메뉴 건너뛰기




Volumn 135, Issue , 2014, Pages 90-109

Industrial PLS model variable selection using moving window variable importance in projection

Author keywords

Inferential sensors; Model reduction; Multivariate statistics; Partial least squares; PLS regression; Process monitoring; Soft sensors; Variable selection

Indexed keywords

ALGORITHM; ARTICLE; BIOINFORMATICS; CHEMICAL INDUSTRY; PARTIAL LEAST SQUARES REGRESSION; PREDICTION; PRIORITY JOURNAL; QUALITY CONTROL; SENSOR; SPECTROSCOPY; STATISTICAL ANALYSIS;

EID: 84899518485     PISSN: 01697439     EISSN: 18733239     Source Type: Journal    
DOI: 10.1016/j.chemolab.2014.03.020     Document Type: Article
Times cited : (54)

References (37)
  • 1
    • 84869089680 scopus 로고    scopus 로고
    • Survey on data-driven industrial process monitoring and diagnosis
    • Qin S.J. Survey on data-driven industrial process monitoring and diagnosis. Annu. Rev. Control. 2012, 36:220-234. (URL http://www.sciencedirect.com/science/article/pii/S1367578812000399).
    • (2012) Annu. Rev. Control. , vol.36 , pp. 220-234
    • Qin, S.J.1
  • 2
    • 67349089877 scopus 로고    scopus 로고
    • Data-driven Soft Sensors in the process industry
    • Kadlec P., Gabrys B., Strandt S. Data-driven Soft Sensors in the process industry. Comput. Chem. Eng. 2009, 33(4):795-814. (URL http://linkinghub.elsevier.com/retrieve/pii/S0098135409000076). 10.1016/j.compchemeng.2008.12.012.
    • (2009) Comput. Chem. Eng. , vol.33 , Issue.4 , pp. 795-814
    • Kadlec, P.1    Gabrys, B.2    Strandt, S.3
  • 4
    • 0030269512 scopus 로고    scopus 로고
    • Identification of faulty sensors using principal component analysis
    • Dunia R., Qin S.J., Edgar T.F., McAvoy T.J. Identification of faulty sensors using principal component analysis. AICHE J. 1996, 42:2797-2812. 10.1002/aic.690421011.
    • (1996) AICHE J. , vol.42 , pp. 2797-2812
    • Dunia, R.1    Qin, S.J.2    Edgar, T.F.3    McAvoy, T.J.4
  • 5
    • 0026108818 scopus 로고
    • Multivariate statistical monitoring of process operating performance
    • Kresta J.V., Macgregor J.F., Marlin T.E. Multivariate statistical monitoring of process operating performance. Can. J. Chem. Eng. 1991, 69:35-47. 10.1002/cjce.5450690105.
    • (1991) Can. J. Chem. Eng. , vol.69 , pp. 35-47
    • Kresta, J.V.1    Macgregor, J.F.2    Marlin, T.E.3
  • 6
    • 0035802262 scopus 로고    scopus 로고
    • Reconstruction-based fault identification using a combined index
    • Yue H.H., Qin S.J. Reconstruction-based fault identification using a combined index. Ind. Eng. Chem. Res. 2001, 40(20):4403-4414. (+. URL http://pubs.acs.org/doi/abs/10.1021/ie000141+). 10.1021/ie000141.
    • (2001) Ind. Eng. Chem. Res. , vol.40 , Issue.20 , pp. 4403-4414
    • Yue, H.H.1    Qin, S.J.2
  • 7
    • 79953832419 scopus 로고    scopus 로고
    • A reduced order soft sensor approach and its application to a continuous digester
    • Galicia H.J., He Q.P., Wang J. A reduced order soft sensor approach and its application to a continuous digester. J. Process Control 2011, 21(4):489-500. (URL http://linkinghub.elsevier.com/retrieve/pii/S0959152411000266). 10.1016/j.jprocont.2011.02.001.
    • (2011) J. Process Control , vol.21 , Issue.4 , pp. 489-500
    • Galicia, H.J.1    He, Q.P.2    Wang, J.3
  • 8
    • 78650649260 scopus 로고    scopus 로고
    • Variable selection in regression - a tutorial
    • Andersen C.M., Bro R. Variable selection in regression - a tutorial. J. Chemom. 2010, 24(11-12):728-737. (URL http://doi.wiley.com/10.1002/cem.1360). 10.1002/cem.1360.
    • (2010) J. Chemom. , vol.24 , Issue.11-12 , pp. 728-737
    • Andersen, C.M.1    Bro, R.2
  • 9
