메뉴 건너뛰기




Volumn 31, Issue 2, 2015, Pages 77-87

From trans to cis: Transcriptional regulatory networks in neocortical development

Author keywords

Chromatin; Cis regulatory element; Disease; Epigenetics; Gene expression; Neuron; Transcription factor

Indexed keywords

CIS ACTING ELEMENT; TRANSCRIPTION FACTOR;

EID: 84921714149     PISSN: 01689525     EISSN: 13624555     Source Type: Journal    
DOI: 10.1016/j.tig.2014.12.004     Document Type: Review
Times cited : (49)

References (136)
  • 2
    • 84875198920 scopus 로고    scopus 로고
    • Transcriptional regulation and its misregulation in disease
    • Lee T.I., Young R.A. Transcriptional regulation and its misregulation in disease. Cell 2013, 152:1237-1251.
    • (2013) Cell , vol.152 , pp. 1237-1251
    • Lee, T.I.1    Young, R.A.2
  • 3
    • 39049130281 scopus 로고    scopus 로고
    • Global control regions and regulatory landscapes in vertebrate development and evolution
    • Spitz F., Duboule D. Global control regions and regulatory landscapes in vertebrate development and evolution. Adv. Genet. 2008, 61:175-205.
    • (2008) Adv. Genet. , vol.61 , pp. 175-205
    • Spitz, F.1    Duboule, D.2
  • 4
    • 62549128139 scopus 로고    scopus 로고
    • A census of human transcription factors: function, expression and evolution
    • Vaquerizas J.M., et al. A census of human transcription factors: function, expression and evolution. Nat. Rev. Genet. 2009, 10:252-263.
    • (2009) Nat. Rev. Genet. , vol.10 , pp. 252-263
    • Vaquerizas, J.M.1
  • 5
    • 84865249952 scopus 로고    scopus 로고
    • Transcription factors: from enhancer binding to developmental control
    • Spitz F., Furlong E.E. Transcription factors: from enhancer binding to developmental control. Nat. Rev. Genet. 2012, 13:613-626.
    • (2012) Nat. Rev. Genet. , vol.13 , pp. 613-626
    • Spitz, F.1    Furlong, E.E.2
  • 6
    • 84875156063 scopus 로고    scopus 로고
    • Enhancers: five essential questions
    • Pennacchio L.A., et al. Enhancers: five essential questions. Nat. Rev. Genet. 2013, 14:288-295.
    • (2013) Nat. Rev. Genet. , vol.14 , pp. 288-295
    • Pennacchio, L.A.1
  • 7
    • 34249026300 scopus 로고    scopus 로고
    • High-resolution profiling of histone methylations in the human genome
    • Barski A., et al. High-resolution profiling of histone methylations in the human genome. Cell 2007, 129:823-837.
    • (2007) Cell , vol.129 , pp. 823-837
    • Barski, A.1
  • 8
    • 84863890567 scopus 로고    scopus 로고
    • Genomic approaches towards finding cis-regulatory modules in animals
    • Hardison R.C., Taylor J. Genomic approaches towards finding cis-regulatory modules in animals. Nat. Rev. Genet. 2012, 13:469-483.
    • (2012) Nat. Rev. Genet. , vol.13 , pp. 469-483
    • Hardison, R.C.1    Taylor, J.2
  • 9
    • 83855163414 scopus 로고    scopus 로고
    • Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence
    • Wittkopp P.J., Kalay G. Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nat. Rev. Genet. 2012, 13:59-69.
    • (2012) Nat. Rev. Genet. , vol.13 , pp. 59-69
    • Wittkopp, P.J.1    Kalay, G.2
  • 10
    • 84894598129 scopus 로고    scopus 로고
    • Rapid and pervasive changes in genome-wide enhancer usage during mammalian development
    • Nord A.S., et al. Rapid and pervasive changes in genome-wide enhancer usage during mammalian development. Cell 2013, 155:1521-1531.
    • (2013) Cell , vol.155 , pp. 1521-1531
    • Nord, A.S.1
  • 11
    • 84908690018 scopus 로고    scopus 로고
    • The role of BAF (mSWI/SNF) complexes in mammalian neural development
    • Son E.Y., Crabtree G.R. The role of BAF (mSWI/SNF) complexes in mammalian neural development. Am. J. Med. Genet. C: Semin. Med. Genet. 2014, 166C:333-349.
    • (2014) Am. J. Med. Genet. C: Semin. Med. Genet. , vol.166 C , pp. 333-349
    • Son, E.Y.1    Crabtree, G.R.2
  • 12
    • 84865822182 scopus 로고    scopus 로고
    • Systematic localization of common disease-associated variation in regulatory DNA
    • Maurano M.T., et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 2012, 337:1190-1195.
    • (2012) Science , vol.337 , pp. 1190-1195
    • Maurano, M.T.1
  • 13
    • 2942606066 scopus 로고    scopus 로고
    • Structure and evolution of transcriptional regulatory networks
    • Babu M.M., et al. Structure and evolution of transcriptional regulatory networks. Curr. Opin. Struct. Biol. 2004, 14:283-291.
    • (2004) Curr. Opin. Struct. Biol. , vol.14 , pp. 283-291
    • Babu, M.M.1
  • 14
    • 84901388868 scopus 로고    scopus 로고
    • Neural progenitors, neurogenesis and the evolution of the neocortex
    • Florio M., Huttner W.B. Neural progenitors, neurogenesis and the evolution of the neocortex. Development 2014, 141:2182-2194.
    • (2014) Development , vol.141 , pp. 2182-2194
    • Florio, M.1    Huttner, W.B.2
  • 15
    • 79959924122 scopus 로고    scopus 로고
    • Development and evolution of the human neocortex
    • Lui J.H., et al. Development and evolution of the human neocortex. Cell 2011, 146:18-36.
    • (2011) Cell , vol.146 , pp. 18-36
    • Lui, J.H.1
  • 16
    • 24344501297 scopus 로고    scopus 로고
    • Molecular insights into human brain evolution
    • Hill R.S., Walsh C.A. Molecular insights into human brain evolution. Nature 2005, 437:64-67.
    • (2005) Nature , vol.437 , pp. 64-67
    • Hill, R.S.1    Walsh, C.A.2
  • 17
    • 79952668314 scopus 로고    scopus 로고
    • Annual Research Review: Development of the cerebral cortex: implications for neurodevelopmental disorders
    • Rubenstein J.L. Annual Research Review: Development of the cerebral cortex: implications for neurodevelopmental disorders. J. Child Psychol. Psychiatry 2011, 52:339-355.
