
, vol.466
, pp. 1105-1109
-
-
Gao, J.1
Wang, W.Y.2
Mao, Y.W.3
-
13
-
-
0346094379
-
Predominant expression of Sir2α, an NAD-dependent histone deacetylase, in the embryonic mouse heart and brain
-
Sakamoto J, Miura T, Shimamoto K, Horio Y. Predominant expression of Sir2α, an NAD-dependent histone deacetylase, in the embryonic mouse heart and brain. FEBS Lett. 2004;556:281–286.
-
(2004)
FEBS Lett
, vol.556
, pp. 281-286
-
-
Sakamoto, J.1
Miura, T.2
Shimamoto, K.3
Horio, Y.4
-
14
-
-
84863403463
-
SirT1 catalytic activity is required for male fertility and metabolic homeostasis in mice
-
Seifert EL, Caron AZ, Morin K, et al. SirT1 catalytic activity is required for male fertility and metabolic homeostasis in mice. FASEB J. 2012;26:555–566.
-
(2012)
FASEB J
, vol.26
, pp. 555-566
-
-
Seifert, E.L.1
Caron, A.Z.2
Morin, K.3
-
15
-
-
24344509883
-
The Sirt1 deacetylase modulates the insulin-like growth factor signaling pathway in mammals
-
Lemieux ME, Yang X, Jardine K, et al. The Sirt1 deacetylase modulates the insulin-like growth factor signaling pathway in mammals. Mech Ageing Dev. 2005;126:1097–1105.
-
(2005)
Mech Ageing Dev
, vol.126
, pp. 1097-1105
-
-
Lemieux, M.E.1
Yang, X.2
Jardine, K.3
-
16
-
-
59949094204
-
The histone deacetylase SIRT1 controls male fertility in mice through regulation of hypothalamic-pituitary gonadotropin signaling
-
Kolthur-Seetharam U, Teerds K, de Rooij DG, et al. The histone deacetylase SIRT1 controls male fertility in mice through regulation of hypothalamic-pituitary gonadotropin signaling. Biol Reprod. 2009;80:384–391.
-
(2009)
Biol Reprod
, vol.80
, pp. 384-391
-
-
Kolthur-Seetharam, U.1
Teerds, K.2
De Rooij, D.G.3
-
17
-
-
77955452426
-
SIRT1 regulates thyroidstimulating hormone release by enhancing PIP5K_ activity through deacetylation of specific lysine residues in mammals
-
Akieda-Asai S, Zaima N, Ikegami K, et al. SIRT1 regulates thyroidstimulating hormone release by enhancing PIP5K_ activity through deacetylation of specific lysine residues in mammals. PLoS One. 2010;5:e11755.
-
(2010)
Plos One
, vol.5
-
-
Akieda-Asai, S.1
Zaima, N.2
Ikegami, K.3
-
18
-
-
15444377466
-
SIRT1 deacetylation and repression of p300 involves lysine residues 1020/1024 within the cell cycle regulatory domain 1
-
Bouras T, Fu M, Sauve AA, et al. SIRT1 deacetylation and repression of p300 involves lysine residues 1020/1024 within the cell cycle regulatory domain 1. J Biol Chem. 2005;280:10264–10276.
-
(2005)
J Biol Chem
, vol.280
, pp. 10264-10276
-
-
Bouras, T.1
Fu, M.2
Sauve, A.A.3
-
19
-
-
65649107679
-
Nuclear factor-kB enhances ErbB2-induced mammary tumorigenesis and neoangiogenesis in vivo
-
Liu M, Ju X, Willmarth NE, et al. Nuclear factor-kB enhances ErbB2-induced mammary tumorigenesis and neoangiogenesis in vivo. Am J Pathol. 2009;174:1910–1920.
-
(2009)
Am J Pathol
, vol.174
, pp. 1910-1920
-
-
Liu, M.1
Ju, X.2
Willmarth, N.E.3
-
20
-
-
0042971664
-
Cyclin D1 repression of peroxisome proliferator-activated receptor γ expression and transactivation
-
Wang C, Pattabiraman N, Zhou JN, et al. Cyclin D1 repression of peroxisome proliferator-activated receptor γ expression and transactivation. Mol Cell Biol. 2003;23:6159–6173.
-
(2003)
Mol Cell Biol
, vol.23
, pp. 6159-6173
-
-
Wang, C.1
Pattabiraman, N.2
Zhou, J.N.3
-
21
-
-
33750367457
-
Hormonal control of androgen receptor function through SIRT 1
-
Fu M, Liu M, Sauve AA, et al. Hormonal control of androgen receptor function through SIRT 1. Mol Cell Biol. 2006;26:8122–8135.
