메뉴 건너뛰기




Volumn 54, Issue 2, 2015, Pages 700-704

Moving window and just-in-time soft sensor model based on time differences considering a small number of measurements

Author keywords

[No Author keywords available]

Indexed keywords

ENGINEERING RESEARCH;

EID: 84921634883     PISSN: 08885885     EISSN: 15205045     Source Type: Journal    
DOI: 10.1021/ie503962e     Document Type: Article
Times cited : (41)

References (30)
  • 1
    • 35548968908 scopus 로고    scopus 로고
    • Data-based Process Monitoring, Process Control, and Quality Improvement: Recent Developments and Applications in Steel Industry
    • Kano, M.; Nakagawa, Y. Data-based Process Monitoring, Process Control, and Quality Improvement: Recent Developments and Applications in Steel Industry. Comput. Chem. Eng. 2008, 32, 12.
    • (2008) Comput. Chem. Eng. , vol.32 , pp. 12
    • Kano, M.1    Nakagawa, Y.2
  • 2
    • 67349089877 scopus 로고    scopus 로고
    • Data-driven Soft Sensors in the Process Industry
    • Kadlec, P.; Gabrys, B.; Strandt, S. Data-driven Soft Sensors in the Process Industry. Comput. Chem. Eng. 2009, 33, 795.
    • (2009) Comput. Chem. Eng. , vol.33 , pp. 795
    • Kadlec, P.1    Gabrys, B.2    Strandt, S.3
  • 3
    • 84872920533 scopus 로고    scopus 로고
    • Virtual sensing technology in process industries: Trends and challenges revealed by recent industrial applications
    • Kano, M.; Fujiwara, K. Virtual sensing technology in process industries: Trends and challenges revealed by recent industrial applications. J. Chem. Eng. Jpn. 2013, 46, 1-17.
    • (2013) J. Chem. Eng. Jpn. , vol.46 , pp. 1-17
    • Kano, M.1    Fujiwara, K.2
  • 4
    • 84879309312 scopus 로고    scopus 로고
    • Classification of the Degradation of Soft Sensor Models and Discussion on Adaptive Models
    • Kaneko, H.; Funatsu, K. Classification of the Degradation of Soft Sensor Models and Discussion on Adaptive Models. AIChE J. 2013, 59, 2339.
    • (2013) AIChE J. , vol.59 , pp. 2339
    • Kaneko, H.1    Funatsu, K.2
  • 5
    • 78649468188 scopus 로고    scopus 로고
    • Review of Adaptation Mechanisms for Data-driven Soft Sensors
    • Kadlec, P.; Grbic, R.; Gabrys, B. Review of Adaptation Mechanisms for Data-driven Soft Sensors. Comput. Chem. Eng. 2011, 35, 1.
    • (2011) Comput. Chem. Eng. , vol.35 , pp. 1
    • Kadlec, P.1    Grbic, R.2    Gabrys, B.3
  • 6
    • 0032044750 scopus 로고    scopus 로고
    • Recursive PLS Algorithms for Adaptive Data Modelling
    • Qin, S. J. Recursive PLS Algorithms for Adaptive Data Modelling. Comput. Chem. Eng. 1998, 22, 503.
    • (1998) Comput. Chem. Eng. , vol.22 , pp. 503
    • Qin, S.J.1
  • 7
    • 58449118276 scopus 로고    scopus 로고
    • Development of a New Soft Sensor Method Using Independent Component Analysis and Partial Least Squares
    • Kaneko, H.; Arakawa, M.; Funatsu, K. Development of a New Soft Sensor Method Using Independent Component Analysis and Partial Least Squares. AIChE J. 2009, 55, 87.
    • (2009) AIChE J. , vol.55 , pp. 87
    • Kaneko, H.1    Arakawa, M.2    Funatsu, K.3
  • 8
    • 78449310514 scopus 로고    scopus 로고
    • Development of Self-validating Soft Sensors Using Fast Moving Window Partial Least Squares
    • Liu, J. L.; Chen, D. S.; Shen, J. F. Development of Self-validating Soft Sensors Using Fast Moving Window Partial Least Squares. Ind. Eng. Chem. Res. 2010, 9, 11530.
    • (2010) Ind. Eng. Chem. Res. , vol.9 , pp. 11530
    • Liu, J.L.1    Chen, D.S.2    Shen, J.F.3
  • 9
    • 84896913551 scopus 로고    scopus 로고
    • A Localized Adaptive Soft Sensor for Dynamic System Modeling
    • Ni, W. D.; Brown, S. D.; Man, R. L. A Localized Adaptive Soft Sensor for Dynamic System Modeling. Chem. Eng. Sci. 2014, 111, 350.
    • (2014) Chem. Eng. Sci. , vol.111 , pp. 350
    • Ni, W.D.1    Brown, S.D.2    Man, R.L.3
  • 10
    • 84899518485 scopus 로고    scopus 로고
    • Industrial PLS Model Variable Selection Using Moving Window Variable Importance in Projection