    • (2011) J. Child Psychol. Psychiatry , vol.52 , pp. 339-355
    • Rubenstein, J.L.1
  • 18
    • 84859319524 scopus 로고    scopus 로고
    • Transcriptional co-regulation of neuronal migration and laminar identity in the neocortex
    • Kwan K.Y., et al. Transcriptional co-regulation of neuronal migration and laminar identity in the neocortex. Development 2012, 139:1535-1546.
    • (2012) Development , vol.139 , pp. 1535-1546
    • Kwan, K.Y.1
  • 19
    • 84886090910 scopus 로고    scopus 로고
    • Molecular logic of neocortical projection neuron specification, development and diversity
    • Greig L.C., et al. Molecular logic of neocortical projection neuron specification, development and diversity. Nat. Rev. Neurosci. 2013, 14:755-769.
    • (2013) Nat. Rev. Neurosci. , vol.14 , pp. 755-769
    • Greig, L.C.1
  • 20
    • 46549089463 scopus 로고    scopus 로고
    • The determination of projection neuron identity in the developing cerebral cortex
    • Leone D.P., et al. The determination of projection neuron identity in the developing cerebral cortex. Curr. Opin. Neurobiol. 2008, 18:28-35.
    • (2008) Curr. Opin. Neurobiol. , vol.18 , pp. 28-35
    • Leone, D.P.1
  • 21
    • 33747614577 scopus 로고    scopus 로고
    • The origin and specification of cortical interneurons
    • Wonders C.P., Anderson S.A. The origin and specification of cortical interneurons. Nat. Rev. Neurosci. 2006, 7:687-696.
    • (2006) Nat. Rev. Neurosci. , vol.7 , pp. 687-696
    • Wonders, C.P.1    Anderson, S.A.2
  • 22
    • 84892608163 scopus 로고    scopus 로고
    • Interneuron cell types are fit to function
    • Kepecs A., Fishell G. Interneuron cell types are fit to function. Nature 2014, 505:318-326.
    • (2014) Nature , vol.505 , pp. 318-326
    • Kepecs, A.1    Fishell, G.2
  • 23
    • 79952592649 scopus 로고    scopus 로고
    • TBR1 directly represses Fezf2 to control the laminar origin and development of the corticospinal tract
    • Han W., et al. TBR1 directly represses Fezf2 to control the laminar origin and development of the corticospinal tract. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:3041-3306.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 3041-3306
    • Han, W.1
  • 24
    • 84904322227 scopus 로고    scopus 로고
    • Glial development: the crossroads of regeneration and repair in the CNS
    • Gallo V., Deneen B. Glial development: the crossroads of regeneration and repair in the CNS. Neuron 2014, 83:283-308.
    • (2014) Neuron , vol.83 , pp. 283-308
    • Gallo, V.1    Deneen, B.2
  • 25
    • 0031017511 scopus 로고    scopus 로고
    • Emx1 and Emx2 functions in development of dorsal telencephalon
    • Yoshida M., et al. Emx1 and Emx2 functions in development of dorsal telencephalon. Development 1997, 124:101-111.
    • (1997) Development , vol.124 , pp. 101-111
    • Yoshida, M.1
  • 26
    • 0036703468 scopus 로고    scopus 로고
    • Brain factor-1 controls the proliferation and differentiation of neocortical progenitor cells through independent mechanisms
    • Hanashima C., et al. Brain factor-1 controls the proliferation and differentiation of neocortical progenitor cells through independent mechanisms. J. Neurosci. 2002, 22:6526-6536.
    • (2002) J. Neurosci. , vol.22 , pp. 6526-6536
    • Hanashima, C.1
  • 27
    • 84875779517 scopus 로고    scopus 로고
    • Role for Lhx2 in corticogenesis through regulation of progenitor differentiation
    • Chou S.J., O'Leary D.D. Role for Lhx2 in corticogenesis through regulation of progenitor differentiation. Mol. Cell. Neurosci. 2013, 56:1-9.
    • (2013) Mol. Cell. Neurosci. , vol.56 , pp. 1-9
    • Chou, S.J.1    O'Leary, D.D.2
  • 28
    • 77749336752 scopus 로고    scopus 로고
    • Essential roles of Notch signaling in maintenance of neural stem cells in developing and adult brains
    • Imayoshi I., et al. Essential roles of Notch signaling in maintenance of neural stem cells in developing and adult brains. J. Neurosci. 2010, 30:3489-3498.
    • (2010) J. Neurosci. , vol.30 , pp. 3489-3498
    • Imayoshi, I.1
  • 29
    • 33846313612 scopus 로고    scopus 로고
    • Pax6 controls cerebral cortical cell number by regulating exit from the cell cycle and specifies cortical cell identity by a cell autonomous mechanism
    • Quinn J.C., et al. Pax6 controls cerebral cortical cell number by regulating exit from the cell cycle and specifies cortical cell identity by a cell autonomous mechanism. Dev. Biol. 2007, 302:50-65.
    • (2007) Dev. Biol. , vol.302 , pp. 50-65
    • Quinn, J.C.1
  • 30
    • 9444261000 scopus 로고    scopus 로고
    • Id4 regulates neural progenitor proliferation and differentiation in vivo
    • Yun K., et al. Id4 regulates neural progenitor proliferation and differentiation in vivo. Development 2004, 131:5441-5448.
    • (2004) Development , vol.131 , pp. 5441-5448
    • Yun, K.1
  • 31
    • 3542996324 scopus 로고    scopus 로고
    • Sequential phases of cortical specification involve Neurogenin-dependent and -independent pathways
    • Schuurmans C., et al. Sequential phases of cortical specification involve Neurogenin-dependent and -independent pathways. EMBO J. 2004, 23:2892-2902.
    • (2004) EMBO J. , vol.23 , pp. 2892-2902
    • Schuurmans, C.1
  • 32
    • 84888857161 scopus 로고    scopus 로고
    • Fezf2 expression identifies a multipotent progenitor for neocortical projection neurons, astrocytes, and oligodendrocytes
    • Guo C., et al. Fezf2 expression identifies a multipotent progenitor for neocortical projection neurons, astrocytes, and oligodendrocytes. Neuron 2013, 80:1167-1174.
    • (2013) Neuron , vol.80 , pp. 1167-1174
    • Guo, C.1
  • 33
    • 70349554036 scopus 로고    scopus 로고
    • AP2gamma regulates basal progenitor fate in a region- and layer-specific manner in the developing cortex
    • Pinto L., et al. AP2gamma regulates basal progenitor fate in a region- and layer-specific manner in the developing cortex. Nat. Neurosci. 2009, 12:1229-1237.