-
(2006)
Mol Cell Biol
, vol.26
, pp. 8122-8135
-
-
Fu, M.1
Liu, M.2
Sauve, A.A.3
-
22
-
-
0032958139
-
Pituitary and testicular function in growth hormone receptor gene knockout mice
-
Chandrashekar V, Bartke A, Coschigano KT, Kopchick JJ. Pituitary and testicular function in growth hormone receptor gene knockout mice. Endocrinology. 1999;140:1082–1088.
-
(1999)
Endocrinology
, vol.140
, pp. 1082-1088
-
-
Chandrashekar, V.1
Bartke, A.2
Coschigano, K.T.3
Kopchick, J.J.4
-
23
-
-
84867385042
-
Olfactory ability and object memory in three mouse models of varying body weight, metabolic hormones, and adiposity
-
Tucker KR, Godbey SJ, Thiebaud N, Fadool DA. Olfactory ability and object memory in three mouse models of varying body weight, metabolic hormones, and adiposity. Physiol Behav. 2012;107: 424–432.
-
(2012)
Physiol Behav
, vol.107
, pp. 424-432
-
-
Tucker, K.R.1
Godbey, S.J.2
Thiebaud, N.3
Fadool, D.A.4
-
24
-
-
84863256545
-
ChIP sequencing of cyclin D1 reveals a transcriptional role in chromosomal instability in mice
-
Casimiro MC, Crosariol M, Loro E, et al. ChIP sequencing of cyclin D1 reveals a transcriptional role in chromosomal instability in mice. J Clin Invest. 2012;122:833–843.
-
(2012)
J Clin Invest
, vol.122
, pp. 833-843
-
-
Casimiro, M.C.1
Crosariol, M.2
Loro, E.3
-
25
-
-
77950891314
-
C-Jun induces mammary epithelial cellular invasion and breast cancer stem cell expansion
-
Jiao X, Katiyar S, Willmarth NE, et al. c-Jun induces mammary epithelial cellular invasion and breast cancer stem cell expansion. J Biol Chem. 2010;285:8218–8226.
-
(2010)
J Biol Chem
, vol.285
, pp. 8218-8226
-
-
Jiao, X.1
Katiyar, S.2
Willmarth, N.E.3
-
26
-
-
78650833036
-
PACSIN 2 represses cellular migration through direct association with cyclin D1 but not its alternate splice form cyclin D1b
-
Meng H, Tian L, Zhou J, et al. PACSIN 2 represses cellular migration through direct association with cyclin D1 but not its alternate splice form cyclin D1b. Cell Cycle. 2011;10:73–81.
-
(2011)
Cell Cycle
, vol.10
, pp. 73-81
-
-
Meng, H.1
Tian, L.2
Zhou, J.3
-
27
-
-
34249301918
-
Akt1 governs breast cancer progression in vivo
-
Ju X, Katiyar S, Wang C, et al. Akt1 governs breast cancer progression in vivo. Proc Natl Acad Sci USA. 2007;104:7438–7443.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 7438-7443
-
-
Ju, X.1
Katiyar, S.2
Wang, C.3
-
28
-
-
79958756103
-
C-Jun is required for TGF-β- mediated cellular migration via nuclear Ca(2)(+) signaling
-
Janowski E, Jiao X, Katiyar S, et al. c-Jun is required for TGF-β- mediated cellular migration via nuclear Ca(2)(+) signaling. Int J Biochem Cell Biol. 2011;43:1104–1113.
-
(2011)
Int J Biochem Cell Biol
, vol.43
, pp. 1104-1113
-
-
Janowski, E.1
Jiao, X.2
Katiyar, S.3
-
30
-
-
79952261758
-
Cone degeneration following rod ablation in a reversible model of retinal
-
Choi RY, Engbretson GA, Solessio EC, et al. Cone degeneration following rod ablation in a reversible model of retinal. Invest Ophthalmol Vis Sci. 2011;52:364–373.
-
(2011)
Invest Ophthalmol Vis Sci
, vol.52
, pp. 364-373
-
-
Choi, R.Y.1
Engbretson, G.A.2
Solessio, E.C.3
-
31
-
-
52049096152
-
Necdin regulates p53 acetylation via Sirtuin1 to modulate DNA damage response in cortical neurons
-
Hasegawa K, Yoshikawa K. Necdin regulates p53 acetylation via Sirtuin1 to modulate DNA damage response in cortical neurons. J Neurosci. 2008;28:8772–8784.