    • 84865407521 scopus 로고    scopus 로고
    • A review of variable selection methods in partial least squares regression
    • Mehmood T., Liland K.H., Snipen L., Sæbo S. A review of variable selection methods in partial least squares regression. Chemom. Intell. Lab. Syst. 2012, 118:62-69. (URL http://dx.doi.org/10.1016/j.chemolab.2012.07.010 http://linkinghub.elsevier.com/retrieve/pii/S0169743912001542). 10.1016/j.chemolab.2012.07.010.
    • (2012) Chemom. Intell. Lab. Syst. , vol.118 , pp. 62-69
    • Mehmood, T.1    Liland, K.H.2    Snipen, L.3    Sæbo, S.4
  • 10
    • 0001912153 scopus 로고
    • Comparison of forward selection, backward elimination, and generalized simulated annealing for variable selection
    • Sutter J.M.J., Kalivas J.H.J. Comparison of forward selection, backward elimination, and generalized simulated annealing for variable selection. Microchem. J. 1993, 47:60-66. (URL http://www.sciencedirect.com/science/article/pii/S0026265X837 1012X).
    • (1993) Microchem. J. , vol.47 , pp. 60-66
    • Sutter, J.M.J.1    Kalivas, J.H.J.2
  • 11
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys Y., Inza I.n, Larrañaga P., Larran P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007, 23(19):2507-2517. (URL http://www.ncbi.nlm.nih.gov/pubmed/17720704 http://bioinformatics.oxfordjournals.org/content/23/19/2507.short). 10.1093/bioinformatics/btm344.
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larrañaga, P.3    Larran, P.4
  • 12
    • 85162676194 scopus 로고
    • PLS regression methods
    • Höskuldsson A., Hoskuldsson A. PLS regression methods. J. Chemom. 1988, 2:211-228. (URL http://onlinelibrary.wiley.com/doi/10.1002/cem.1180020306/full).
    • (1988) J. Chemom. , vol.2 , pp. 211-228
    • Höskuldsson, A.1    Hoskuldsson, A.2
  • 13
    • 0027530250 scopus 로고
    • SIMPLS: an alternative approach to partial least squares regression
    • de Jong S. SIMPLS: an alternative approach to partial least squares regression. Chemom. Intell. Lab. Syst. 1992, 18:251-263.
    • (1992) Chemom. Intell. Lab. Syst. , vol.18 , pp. 251-263
    • de Jong, S.1
  • 15
    • 84857548668 scopus 로고    scopus 로고
    • Methods for plant data-based process modeling in soft-sensor development
    • Sliskovic D. Methods for plant data-based process modeling in soft-sensor development. HAYATI J. Biosci. 2011, 52(4):306-318.
    • (2011) HAYATI J. Biosci. , vol.52 , Issue.4 , pp. 306-318
    • Sliskovic, D.1
  • 16
    • 0035852404 scopus 로고    scopus 로고
    • Variable and subset selection in PLS regression
    • Hoskuldsson A. Variable and subset selection in PLS regression. Chemom. Intell. Lab. Syst. 2001, 55:23-38.
    • (2001) Chemom. Intell. Lab. Syst. , vol.55 , pp. 23-38
    • Hoskuldsson, A.1
  • 18
    • 1942471190 scopus 로고
    • Intermediate least squares regression method
    • Frank I.E. Intermediate least squares regression method. Chemom. Intell. Lab. Syst. 1987, 1(3):233-242. (URL http://linkinghub.elsevier.com/retrieve/pii/0169743987800679). 10.1016/0169-7439(87)80067-9.
    • (1987) Chemom. Intell. Lab. Syst. , vol.1 , Issue.3 , pp. 233-242
    • Frank, I.E.1
  • 20
    • 0000105237 scopus 로고    scopus 로고
    • Elimination of uninformative variables for multivariate calibration
    • Centner V., Massart D.L., de Noord O.E., de Jong S., Vandeginste B.M., Sterna C. Elimination of uninformative variables for multivariate calibration. Anal. Chem. 1996, 68(21):3851-3858. (URL http://www.ncbi.nlm.nih.gov/pubmed/21619260). 10.1021/ac960321m.
    • (1996) Anal. Chem. , vol.68 , Issue.21 , pp. 3851-3858
    • Centner, V.1    Massart, D.L.2    de Noord, O.E.3    de Jong, S.4    Vandeginste, B.M.5    Sterna, C.6