    • (2009) Nat. Neurosci. , vol.12 , pp. 1229-1237
    • Pinto, L.1
  • 34
    • 0037099207 scopus 로고    scopus 로고
    • Brn-1 and Brn-2 share crucial roles in the production and positioning of mouse neocortical neurons
    • Sugitani Y., et al. Brn-1 and Brn-2 share crucial roles in the production and positioning of mouse neocortical neurons. Genes Dev. 2002, 16:1760-1765.
    • (2002) Genes Dev. , vol.16 , pp. 1760-1765
    • Sugitani, Y.1
  • 35
    • 44849108009 scopus 로고    scopus 로고
    • Cux-1 and Cux-2 control the development of Reelin expressing cortical interneurons
    • Cubelos B., et al. Cux-1 and Cux-2 control the development of Reelin expressing cortical interneurons. Dev. Neurobiol. 2008, 68:917-925.
    • (2008) Dev. Neurobiol. , vol.68 , pp. 917-925
    • Cubelos, B.1
  • 36
    • 53049083077 scopus 로고    scopus 로고
    • Tbr2 directs conversion of radial glia into basal precursors and guides neuronal amplification by indirect neurogenesis in the developing neocortex
    • Sessa A., et al. Tbr2 directs conversion of radial glia into basal precursors and guides neuronal amplification by indirect neurogenesis in the developing neocortex. Neuron 2008, 60:56-69.
    • (2008) Neuron , vol.60 , pp. 56-69
    • Sessa, A.1
  • 37
    • 53049106922 scopus 로고    scopus 로고
    • Insulinoma-associated 1 has a panneurogenic role and promotes the generation and expansion of basal progenitors in the developing mouse neocortex
    • Farkas L.M., et al. Insulinoma-associated 1 has a panneurogenic role and promotes the generation and expansion of basal progenitors in the developing mouse neocortex. Neuron 2008, 60:40-55.
    • (2008) Neuron , vol.60 , pp. 40-55
    • Farkas, L.M.1
  • 38
    • 33746806357 scopus 로고    scopus 로고
    • A role for proneural genes in the maturation of cortical progenitor cells
    • Britz O., et al. A role for proneural genes in the maturation of cortical progenitor cells. Cereb. Cortex 2006, 16(Suppl. 1):138-151.
    • (2006) Cereb. Cortex , vol.16 , pp. 138-151
    • Britz, O.1
  • 39
    • 0038765091 scopus 로고    scopus 로고
    • Direct and concentration-dependent regulation of the proneural gene Neurogenin2 by Pax6
    • Scardigli R., et al. Direct and concentration-dependent regulation of the proneural gene Neurogenin2 by Pax6. Development 2003, 130:3269-3281.
    • (2003) Development , vol.130 , pp. 3269-3281
    • Scardigli, R.1
  • 40
    • 67651208830 scopus 로고    scopus 로고
    • The level of the transcription factor Pax6 is essential for controlling the balance between neural stem cell self-renewal and neurogenesis
    • Sansom S.N., et al. The level of the transcription factor Pax6 is essential for controlling the balance between neural stem cell self-renewal and neurogenesis. PLoS Genet. 2009, 5:e1000511.
    • (2009) PLoS Genet. , vol.5
    • Sansom, S.N.1
  • 41
    • 77952172670 scopus 로고    scopus 로고
    • Zinc finger genes Fezf1 and Fezf2 control neuronal differentiation by repressing Hes5 expression in the forebrain
    • Shimizu T., et al. Zinc finger genes Fezf1 and Fezf2 control neuronal differentiation by repressing Hes5 expression in the forebrain. Development 2010, 137:1875-1885.
    • (2010) Development , vol.137 , pp. 1875-1885
    • Shimizu, T.1
  • 42
    • 84877806968 scopus 로고    scopus 로고
    • Chromatin regulation by BAF170 controls cerebral cortical size and thickness
    • Tuoc T.C., et al. Chromatin regulation by BAF170 controls cerebral cortical size and thickness. Dev. Cell 2013, 25:256-269.
    • (2013) Dev. Cell , vol.25 , pp. 256-269
    • Tuoc, T.C.1
  • 43
    • 84885128467 scopus 로고    scopus 로고
    • The BAF complex interacts with Pax6 in adult neural progenitors to establish a neurogenic cross-regulatory transcriptional network
    • Ninkovic J., et al. The BAF complex interacts with Pax6 in adult neural progenitors to establish a neurogenic cross-regulatory transcriptional network. Cell Stem Cell 2013, 13:403-418.
    • (2013) Cell Stem Cell , vol.13 , pp. 403-418
    • Ninkovic, J.1
  • 44
    • 84876876209 scopus 로고    scopus 로고
    • MicroRNA-92b regulates the development of intermediate cortical progenitors in embryonic mouse brain
    • Nowakowski T.J., et al. MicroRNA-92b regulates the development of intermediate cortical progenitors in embryonic mouse brain. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:7056-7061.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 7056-7061
    • Nowakowski, T.J.1
  • 45
    • 79952267171 scopus 로고    scopus 로고
    • MicroRNA-9 regulates neurogenesis in mouse telencephalon by targeting multiple transcription factors
    • Shibata M., et al. MicroRNA-9 regulates neurogenesis in mouse telencephalon by targeting multiple transcription factors. J. Neurosci. 2011, 31:3407-3422.
    • (2011) J. Neurosci. , vol.31 , pp. 3407-3422
    • Shibata, M.1
  • 46
    • 0035656305 scopus 로고    scopus 로고
    • DNA methylation is a critical cell-intrinsic determinant of astrocyte differentiation in the fetal brain
    • Takizawa T., et al. DNA methylation is a critical cell-intrinsic determinant of astrocyte differentiation in the fetal brain. Dev. Cell 2001, 1:749-758.
    • (2001) Dev. Cell , vol.1 , pp. 749-758
    • Takizawa, T.1
  • 47
    • 0035830503 scopus 로고    scopus 로고
    • Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms
    • Sun Y., et al. Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms. Cell 2001, 104:365-376.
    • (2001) Cell , vol.104 , pp. 365-376
    • Sun, Y.1
  • 48
    • 59649112849 scopus 로고    scopus 로고
    • Committed neuronal precursors confer astrocytic potential on residual neural precursor cells
    • Namihira M., et al. Committed neuronal precursors confer astrocytic potential on residual neural precursor cells. Dev. Cell 2009, 16:245-255.
    • (2009) Dev. Cell , vol.16 , pp. 245-255
    • Namihira, M.1
  • 49
    • 70450203963 scopus 로고    scopus 로고
    • Two-tier transcriptional control of oligodendrocyte differentiation
    • Li H., et al. Two-tier transcriptional control of oligodendrocyte differentiation. Curr. Opin. Neurobiol. 2009, 19:479-485.