-
(2008)
J Neurosci
, vol.28
, pp. 8772-8784
-
-
Hasegawa, K.1
Yoshikawa, K.2
-
32
-
-
34249083199
-
Sirtuins in mammals: Insights into their biological function
-
Michan S, Sinclair D. Sirtuins in mammals: insights into their biological function. Biochem J. 2007;404:1–13.
-
(2007)
Biochem J
, vol.404
, pp. 1-13
-
-
Michan, S.1
Sinclair, D.2
-
33
-
-
40849113090
-
The regulation of SIRT2 function by cyclin-dependent kinases affects cell motility
-
Pandithage R, Lilischkis R, Harting K, et al. The regulation of SIRT2 function by cyclin-dependent kinases affects cell motility. J Cell Biol. 2008;180:915–929.
-
(2008)
J Cell Biol
, vol.180
, pp. 915-929
-
-
Pandithage, R.1
Lilischkis, R.2
Harting, K.3
-
34
-
-
80052700953
-
SIRT1 deacetylase in SF1 neurons protects against metabolic imbalance
-
Ramadori G, Fujikawa T, Anderson J, et al. SIRT1 deacetylase in SF1 neurons protects against metabolic imbalance. Cell Metab. 2011;14:301–312.
-
(2011)
Cell Metab
, vol.14
, pp. 301-312
-
-
Ramadori, G.1
Fujikawa, T.2
Erson, J.3
-
35
-
-
59649126261
-
Deacetylation of cortactin by SIRT1 promotes cell migration
-
Zhang Y, Zhang M, Dong H, et al. Deacetylation of cortactin by SIRT1 promotes cell migration. Oncogene. 2009;28:445–460.
-
(2009)
Oncogene
, vol.28
, pp. 445-460
-
-
Zhang, Y.1
Zhang, M.2
Dong, H.3
-
36
-
-
0025354098
-
Nontopographic projection of olfactory sensory neurons in the crayfish brain
-
Mellon D Jr, Munger SD. Nontopographic projection of olfactory sensory neurons in the crayfish brain. J Comp Neurol. 1990;296: 253–262.
-
(1990)
J Comp Neurol
, vol.296
, pp. 253-262
-
-
Mellon, D.1
Munger, S.D.2
-
37
-
-
0026335617
-
Migratory arrest of gonadotropinreleasing hormone neurons in transgenic mice
-
Radovick S, Wray S, Lee E, et al. Migratory arrest of gonadotropinreleasing hormone neurons in transgenic mice. Proc Natl Acad Sci USA. 1991;88:3402–3406.
-
(1991)
Proc Natl Acad Sci USA
, vol.88
, pp. 3402-3406
-
-
Radovick, S.1
Wray, S.2
Lee, E.3
-
38
-
-
84855187981
-
Inhibition of cortactin and SIRT1 expression attenuates migration and invasion of prostate cancer DU145 cells
-
Nakane K, Fujita Y, Terazawa R, et al. Inhibition of cortactin and SIRT1 expression attenuates migration and invasion of prostate cancer DU145 cells. Int J Urol. 2012;19:71–79.
-
(2012)
Int J Urol
, vol.19
, pp. 71-79
-
-
Nakane, K.1
Fujita, Y.2
Terazawa, R.3
-
39
-
-
84867901275
-
SIRT1 induces EMT by cooperating with EMT transcription factors and enhances prostate cancer cell migration and metastasis
-
Byles V, Zhu L, Lovaas JD, et al. SIRT1 induces EMT by cooperating with EMT transcription factors and enhances prostate cancer cell migration and metastasis. Oncogene. 2012;31:4619–4629.
-
(2012)
Oncogene
, vol.31
, pp. 4619-4629
-
-
Byles, V.1
Zhu, L.2
Lovaas, J.D.3
-
40
-
-
34250365395
-
Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT 1
-
Tanno M, Sakamoto J, Miura T, Shimamoto K, Horio Y. Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT 1. J Biol Chem. 2007;282:6823–6832.
-
(2007)
J Biol Chem
, vol.282
, pp. 6823-6832
-
-
Tanno, M.1
Sakamoto, J.2
Miura, T.3
Shimamoto, K.4
Horio, Y.5
-
41
-
-
55749095213
-
Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation
-
Hisahara S, Chiba S, Matsumoto H, et al. Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation. Proc Natl Acad Sci USA. 2008;105:15599–15604.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 15599-15604
-
-
Hisahara, S.1
Chiba, S.2
Matsumoto, H.3
-
42
-
-
0029149173
-
Targeted disruption of the pituitary glycoprotein hormone α-subunit produces hypogonadal and hypothyroid mice
-
Kendall SK, Samuelson LC, Saunders TL, Wood RI, Camper SA. Targeted disruption of the pituitary glycoprotein hormone α-subunit produces hypogonadal and hypothyroid mice. Genes Dev. 1995;9:2007–2019.