  • 21
    • 77954447604 scopus 로고    scopus 로고
    • Recipe for revealing informative metabolites based on model population analysis
    • Li H.D., Zeng M.M., Tan B.B., Liang Y.Z., Xu Q.S., Cao D.S. Recipe for revealing informative metabolites based on model population analysis. Metabolomics 2010, 6(3):353-361. (URL http://link.springer.com/10.1007/s11306-010-0213-z). 10.1007/s11306-010-0213-z.
    • (2010) Metabolomics , vol.6 , Issue.3 , pp. 353-361
    • Li, H.D.1    Zeng, M.M.2    Tan, B.B.3    Liang, Y.Z.4    Xu, Q.S.5    Cao, D.S.6
  • 22
    • 0033647286 scopus 로고    scopus 로고
    • Application of genetic algorithm-PLS for feature selection in spectral data sets
    • Leardi R. Application of genetic algorithm-PLS for feature selection in spectral data sets. J. Chemom. March 2000, 643-655. (URL http://onlinelibrary.wiley.com/doi/10.1002/1099-128X(200009/1 2)14:5/6<643::AID-CEM621>3.0.CO;2-E/abstract).
    • (2000) J. Chemom. , pp. 643-655
    • Leardi, R.1
  • 23
    • 0037150785 scopus 로고    scopus 로고
    • Variable selection for multivariate calibration using a genetic algorithm: prediction of additive concentrations in polymer films from Fourier transform-infrared spectral data
    • Leardi R., Seasholtz M.B., Pell R.J., Beth M. Variable selection for multivariate calibration using a genetic algorithm: prediction of additive concentrations in polymer films from Fourier transform-infrared spectral data. Anal. Chim. Acta. 2002, 461(2):189-200. (URL http://linkinghub.elsevier.com/retrieve/pii/S0003267002002726). 10.1016/S0003-2670(02)00272-6.
    • (2002) Anal. Chim. Acta. , vol.461 , Issue.2 , pp. 189-200
    • Leardi, R.1    Seasholtz, M.B.2    Pell, R.J.3    Beth, M.4
  • 24
    • 0242526839 scopus 로고    scopus 로고
    • Genetic algorithms combined with discriminant analysis for key variable identification
    • Chiang L.H., Pell R.J. Genetic algorithms combined with discriminant analysis for key variable identification. J. Process Control 2004, 14(2):143-155. (URL http://linkinghub.elsevier.com/retrieve/pii/S0959152403000295). 10.1016/S0959-1524(03)00029-5.
    • (2004) J. Process Control , vol.14 , Issue.2 , pp. 143-155
    • Chiang, L.H.1    Pell, R.J.2
  • 25
    • 67650369751 scopus 로고    scopus 로고
    • Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration
    • Li H., Liang Y., Xu Q., Cao D. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Anal. Chim. Acta. 2009, 648(1):77-84. (URL http://www.ncbi.nlm.nih.gov/pubmed/19616692). 10.1016/j.aca.2009.06.046.
    • (2009) Anal. Chim. Acta. , vol.648 , Issue.1 , pp. 77-84
    • Li, H.1    Liang, Y.2    Xu, Q.3    Cao, D.4
  • 26
    • 74049093630 scopus 로고    scopus 로고
    • Sparse partial least squares regression for simultaneous dimension reduction and variable selection
    • Chun H., Kele S. Sparse partial least squares regression for simultaneous dimension reduction and variable selection. J. R. Stat. Soc. Ser. B Stat Methodol. 2010, 72(1):3-25. (URL http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=281 0828&tool=pmcentrez&rendertype=abstract). 10.1111/j.1467-9868.2009.00723.x.
    • (2010) J. R. Stat. Soc. Ser. B Stat Methodol. , vol.72 , Issue.1 , pp. 3-25
    • Chun, H.1    Kele, S.2
  • 27
    • 0001286453 scopus 로고    scopus 로고
    • Iterative predictor weighting (IPW) PLS: a technique for the elimination of useless predictors in regression problems
    • (November 1998)
    • Forina M., Casolino C., Pizarro Millan C., Millan C.P. Iterative predictor weighting (IPW) PLS: a technique for the elimination of useless predictors in regression problems. J. Chemometr. 1999, 184:165-184. (November 1998). 10.1002/(SICI)1099-128X(19 9903/04)13:2<165::AID-CEM535>3.0.CO;2-Y/abstract.