    • (2009) Curr. Opin. Neurobiol. , vol.19 , pp. 479-485
    • Li, H.1
  • 50
    • 78149462716 scopus 로고    scopus 로고
    • Developmental genetics of vertebrate glial-cell specification
    • Rowitch D.H., Kriegstein A.R. Developmental genetics of vertebrate glial-cell specification. Nature 2010, 468:214-222.
    • (2010) Nature , vol.468 , pp. 214-222
    • Rowitch, D.H.1    Kriegstein, A.R.2
  • 51
    • 34547210748 scopus 로고    scopus 로고
    • Dlx1 and Dlx2 control neuronal versus oligodendroglial cell fate acquisition in the developing forebrain
    • Petryniak M.A., et al. Dlx1 and Dlx2 control neuronal versus oligodendroglial cell fate acquisition in the developing forebrain. Neuron 2007, 55:417-433.
    • (2007) Neuron , vol.55 , pp. 417-433
    • Petryniak, M.A.1
  • 52
    • 84893518867 scopus 로고    scopus 로고
    • Olig1 function is required to repress dlx1/2 and interneuron production in Mammalian brain
    • Silbereis J.C., et al. Olig1 function is required to repress dlx1/2 and interneuron production in Mammalian brain. Neuron 2014, 81:574-587.
    • (2014) Neuron , vol.81 , pp. 574-587
    • Silbereis, J.C.1
  • 53
    • 25644442564 scopus 로고    scopus 로고
    • Phosphorylation of Neurogenin2 specifies the migration properties and the dendritic morphology of pyramidal neurons in the neocortex
    • Hand R., et al. Phosphorylation of Neurogenin2 specifies the migration properties and the dendritic morphology of pyramidal neurons in the neocortex. Neuron 2005, 48:45-62.
    • (2005) Neuron , vol.48 , pp. 45-62
    • Hand, R.1
  • 54
    • 57349115204 scopus 로고    scopus 로고
    • SOX5 postmitotically regulates migration, postmigratory differentiation, and projections of subplate and deep-layer neocortical neurons
    • Kwan K.Y., et al. SOX5 postmitotically regulates migration, postmigratory differentiation, and projections of subplate and deep-layer neocortical neurons. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:16021-21606.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 16021-21606
    • Kwan, K.Y.1
  • 55
    • 0037154872 scopus 로고    scopus 로고
    • Transcriptional regulation of cortical neuron migration by POU domain factors
    • McEvilly R.J., et al. Transcriptional regulation of cortical neuron migration by POU domain factors. Science 2002, 295:1528-1532.
    • (2002) Science , vol.295 , pp. 1528-1532
    • McEvilly, R.J.1
  • 56
    • 30944463411 scopus 로고    scopus 로고
    • In vivo function of Rnd2 in the development of neocortical pyramidal neurons
    • Nakamura K., et al. In vivo function of Rnd2 in the development of neocortical pyramidal neurons. Neurosci. Res. 2006, 54:149-153.
    • (2006) Neurosci. Res. , vol.54 , pp. 149-153
    • Nakamura, K.1
  • 57
    • 51349143015 scopus 로고    scopus 로고
    • Neurogenin 2 controls cortical neuron migration through regulation of Rnd2
    • Heng J.I., et al. Neurogenin 2 controls cortical neuron migration through regulation of Rnd2. Nature 2008, 455:114-118.
    • (2008) Nature , vol.455 , pp. 114-118
    • Heng, J.I.1
  • 58
    • 84928345368 scopus 로고    scopus 로고
    • The zinc finger transcription factor RP58 negatively regulates Rnd2 for the control of neuronal migration during cerebral cortical development
    • Published online October 1, 2013
    • Heng J.I., et al. The zinc finger transcription factor RP58 negatively regulates Rnd2 for the control of neuronal migration during cerebral cortical development. Cereb. Cortex 2013, Published online October 1, 2013. http://dx.doi.org/10.1093/cercor/bht277.
    • (2013) Cereb. Cortex
    • Heng, J.I.1
  • 59
    • 84874236693 scopus 로고    scopus 로고
    • RP58 regulates the multipolar-bipolar transition of newborn neurons in the developing cerebral cortex
    • Ohtaka-Maruyama C., et al. RP58 regulates the multipolar-bipolar transition of newborn neurons in the developing cerebral cortex. Cell Rep. 2013, 3:458-471.
    • (2013) Cell Rep. , vol.3 , pp. 458-471
    • Ohtaka-Maruyama, C.1
  • 60
    • 84855534977 scopus 로고    scopus 로고
    • The 5'-flanking region of the RP58 coding sequence shows prominent promoter activity in multipolar cells in the subventricular zone during corticogenesis
    • Ohtaka-Maruyama C., et al. The 5'-flanking region of the RP58 coding sequence shows prominent promoter activity in multipolar cells in the subventricular zone during corticogenesis. Neuroscience 2012, 201:67-84.
    • (2012) Neuroscience , vol.201 , pp. 67-84
    • Ohtaka-Maruyama, C.1
  • 61
    • 84858159373 scopus 로고    scopus 로고
    • RP58/ZNF238 directly modulates proneurogenic gene levels and is required for neuronal differentiation and brain expansion
    • Xiang C., et al. RP58/ZNF238 directly modulates proneurogenic gene levels and is required for neuronal differentiation and brain expansion. Cell Death Differ. 2012, 19:692-702.
    • (2012) Cell Death Differ. , vol.19 , pp. 692-702
    • Xiang, C.1
  • 62
    • 38749108136 scopus 로고    scopus 로고
    • Satb2 regulates callosal projection neuron identity in the developing cerebral cortex
    • Alcamo E.A., et al. Satb2 regulates callosal projection neuron identity in the developing cerebral cortex. Neuron 2008, 57:364-377.
    • (2008) Neuron , vol.57 , pp. 364-377
    • Alcamo, E.A.1
  • 63
    • 38749146304 scopus 로고    scopus 로고
    • Satb2 is a postmitotic determinant for upper-layer neuron specification in the neocortex
    • Britanova O., et al. Satb2 is a postmitotic determinant for upper-layer neuron specification in the neocortex. Neuron 2008, 57:378-392.
    • (2008) Neuron , vol.57 , pp. 378-392
    • Britanova, O.1
  • 64
    • 17744398634 scopus 로고    scopus 로고
    • Tbr1 regulates differentiation of the preplate and layer 6
    • Hevner R.F., et al. Tbr1 regulates differentiation of the preplate and layer 6. Neuron 2001, 29:353-366.