    • Lu, B.; Castillo, I.; Chiang, L.; Edgar, T. F. Industrial PLS Model Variable Selection Using Moving Window Variable Importance in Projection. Chemom. Intell. Lab. Syst. 2014, 135, 90.
    • (2014) Chemom. Intell. Lab. Syst. , vol.135 , pp. 90
    • Lu, B.1    Castillo, I.2    Chiang, L.3    Edgar, T.F.4
  • 11
    • 0036639869 scopus 로고    scopus 로고
    • Scalable Techniques from Nonparametric Statistics for Real Time Robot Learning
    • Schaal, S.; Atkeson, C. G.; Vijayakumar, S. Scalable Techniques from Nonparametric Statistics for Real Time Robot Learning. Appl. Intell. 2002, 17, 49.
    • (2002) Appl. Intell. , vol.17 , pp. 49
    • Schaal, S.1    Atkeson, C.G.2    Vijayakumar, S.3
  • 12
    • 2942558590 scopus 로고    scopus 로고
    • A New Data-based Methodology for Nonlinear Process Modeling
    • Cheng, C.; Chiu, M. S. A New Data-based Methodology for Nonlinear Process Modeling. Chem. Eng. Sci. 2004, 59, 2801.
    • (2004) Chem. Eng. Sci. , vol.59 , pp. 2801
    • Cheng, C.1    Chiu, M.S.2
  • 13
    • 68049143320 scopus 로고    scopus 로고
    • Soft-sensor Development Using Correlation-based Just-in-time Modeling
    • Fujiwara, K.; Kano, M.; Hasebe, S.; Takinami, A. Soft-sensor Development Using Correlation-based Just-in-time Modeling. AIChE J. 2009, 55, 1754.
    • (2009) AIChE J. , vol.55 , pp. 1754
    • Fujiwara, K.1    Kano, M.2    Hasebe, S.3    Takinami, A.4
  • 14
    • 84863278909 scopus 로고    scopus 로고
    • Development of Interval Soft Sensors Using Enhanced Just-in-time Learning and Inductive Confidence Predictor
    • Liu, Y. Q.; Huang, D. P.; Li, Y. Development of Interval Soft Sensors Using Enhanced Just-in-time Learning and Inductive Confidence Predictor. Ind. Eng. Chem. Res. 2012, 51, 3356.
    • (2012) Ind. Eng. Chem. Res. , vol.51 , pp. 3356
    • Liu, Y.Q.1    Huang, D.P.2    Li, Y.3
  • 15
    • 84878409484 scopus 로고    scopus 로고
    • A SEVA Soft Sensor Method Based on Self-calibration Model and Uncertainty Description Algorithm
    • Liu, Y. Q.; Huang, D. P.; Li, Z. F. A SEVA Soft Sensor Method Based on Self-calibration Model and Uncertainty Description Algorithm. Chemom. Intell. Lab. Syst. 2013, 126, 38.
    • (2013) Chemom. Intell. Lab. Syst. , vol.126 , pp. 38
    • Liu, Y.Q.1    Huang, D.P.2    Li, Z.F.3
  • 16
    • 79959784751 scopus 로고    scopus 로고
    • Maintenance-Free Soft Sensor Models with Time Difference of Process Variables
    • Kaneko, H.; Funatsu, K. Maintenance-Free Soft Sensor Models with Time Difference of Process Variables. Chemom. Intell. Lab. Syst 2011, 107, 312.
    • (2011) Chemom. Intell. Lab. Syst , vol.107 , pp. 312
    • Kaneko, H.1    Funatsu, K.2
  • 17
    • 80055094175 scopus 로고    scopus 로고
    • A Soft Sensor Method Based on Values Predicted from Multiple Intervals of Time Difference for Improvement and Estimation of Prediction Accuracy
    • Kaneko, H.; Funatsu, K. A Soft Sensor Method Based on Values Predicted from Multiple Intervals of Time Difference for Improvement and Estimation of Prediction Accuracy. Chemom. Intell. Lab. Syst. 2011, 109, 197.
    • (2011) Chemom. Intell. Lab. Syst. , vol.109 , pp. 197
    • Kaneko, H.1    Funatsu, K.2
  • 18
    • 84883140452 scopus 로고    scopus 로고
    • Adaptive Soft Sensor Model Using Online Support Vector Regression with the Time Variable and Discussion on Appropriate Hyperparameters and Window Size
    • K
    • K Kaneko, H.; Funatsu, K. Adaptive Soft Sensor Model Using Online Support Vector Regression with the Time Variable and Discussion on Appropriate Hyperparameters and Window Size. Comput. Chem. Eng. 2013, 58, 288.
    • (2013) Comput. Chem. Eng. , vol.58 , pp. 288
    • Kaneko, H.1    Funatsu, K.2
  • 19
    • 79954599740 scopus 로고    scopus 로고
    • Local Learning-Based Adaptive Soft Sensor for Catalyst Activation Prediction
    • Kadlec, P.; Gabrys, B. Local Learning-Based Adaptive Soft Sensor for Catalyst Activation Prediction. AIChE J. 2010, 57, 1288.
    • (2010) AIChE J. , vol.57 , pp. 1288
    • Kadlec, P.1    Gabrys, B.2
  • 20
    • 84880339799 scopus 로고    scopus 로고