    • (1999) J. Chemometr. , vol.184 , pp. 165-184
    • Forina, M.1    Casolino, C.2    Pizarro Millan, C.3    Millan, C.P.4
  • 28
    • 23044515101 scopus 로고    scopus 로고
    • A twist to partial least squares regression
    • Indahl U. A twist to partial least squares regression. J. Chemom. 2005, 19(1):32-44. (URL http://doi.wiley.com/10.1002/cem.904). 10.1002/cem.904.
    • (2005) J. Chemom. , vol.19 , Issue.1 , pp. 32-44
    • Indahl, U.1
  • 29
    • 84984336225 scopus 로고
    • Interactive variable selection (IVS) for PLS. Part 1: theory and algorithms
    • Lindgren F., Geladi P., Rannar S., Wold S. Interactive variable selection (IVS) for PLS. Part 1: theory and algorithms. J. Chemom. 1994, 8:349-363.
    • (1994) J. Chemom. , vol.8 , pp. 349-363
    • Lindgren, F.1    Geladi, P.2    Rannar, S.3    Wold, S.4
  • 31
    • 0005913793 scopus 로고    scopus 로고
    • The objective function of partial least squares regression
    • ter Braak C.J.F., de Jong S. The objective function of partial least squares regression. J. Chemom. 1998, 12(1):41-54.
    • (1998) J. Chemom. , vol.12 , Issue.1 , pp. 41-54
    • ter Braak, C.J.F.1    de Jong, S.2
  • 32
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 1996, 58(1):267-288. 10.2307/2346178.
    • (1996) J. R. Stat. Soc. Ser. B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 33
    • 0016355478 scopus 로고
    • A new look at the statistical model identification. Automatic control
    • (ISSN: 0018-9286)
    • Akaike H. A new look at the statistical model identification. Automatic control. IEEE Trans. 1974, 19(6):716-723. (URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1100705) (ISSN: 0018-9286). 10.1109/TAC.1974.1100705.
    • (1974) IEEE Trans. , vol.19 , Issue.6 , pp. 716-723
    • Akaike, H.1
  • 34
    • 8744307994 scopus 로고    scopus 로고
    • Multimodel Inference: understanding AIC and BIC in model selection
    • Burnham K.P. Multimodel Inference: understanding AIC and BIC in model selection. Sociol. Methods Res. 2004, 33(2):261-304. (URL http://smr.sagepub.com/cgi/doi/10.1177/0049124104268644). 10.1177/0049124104268644.
    • (2004) Sociol. Methods Res. , vol.33 , Issue.2 , pp. 261-304
    • Burnham, K.P.1
  • 35
    • 0003658046 scopus 로고
    • A user's guide to principal components
    • Wiley-Interscience
    • Jackson J.E. A user's guide to principal components. Wiley Series in Probability and Statistics 1991, vol. 43. Wiley-Interscience, (URL http://www.palgrave-journals.com/doifinder/10.1057/jors.1992. 90). 10.1057/jors.1992.90.
    • (1991) Wiley Series in Probability and Statistics , vol.43
    • Jackson, J.E.1
  • 36
    • 77957041205 scopus 로고    scopus 로고
    • Model population analysis for variable selection
    • Li H.d, Liang Y.z, Xu Q.s, Cao D.S. Model population analysis for variable selection. J. Chemom. 2010, 24(7-8):418-423. (URL http://doi.wiley.com/10.1002/cem.1300). 10.1002/cem.1300.
    • (2010) J. Chemom. , vol.24 , Issue.7-8 , pp. 418-423
    • Li, H.1    Liang, Y.2    Xu, Q.3    Cao, D.S.4
  • 37
    • 0031572682 scopus 로고    scopus 로고
    • A multivariate Kolmogorov-Smirnov test of goodness of fit
    • (ST - A multivariate Kolmogorov-Smirnov te)
    • Justel Ana, Peña Daniel, Zamar Rubén H. A multivariate Kolmogorov-Smirnov test of goodness of fit. Stat. Prob. Lett. 1997, 35:251-259. (ST - A multivariate Kolmogorov-Smirnov te).
    • (1997) Stat. Prob. Lett. , vol.35 , pp. 251-259
    • Justel, A.1    Peña, D.2    Zamar Rubén, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.