    • (2001) Neuron , vol.29 , pp. 353-366
    • Hevner, R.F.1
  • 65
    • 77955642202 scopus 로고    scopus 로고
    • Tbr1 regulates regional and laminar identity of postmitotic neurons in developing neocortex
    • Bedogni F., et al. Tbr1 regulates regional and laminar identity of postmitotic neurons in developing neocortex. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:13129-13134.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 13129-13134
    • Bedogni, F.1
  • 66
    • 24644512722 scopus 로고    scopus 로고
    • Fezl is required for the birth and specification of corticospinal motor neurons
    • Molyneaux B.J., et al. Fezl is required for the birth and specification of corticospinal motor neurons. Neuron 2005, 47:817-831.
    • (2005) Neuron , vol.47 , pp. 817-831
    • Molyneaux, B.J.1
  • 67
    • 28044463122 scopus 로고    scopus 로고
    • Fezl regulates the differentiation and axon targeting of layer 5 subcortical projection neurons in cerebral cortex
    • Chen B., et al. Fezl regulates the differentiation and axon targeting of layer 5 subcortical projection neurons in cerebral cortex. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:17184-17189.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 17184-17189
    • Chen, B.1
  • 68
    • 29144503953 scopus 로고    scopus 로고
    • Zfp312 is required for subcortical axonal projections and dendritic morphology of deep-layer pyramidal neurons of the cerebral cortex
    • Chen J.G., et al. Zfp312 is required for subcortical axonal projections and dendritic morphology of deep-layer pyramidal neurons of the cerebral cortex. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:17792-17797.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 17792-17797
    • Chen, J.G.1
  • 69
    • 84861932338 scopus 로고    scopus 로고
    • Cis-regulatory control of corticospinal system development and evolution
    • Shim S., et al. Cis-regulatory control of corticospinal system development and evolution. Nature 2012, 486:74-79.
    • (2012) Nature , vol.486 , pp. 74-79
    • Shim, S.1
  • 70
    • 84869852219 scopus 로고    scopus 로고
    • A network of genetic repression and derepression specifies projection fates in the developing neocortex
    • Srinivasan K., et al. A network of genetic repression and derepression specifies projection fates in the developing neocortex. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:19071-19078.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 19071-19078
    • Srinivasan, K.1
  • 71
    • 38349046968 scopus 로고    scopus 로고
    • SOX5 controls the sequential generation of distinct corticofugal neuron subtypes
    • Lai T., et al. SOX5 controls the sequential generation of distinct corticofugal neuron subtypes. Neuron 2008, 57:232-247.
    • (2008) Neuron , vol.57 , pp. 232-247
    • Lai, T.1
  • 72
    • 12344252023 scopus 로고    scopus 로고
    • Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo
    • Arlotta P., et al. Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron 2005, 45:207-221.
    • (2005) Neuron , vol.45 , pp. 207-221
    • Arlotta, P.1
  • 73
    • 78651498771 scopus 로고    scopus 로고
    • Tbr1 and Fezf2 regulate alternate corticofugal neuronal identities during neocortical development
    • McKenna W.L., et al. Tbr1 and Fezf2 regulate alternate corticofugal neuronal identities during neocortical development. J. Neurosci. 2011, 31:549-564.
    • (2011) J. Neurosci. , vol.31 , pp. 549-564
    • McKenna, W.L.1
  • 74
    • 82955188747 scopus 로고    scopus 로고
    • A mammalian conserved element derived from SINE displays enhancer properties recapitulating Satb2 expression in early-born callosal projection neurons
    • Tashiro K., et al. A mammalian conserved element derived from SINE displays enhancer properties recapitulating Satb2 expression in early-born callosal projection neurons. PLoS ONE 2011, 6:e28497.
    • (2011) PLoS ONE , vol.6
    • Tashiro, K.1
  • 75
    • 84907298258 scopus 로고    scopus 로고
    • The timing of upper-layer neurogenesis is conferred by sequential derepression and negative feedback from deep-layer neurons
    • Toma K., et al. The timing of upper-layer neurogenesis is conferred by sequential derepression and negative feedback from deep-layer neurons. J. Neurosci. 2014, 34:13259-13276.
    • (2014) J. Neurosci. , vol.34 , pp. 13259-13276
    • Toma, K.1
  • 76
    • 33750379420 scopus 로고    scopus 로고
    • Polycomb silencers control cell fate, development and cancer
    • Sparmann A., van Lohuizen M. Polycomb silencers control cell fate, development and cancer. Nat. Rev. Cancer 2006, 6:846-856.
    • (2006) Nat. Rev. Cancer , vol.6 , pp. 846-856
    • Sparmann, A.1    van Lohuizen, M.2
  • 77
    • 84878745222 scopus 로고    scopus 로고
    • Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy
    • Kadoch C., et al. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat. Genet. 2013, 45:592-601.
    • (2013) Nat. Genet. , vol.45 , pp. 592-601
    • Kadoch, C.1
  • 78
    • 77951079020 scopus 로고    scopus 로고
    • Af9/Mllt3 interferes with Tbr1 expression through epigenetic modification of histone H3K79 during development of the cerebral cortex
    • Buttner N., et al. Af9/Mllt3 interferes with Tbr1 expression through epigenetic modification of histone H3K79 during development of the cerebral cortex. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:7042-7047.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 7042-7047
    • Buttner, N.1
  • 79
    • 38749103401 scopus 로고    scopus 로고
    • SATB2 interacts with chromatin-remodeling molecules in differentiating cortical neurons
    • Gyorgy A.B., et al. SATB2 interacts with chromatin-remodeling molecules in differentiating cortical neurons. Eur. J. Neurosci. 2008, 27:865-873.
    • (2008) Eur. J. Neurosci. , vol.27 , pp. 865-873
    • Gyorgy, A.B.1
  • 80
    • 84872509787 scopus 로고    scopus 로고
    • Olig2 targets chromatin remodelers to enhancers to initiate oligodendrocyte differentiation
    • Yu Y., et al. Olig2 targets chromatin remodelers to enhancers to initiate oligodendrocyte differentiation. Cell 2013, 152:248-261.
    • (2013) Cell , vol.152 , pp. 248-261
    • Yu, Y.1
  • 81
    • 84887403795 scopus 로고    scopus 로고
    • Mechanisms of astrocytogenesis in the mammalian brain
    • Namihira M., Nakashima K. Mechanisms of astrocytogenesis in the mammalian brain. Curr. Opin. Neurobiol. 2013, 23:921-927.