-
(1995)
Genes Dev
, vol.9
, pp. 2007-2019
-
-
Kendall, S.K.1
Samuelson, L.C.2
Saunders, T.L.3
Wood, R.I.4
Camper, S.A.5
-
43
-
-
22744434624
-
Cortactin promotes cell motility by enhancing lamellipodial persistence
-
Bryce NS, Clark ES, Leysath JL, et al. Cortactin promotes cell motility by enhancing lamellipodial persistence. Curr Biol. 2005; 15:1276–1285.
-
(2005)
Curr Biol
, vol.15
, pp. 1276-1285
-
-
Bryce, N.S.1
Clark, E.S.2
Leysath, J.L.3
-
44
-
-
34447315270
-
HDAC6 modulates cell motility by altering the acetylation level of cortactin
-
Zhang X, Yuan Z, Zhang Y, et al. HDAC6 modulates cell motility by altering the acetylation level of cortactin. Mol Cell. 2007;27: 197–213.
-
(2007)
Mol Cell
, vol.27
, pp. 197-213
-
-
Zhang, X.1
Yuan, Z.2
Zhang, Y.3
-
45
-
-
84875621271
-
Regulation of synapse composition by protein acetylation: The role of acetylated cortactin
-
Catarino T, Ribeiro L, Santos SD, Carvalho AL. Regulation of synapse composition by protein acetylation: the role of acetylated cortactin. J Cell Sci. 2013;126:149–162.
-
(2013)
J Cell Sci
, vol.126
, pp. 149-162
-
-
Catarino, T.1
Ribeiro, L.2
Santos, S.D.3
Carvalho, A.L.4
-
46
-
-
17744373868
-
The importance of autosomal genes in Kallmann syndrome: Genotype-phenotype correlations and neuroendocrine characteristics
-
Oliveira LM, Seminara SB, Beranova M, et al. The importance of autosomal genes in Kallmann syndrome: genotype-phenotype correlations and neuroendocrine characteristics. J Clin Endocrinol Metab. 2001;86:1532–1538.
-
(2001)
J Clin Endocrinol Metab
, vol.86
, pp. 1532-1538
-
-
Oliveira, L.M.1
Seminara, S.B.2
Beranova, M.3
-
47
-
-
79960986103
-
Heparan sulfate 6-O-sulfotransferase 1, a gene involved in extracellular sugar modifications, is mutated in patients with idiopathic hypogonadotrophic hypogonadism
-
Tornberg J, Sykiotis GP, Keefe K, et al. Heparan sulfate 6-O-sulfotransferase 1, a gene involved in extracellular sugar modifications, is mutated in patients with idiopathic hypogonadotrophic hypogonadism. Proc Natl Acad Sci USA. 2011;108:11524–11529.
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 11524-11529
-
-
Tornberg, J.1
Sykiotis, G.P.2
Keefe, K.3
-
48
-
-
77954855825
-
SIRT1 is essential for normal cognitive function and synaptic plasticity
-
Michan S, Li Y, Chou MM, et al. SIRT1 is essential for normal cognitive function and synaptic plasticity. J Neurosci. 2010;30: 9695–9707.
-
(2010)
J Neurosci
, vol.30
, pp. 9695-9707
-
-
Michan, S.1
Li, Y.2
Chou, M.M.3
-
49
-
-
84867131638
-
SIRT1 regulates dendritic development in hippocampal neurons
-
Codocedo JF, Allard C, Godoy JA, Varela-Nallar L, Inestrosa NC. SIRT1 regulates dendritic development in hippocampal neurons. PLoS One. 2012;7:e47073.
-
(2012)
Plos One
, vol.7
-
-
Codocedo, J.F.1
Allard, C.2
Godoy, J.A.3
Varela-Nallar, L.4
Inestrosa, N.C.5
-
50
-
-
84855544817
-
Neuroprotective role of Sirt1 in mammalian models of Huntington’s disease through activation of multiple Sirt1 targets
-
Jiang M, Wang J, Fu J, Du L, Jeong H, et al. Neuroprotective role of Sirt1 in mammalian models of Huntington’s disease through activation of multiple Sirt1 targets. Nat Med. 2012;18:153–158.
-
(2012)
Nat Med
, vol.18
, pp. 153-158
-
-
Jiang, M.1
Wang, J.2
Fu, J.3
Du, L.4
Jeong, H.5
|