    • Adaptive Soft Sensor for Online Prediction and Process Monitoring Based on a Mixture of Gaussian Process Models
    • Grbića, R.; Slišković, D.; Kadlec, P. Adaptive Soft Sensor for Online Prediction and Process Monitoring Based on a Mixture of Gaussian Process Models. Comput. Chem. Eng. 2013, 58, 84.
    • (2013) Comput. Chem. Eng. , vol.58 , pp. 84
    • Grbića, R.1    Slišković, D.2    Kadlec, P.3
  • 21
    • 84868224530 scopus 로고    scopus 로고
    • Multiway Gaussian Mixture Model Based Adaptive Kernel Partial Least Squares Regression Method for Soft Sensor Estimation and Reliable Quality Prediction of Nonlinear Multiphase Batch Processes
    • Yu, J. Multiway Gaussian Mixture Model Based Adaptive Kernel Partial Least Squares Regression Method for Soft Sensor Estimation and Reliable Quality Prediction of Nonlinear Multiphase Batch Processes. Ind. Eng. Chem. Res. 2012, 51, 13227.
    • (2012) Ind. Eng. Chem. Res. , vol.51 , pp. 13227
    • Yu, J.1
  • 22
    • 84859392648 scopus 로고    scopus 로고
    • A Bayesian Inference Based Two-stage Support Vector Regression Framework for Soft Sensor Development in Batch Bioprocesses
    • Yu, J. A Bayesian Inference Based Two-stage Support Vector Regression Framework for Soft Sensor Development in Batch Bioprocesses. Comput. Chem. Eng. 2012, 41, 134.
    • (2012) Comput. Chem. Eng. , vol.41 , pp. 134
    • Yu, J.1
  • 23
    • 84875311589 scopus 로고    scopus 로고
    • Automatic Determination Method Based on Cross-validation for Optimal Intervals of Time Difference
    • Kaneko, H.; Funatsu, K. Automatic Determination Method Based on Cross-validation for Optimal Intervals of Time Difference. J. Chem. Eng. Jpn. 2013, 46, 1.
    • (2013) J. Chem. Eng. Jpn. , vol.46 , pp. 1
    • Kaneko, H.1    Funatsu, K.2
  • 24
    • 84872918863 scopus 로고    scopus 로고
    • Discussion on Time Difference Models and Intervals of Time Difference for Application of Soft Sensors
    • Kaneko, H.; Funatsu, K. Discussion on Time Difference Models and Intervals of Time Difference for Application of Soft Sensors. Ind. Eng. Chem. Res. 2013, 52, 1322.
    • (2013) Ind. Eng. Chem. Res. , vol.52 , pp. 1322
    • Kaneko, H.1    Funatsu, K.2
  • 25
    • 0141765796 scopus 로고    scopus 로고
    • Accurate On-line Support Vector Regression
    • Ma, J.; Theliler, J.; Perkins, S. Accurate On-line Support Vector Regression. Neural Comput. 2003, 15, 2683.
    • (2003) Neural Comput. , vol.15 , pp. 2683
    • Ma, J.1    Theliler, J.2    Perkins, S.3
  • 26
    • 84903588321 scopus 로고    scopus 로고
    • Adaptive Soft Sensor Based on Online Support Vector Regression and Bayesian Ensemble Learning for Various States in Chemical Plants
    • Kaneko, H.; Funatsu, K. Adaptive Soft Sensor Based on Online Support Vector Regression and Bayesian Ensemble Learning for Various States in Chemical Plants. Chemom. Intell. Lab. Syst. 2014, 137, 57.
    • (2014) Chemom. Intell. Lab. Syst. , vol.137 , pp. 57
    • Kaneko, H.1    Funatsu, K.2
  • 27
    • 72149085992 scopus 로고    scopus 로고
    • An Accumulative Error Based Adaptive Design of Experiments for Offline Metamodeling
    • Li, G.; Aute, V.; Azarm, S. An Accumulative Error Based Adaptive Design of Experiments for Offline Metamodeling. Struct. Multidiscip. O. 2010, 40, 137.
    • (2010) Struct. Multidiscip. O. , vol.40 , pp. 137
    • Li, G.1    Aute, V.2    Azarm, S.3
  • 29
    • 0042553279 scopus 로고
    • Smoothing and Differentiation of Data by Simplified Least Squares Procedures
    • Savitzky, A.; Golay, M. J. E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627.
    • (1964) Anal. Chem. , vol.36 , pp. 1627
    • Savitzky, A.1    Golay, M.J.E.2
  • 30
    • 84921674824 scopus 로고    scopus 로고
    • Chemometrics Calculations with Microsoft Excel (5)
    • in Japanese
    • Yoshimura, N.; Takayanagi, M. Chemometrics Calculations with Microsoft Excel (5), J. Comput. Chem., Jpn. 2012, 11, 149 (in Japanese).
    • (2012) J. Comput. Chem., Jpn. , vol.11 , pp. 149
    • Yoshimura, N.1    Takayanagi, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.