    • (2013) Curr. Opin. Neurobiol. , vol.23 , pp. 921-927
    • Namihira, M.1    Nakashima, K.2
  • 82
    • 70349483913 scopus 로고    scopus 로고
    • SOX6 controls dorsal progenitor identity and interneuron diversity during neocortical development
    • Azim E., et al. SOX6 controls dorsal progenitor identity and interneuron diversity during neocortical development. Nat. Neurosci. 2009, 12:1238-1247.
    • (2009) Nat. Neurosci. , vol.12 , pp. 1238-1247
    • Azim, E.1
  • 83
    • 68949157053 scopus 로고    scopus 로고
    • The cell-intrinsic requirement of Sox6 for cortical interneuron development
    • Batista-Brito R., et al. The cell-intrinsic requirement of Sox6 for cortical interneuron development. Neuron 2009, 63:466-481.
    • (2009) Neuron , vol.63 , pp. 466-481
    • Batista-Brito, R.1
  • 84
    • 34248326896 scopus 로고    scopus 로고
    • Distinct cis-regulatory elements from the Dlx1/Dlx2 locus mark different progenitor cell populations in the ganglionic eminences and different subtypes of adult cortical interneurons
    • Ghanem N., et al. Distinct cis-regulatory elements from the Dlx1/Dlx2 locus mark different progenitor cell populations in the ganglionic eminences and different subtypes of adult cortical interneurons. J. Neurosci. 2007, 27:5012-5022.
    • (2007) J. Neurosci. , vol.27 , pp. 5012-5022
    • Ghanem, N.1
  • 85
    • 84917732422 scopus 로고    scopus 로고
    • Genome-wide identification and characterization of functional neuronal activity-dependent enhancers
    • Malik A.N., et al. Genome-wide identification and characterization of functional neuronal activity-dependent enhancers. Nat. Neurosci. 2014, 17:1330-1339.
    • (2014) Nat. Neurosci. , vol.17 , pp. 1330-1339
    • Malik, A.N.1
  • 86
    • 80054793380 scopus 로고    scopus 로고
    • Neuronal activity-regulated gene transcription in synapse development and cognitive function
    • West A.E., Greenberg M.E. Neuronal activity-regulated gene transcription in synapse development and cognitive function. Cold Spring Harb. Perspect. Biol. 2011, 3:a005744.
    • (2011) Cold Spring Harb. Perspect. Biol. , vol.3 , pp. a005744
    • West, A.E.1    Greenberg, M.E.2
  • 87
    • 79952255488 scopus 로고    scopus 로고
    • Identification of cis-elements and transcription factors regulating neuronal activity-dependent transcription of human BDNF gene
    • Pruunsild P., et al. Identification of cis-elements and transcription factors regulating neuronal activity-dependent transcription of human BDNF gene. J. Neurosci. 2011, 31:3295-3308.
    • (2011) J. Neurosci. , vol.31 , pp. 3295-3308
    • Pruunsild, P.1
  • 88
    • 77952367798 scopus 로고    scopus 로고
    • Widespread transcription at neuronal activity-regulated enhancers
    • Kim T.K., et al. Widespread transcription at neuronal activity-regulated enhancers. Nature 2010, 465:182-187.
    • (2010) Nature , vol.465 , pp. 182-187
    • Kim, T.K.1
  • 89
    • 0346243805 scopus 로고    scopus 로고
    • Inferring nonneutral evolution from human-chimp-mouse orthologous gene trios
    • Clark A.G., et al. Inferring nonneutral evolution from human-chimp-mouse orthologous gene trios. Science 2003, 302:1960-1963.
    • (2003) Science , vol.302 , pp. 1960-1963
    • Clark, A.G.1
  • 90
    • 20444430245 scopus 로고    scopus 로고
    • A scan for positively selected genes in the genomes of humans and chimpanzees
    • Nielsen R., et al. A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol. 2005, 3:e170.
    • (2005) PLoS Biol. , vol.3
    • Nielsen, R.1
  • 91
    • 27144539145 scopus 로고    scopus 로고
    • Natural selection on protein-coding genes in the human genome
    • Bustamante C.D., et al. Natural selection on protein-coding genes in the human genome. Nature 2005, 437:1153-1157.
    • (2005) Nature , vol.437 , pp. 1153-1157
    • Bustamante, C.D.1
  • 92
    • 79952386187 scopus 로고    scopus 로고
    • Human-specific loss of regulatory DNA and the evolution of human-specific traits
    • McLean C.Y., et al. Human-specific loss of regulatory DNA and the evolution of human-specific traits. Nature 2011, 471:216-219.
    • (2011) Nature , vol.471 , pp. 216-219
    • McLean, C.Y.1
  • 93
    • 33750737061 scopus 로고    scopus 로고
    • Accelerated evolution of conserved noncoding sequences in humans
    • Prabhakar S., et al. Accelerated evolution of conserved noncoding sequences in humans. Science 2006, 314:786.
    • (2006) Science , vol.314 , pp. 786
    • Prabhakar, S.1
  • 94
    • 0016669094 scopus 로고
    • Evolution at two levels in humans and chimpanzees
    • King M.C., Wilson A.C. Evolution at two levels in humans and chimpanzees. Science 1975, 188:107-116.
    • (1975) Science , vol.188 , pp. 107-116
    • King, M.C.1    Wilson, A.C.2
  • 95
    • 34548346860 scopus 로고    scopus 로고
    • Promoter regions of many neural- and nutrition-related genes have experienced positive selection during human evolution
    • Haygood R., et al. Promoter regions of many neural- and nutrition-related genes have experienced positive selection during human evolution. Nat. Genet. 2007, 39:1140-1144.
    • (2007) Nat. Genet. , vol.39 , pp. 1140-1144
    • Haygood, R.1
  • 96
    • 84874118170 scopus 로고    scopus 로고
    • A high-resolution enhancer atlas of the developing telencephalon
    • Visel A., et al. A high-resolution enhancer atlas of the developing telencephalon. Cell 2013, 152:895-908.
    • (2013) Cell , vol.152 , pp. 895-908
    • Visel, A.1
  • 97
    • 84901843699 scopus 로고    scopus 로고
    • Transcriptional regulation of enhancers active in protodomains of the developing cerebral cortex
    • Pattabiraman K., et al. Transcriptional regulation of enhancers active in protodomains of the developing cerebral cortex. Neuron 2014, 82:989-1003.
    • (2014) Neuron , vol.82 , pp. 989-1003
    • Pattabiraman, K.1
  • 98
    • 84859293639 scopus 로고    scopus 로고
    • Species-dependent posttranscriptional regulation of NOS1 by FMRP in the developing cerebral cortex
    • Kwan K.Y., et al. Species-dependent posttranscriptional regulation of NOS1 by FMRP in the developing cerebral cortex. Cell 2012, 149:899-911.
    • (2012) Cell , vol.149 , pp. 899-911
    • Kwan, K.Y.1
  • 99
    • 84912101541 scopus 로고    scopus 로고
    • The contribution of de novo coding mutations to autism spectrum disorder
    • Iossifov I., et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature 2014, 515:216-221.
    • (2014) Nature , vol.515 , pp. 216-221
    • Iossifov, I.1
  • 100
    • 84860347597 scopus 로고    scopus 로고
    • Sequencing chromosomal abnormalities reveals neurodevelopmental loci that confer risk across diagnostic boundaries
    • Talkowski M.E., et al. Sequencing chromosomal abnormalities reveals neurodevelopmental loci that confer risk across diagnostic boundaries. Cell 2012, 149:525-537.
    • (2012) Cell , vol.149 , pp. 525-537
    • Talkowski, M.E.1
  • 101
    • 74249085814 scopus 로고    scopus 로고
    • Small deletions of SATB2 cause some of the clinical features of the 2q33.1 microdeletion syndrome
    • Rosenfeld J.A., et al. Small deletions of SATB2 cause some of the clinical features of the 2q33.1 microdeletion syndrome. PLoS ONE 2009, 4:e6568.
    • (2009) PLoS ONE , vol.4
    • Rosenfeld, J.A.1
  • 102
    • 84863230430 scopus 로고    scopus 로고
    • Haploinsufficiency of SOX5 at 12p12.1 is associated with developmental delays with prominent language delay, behavior problems, and mild dysmorphic features
    • Lamb A.N., et al. Haploinsufficiency of SOX5 at 12p12.1 is associated with developmental delays with prominent language delay, behavior problems, and mild dysmorphic features. Hum. Mutat. 2012, 33:728-740.
    • (2012) Hum. Mutat. , vol.33 , pp. 728-740
    • Lamb, A.N.1
  • 103
    • 84860780495 scopus 로고    scopus 로고
    • De novo mutations revealed by whole-exome sequencing are strongly associated with autism
    • Sanders S.J., et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 2012, 485:237-241.
    • (2012) Nature , vol.485 , pp. 237-241
    • Sanders, S.J.1
  • 104
    • 84889583293 scopus 로고    scopus 로고
    • Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism
    • Willsey A.J., et al. Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism. Cell 2013, 155:997-1007.
    • (2013) Cell , vol.155 , pp. 997-1007
    • Willsey, A.J.1
  • 105
    • 80054993342 scopus 로고    scopus 로고
    • Spatio-temporal transcriptome of the human brain
    • Kang H.J., et al. Spatio-temporal transcriptome of the human brain. Nature 2011, 478:483-489.
    • (2011) Nature , vol.478 , pp. 483-489
    • Kang, H.J.1
  • 106
    • 80055015161 scopus 로고    scopus 로고
    • Temporal dynamics and genetic control of transcription in the human prefrontal cortex
    • Colantuoni C., et al. Temporal dynamics and genetic control of transcription in the human prefrontal cortex. Nature 2011, 478:519-523.
    • (2011) Nature , vol.478 , pp. 519-523
    • Colantuoni, C.1
  • 107
    • 84921750431 scopus 로고    scopus 로고
    • Genetic variability in the regulation of gene expression in ten regions of the human brain
    • Ramasamy A., et al. Genetic variability in the regulation of gene expression in ten regions of the human brain. Nat. Neurosci. 2014, 17:1418-1428.
    • (2014) Nat. Neurosci. , vol.17 , pp. 1418-1428
    • Ramasamy, A.1
  • 108
    • 80053384370 scopus 로고    scopus 로고
    • Genome-wide association study identifies five new schizophrenia loci
    • Schizophrenia Psychiatric Genome-Wide Association Study
    • Genome-wide association study identifies five new schizophrenia loci. Nat. Genet. 2011, 43:969-976. Schizophrenia Psychiatric Genome-Wide Association Study.
    • (2011) Nat. Genet. , vol.43 , pp. 969-976
  • 109
    • 84864627693 scopus 로고    scopus 로고
    • Personal and population genomics of human regulatory variation
    • Vernot B., et al. Personal and population genomics of human regulatory variation. Genome Res. 2012, 22:1689-1697.
    • (2012) Genome Res. , vol.22 , pp. 1689-1697
    • Vernot, B.1
  • 110
    • 80053385384 scopus 로고    scopus 로고
    • Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4
    • Psychiatric GWAS Consortium Bipolar Disorder Working Group
    • Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat. Genet. 2011, 43:977-983. Psychiatric GWAS Consortium Bipolar Disorder Working Group.
    • (2011) Nat. Genet. , vol.43 , pp. 977-983
  • 111
    • 84969213492 scopus 로고    scopus 로고
    • Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls
    • Wellcome Trust Case Control Consortium
    • Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007, 447:661-678. Wellcome Trust Case Control Consortium.
    • (2007) Nature , vol.447 , pp. 661-678
  • 112
    • 84888015137 scopus 로고    scopus 로고
    • Super-enhancers in the control of cell identity and disease
    • Hnisz D., et al. Super-enhancers in the control of cell identity and disease. Cell 2013, 155:934-947.
    • (2013) Cell , vol.155 , pp. 934-947
    • Hnisz, D.1
  • 113
    • 84870260582 scopus 로고    scopus 로고
    • Human-specific histone methylation signatures at transcription start sites in prefrontal neurons
    • Shulha H.P., et al. Human-specific histone methylation signatures at transcription start sites in prefrontal neurons. PLoS Biol. 2012, 10:e1001427.
    • (2012) PLoS Biol. , vol.10
    • Shulha, H.P.1
  • 114
    • 33847334699 scopus 로고    scopus 로고
    • Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome
    • Heintzman N.D., et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 2007, 39:311-318.
    • (2007) Nat. Genet. , vol.39 , pp. 311-318
    • Heintzman, N.D.1
  • 115
    • 37549023859 scopus 로고    scopus 로고
    • Acetylation mimics within individual core histone tail domains indicate distinct roles in regulating the stability of higher-order chromatin structure
    • Wang X., Hayes J.J. Acetylation mimics within individual core histone tail domains indicate distinct roles in regulating the stability of higher-order chromatin structure. Mol. Cell. Biol. 2008, 28:227-236.
    • (2008) Mol. Cell. Biol. , vol.28 , pp. 227-236
    • Wang, X.1    Hayes, J.J.2
  • 116
    • 34250159524 scopus 로고    scopus 로고
    • Genome-wide mapping of in vivo protein-DNA interactions
    • Johnson D.S., et al. Genome-wide mapping of in vivo protein-DNA interactions. Science 2007, 316:1497-1502.
    • (2007) Science , vol.316 , pp. 1497-1502
    • Johnson, D.S.1
  • 117
    • 33646865180 scopus 로고    scopus 로고
    • Control of developmental regulators by Polycomb in human embryonic stem cells
    • Lee T.I., et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 2006, 125:301-313.
    • (2006) Cell , vol.125 , pp. 301-313
    • Lee, T.I.1
  • 118
    • 39149121436 scopus 로고    scopus 로고
    • Cohesin mediates transcriptional insulation by CCCTC-binding factor
    • Wendt K.S., et al. Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 2008, 451:796-801.
    • (2008) Nature , vol.451 , pp. 796-801
    • Wendt, K.S.1
  • 119
    • 84876216563 scopus 로고    scopus 로고
    • Master transcription factors and mediator establish super-enhancers at key cell identity genes
    • Whyte W.A., et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 2013, 153:307-319.
    • (2013) Cell , vol.153 , pp. 307-319
    • Whyte, W.A.1
  • 120
    • 34250305146 scopus 로고    scopus 로고
    • Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project
    • Consortium E.P., et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 2007, 447:799-816.
    • (2007) Nature , vol.447 , pp. 799-816
    • Consortium, E.P.1
  • 121
    • 84911462077 scopus 로고    scopus 로고
    • A comparative encyclopedia of DNA elements in the mouse genome
    • Yue F., et al. A comparative encyclopedia of DNA elements in the mouse genome. Nature 2014, 515:355-364.
    • (2014) Nature , vol.515 , pp. 355-364
    • Yue, F.1
  • 122
    • 38149129457 scopus 로고    scopus 로고
    • A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function
    • Cahoy J.D., et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 2008, 28:264-278.
    • (2008) J. Neurosci. , vol.28 , pp. 264-278
    • Cahoy, J.D.1
  • 123
    • 77952715009 scopus 로고    scopus 로고
    • Developmental regulation and individual differences of neuronal H3K4me3 epigenomes in the prefrontal cortex
    • Cheung I., et al. Developmental regulation and individual differences of neuronal H3K4me3 epigenomes in the prefrontal cortex. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:8824-8829.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 8824-8829
    • Cheung, I.1
  • 124
    • 84895071445 scopus 로고    scopus 로고
    • Transcriptome in vivo analysis (TIVA) of spatially defined single cells in live tissue
    • Lovatt D., et al. Transcriptome in vivo analysis (TIVA) of spatially defined single cells in live tissue. Nat. Methods 2014, 11:190-196.
    • (2014) Nat. Methods , vol.11 , pp. 190-196
    • Lovatt, D.1
  • 125
    • 84900303453 scopus 로고    scopus 로고
    • Transcriptional landscape of the prenatal human brain
    • Miller J.A., et al. Transcriptional landscape of the prenatal human brain. Nature 2014, 508:199-206.
    • (2014) Nature , vol.508 , pp. 199-206
    • Miller, J.A.1
  • 126
    • 65649112466 scopus 로고    scopus 로고
    • Functional and evolutionary insights into human brain development through global transcriptome analysis
    • Johnson M.B., et al. Functional and evolutionary insights into human brain development through global transcriptome analysis. Neuron 2009, 62:494-509.
    • (2009) Neuron , vol.62 , pp. 494-509
    • Johnson, M.B.1
  • 127
    • 84892772773 scopus 로고    scopus 로고
    • Temporal specification and bilaterality of human neocortical topographic gene expression
    • Pletikos M., et al. Temporal specification and bilaterality of human neocortical topographic gene expression. Neuron 2014, 81:321-332.
    • (2014) Neuron , vol.81 , pp. 321-332
    • Pletikos, M.1
  • 128
    • 84884656824 scopus 로고    scopus 로고
    • The enhancer landscape during early neocortical development reveals patterns of dense regulation and co-option
    • Wenger A.M., et al. The enhancer landscape during early neocortical development reveals patterns of dense regulation and co-option. PLoS Genet. 2013, 9:e1003728.
    • (2013) PLoS Genet. , vol.9
    • Wenger, A.M.1
  • 129
    • 60149091656 scopus 로고    scopus 로고
    • ChIP-seq accurately predicts tissue-specific activity of enhancers
    • Visel A., et al. ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 2009, 457:854-858.
    • (2009) Nature , vol.457 , pp. 854-858
    • Visel, A.1
  • 130
    • 84919655613 scopus 로고    scopus 로고
    • Large-scale identification of coregulated enhancer networks in the adult human brain
    • Vermunt M.W., et al. Large-scale identification of coregulated enhancer networks in the adult human brain. Cell Rep. 2014, 9:767-779.
    • (2014) Cell Rep. , vol.9 , pp. 767-779
    • Vermunt, M.W.1
  • 131
    • 63849091245 scopus 로고    scopus 로고
    • Next-generation DNA sequencing of paired-end tags (PET) for transcriptome and genome analyses
    • Fullwood M.J., et al. Next-generation DNA sequencing of paired-end tags (PET) for transcriptome and genome analyses. Genome Res. 2009, 19:521-532.
    • (2009) Genome Res. , vol.19 , pp. 521-532
    • Fullwood, M.J.1
  • 132
    • 84870367830 scopus 로고    scopus 로고
    • ChIA-PET analysis of transcriptional chromatin interactions
    • Zhang J., et al. ChIA-PET analysis of transcriptional chromatin interactions. Methods 2012, 58:289-299.
    • (2012) Methods , vol.58 , pp. 289-299
    • Zhang, J.1
  • 133
    • 84894589713 scopus 로고    scopus 로고
    • Interactome maps of mouse gene regulatory domains reveal basic principles of transcriptional regulation
    • Kieffer-Kwon K.R., et al. Interactome maps of mouse gene regulatory domains reveal basic principles of transcriptional regulation. Cell 2013, 155:1507-1520.
    • (2013) Cell , vol.155 , pp. 1507-1520
    • Kieffer-Kwon, K.R.1
  • 134
    • 84863229330 scopus 로고    scopus 로고
    • Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay
    • Melnikov A., et al. Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay. Nat. Biotechnol. 2012, 30:271-277.
    • (2012) Nat. Biotechnol. , vol.30 , pp. 271-277
    • Melnikov, A.1
  • 135
    • 84877707375 scopus 로고    scopus 로고
    • One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering
    • Wang H., et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 2013, 153:910-918.
    • (2013) Cell , vol.153 , pp. 910-918
    • Wang, H.1
  • 136
    • 84873729095 scopus 로고    scopus 로고
    • Multiplex genome engineering using CRISPR/Cas systems
    • Cong L., et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013, 339:819-823.
    • (2013) Science , vol.339 , pp. 819-823
    • Cong, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.