메뉴 건너뛰기




Volumn 126, Issue , 2013, Pages 38-49

A SEVA soft sensor method based on self-calibration model and uncertainty description algorithm

Author keywords

Ensemble learning; Just in time learning; SEVA; Soft sensor; Uncertainty; Wastewater

Indexed keywords

ALGORITHM; ARTICLE; CALIBRATION; CASE STUDY; MATHEMATICAL MODEL; PREDICTIVE VALUE; PRINCIPAL COMPONENT ANALYSIS; PRIORITY JOURNAL; PROCESS DEVELOPMENT; PROCESS MODEL; RADIATION MEASUREMENT; SELF VALIDATING SOFT SENSOR; SENSOR; VALIDATION PROCESS; WASTE WATER MANAGEMENT;

EID: 84878409484     PISSN: 01697439     EISSN: 18733239     Source Type: Journal    
DOI: 10.1016/j.chemolab.2013.04.009     Document Type: Article
Times cited : (27)

References (33)
  • 1
    • 77749268171 scopus 로고    scopus 로고
    • Nearest-neighbor method for the automatic maintenance of multivariate statistical soft sensors in batch processing
    • Facco F.P., Barolo BezzoM Nearest-neighbor method for the automatic maintenance of multivariate statistical soft sensors in batch processing. Industrial and Engineering Chemistry Research 2010, 49:2336-2347.
    • (2010) Industrial and Engineering Chemistry Research , vol.49 , pp. 2336-2347
    • Facco, F.P.1    Barolo, B.2
  • 3
    • 33750734428 scopus 로고    scopus 로고
    • Comparison of different predictive models for nutrient estimation in a sequencing batch reactor for wastewater treatment
    • Aguado D., Ferrer A., SecoJ Ferrer A. Comparison of different predictive models for nutrient estimation in a sequencing batch reactor for wastewater treatment. Chemometrics and Intelligent Laboratory Systems 2006, 84:75-81.
    • (2006) Chemometrics and Intelligent Laboratory Systems , vol.84 , pp. 75-81
    • Aguado, D.1    Ferrer, A.2    SecoJ Ferrer, A.3
  • 4
    • 34250639021 scopus 로고    scopus 로고
    • Robustness of PARAFAC and N-PLS regression models in relation to homoscedastic and heteroscedastic noise
    • Khayamian T. Robustness of PARAFAC and N-PLS regression models in relation to homoscedastic and heteroscedastic noise. Chemometrics and Intelligent Laboratory Systems 2007, 88:35-40.
    • (2007) Chemometrics and Intelligent Laboratory Systems , vol.88 , pp. 35-40
    • Khayamian, T.1
  • 7
    • 2342567014 scopus 로고    scopus 로고
    • Soft sensing modeling based on support vector machine and Bayesian model selection
    • Yan W., Shao H., Wang X. Soft sensing modeling based on support vector machine and Bayesian model selection. Computers and Chemical Engineering 2004, 28:1489-1498.
    • (2004) Computers and Chemical Engineering , vol.28 , pp. 1489-1498
    • Yan, W.1    Shao, H.2    Wang, X.3
  • 13
    • 0030525683 scopus 로고    scopus 로고
    • Non-parametric confidence bounds for process performance monitoring charts
    • Martin E.B., Morris A.J. Non-parametric confidence bounds for process performance monitoring charts. Journal of Process Control 1996, 6:349-358.
    • (1996) Journal of Process Control , vol.6 , pp. 349-358
    • Martin, E.B.1    Morris, A.J.2
  • 14
    • 0031139929 scopus 로고    scopus 로고
    • Self-validating inferential sensors with application to air emission monitoring
    • Qin S.J., Yue H., Dunia R. Self-validating inferential sensors with application to air emission monitoring. Industrial and Engineering Chemistry Research 1997, 36:1675-1685.
    • (1997) Industrial and Engineering Chemistry Research , vol.36 , pp. 1675-1685
    • Qin, S.J.1    Yue, H.2    Dunia, R.3
  • 15
    • 0035802262 scopus 로고    scopus 로고
    • Reconstruction-based fault identification using a combined index
    • Yue H.H., Qin S.J. Reconstruction-based fault identification using a combined index. Industrial and Engineering Chemistry Research 2001, 40:4403-4414.
    • (2001) Industrial and Engineering Chemistry Research , vol.40 , pp. 4403-4414
    • Yue, H.H.1    Qin, S.J.2
  • 16
    • 59349107270 scopus 로고    scopus 로고
    • A recursive PLS-based soft sensor for prediction of the melt index during grade change operations in HDPE plant
    • Ahmed F., Nazir S., Yeo Y.K. A recursive PLS-based soft sensor for prediction of the melt index during grade change operations in HDPE plant. Korean Journal of Chemical Engineering 2009, 26:14-20.
    • (2009) Korean Journal of Chemical Engineering , vol.26 , pp. 14-20
    • Ahmed, F.1    Nazir, S.2    Yeo, Y.K.3
  • 17
    • 67349260768 scopus 로고    scopus 로고
    • PLS-EP algorithm to predict aluminum content in soils of Beskid mountains region
    • Ciba J., Dydo P., Kluczka J., Smolin A. PLS-EP algorithm to predict aluminum content in soils of Beskid mountains region. Chemosphere 2009, 76:565-571.
    • (2009) Chemosphere , vol.76 , pp. 565-571
    • Ciba, J.1    Dydo, P.2    Kluczka, J.3    Smolin, A.4
  • 18
    • 60649090799 scopus 로고    scopus 로고
    • Moving average PLS soft sensor for online product quality estimation in an industrial batch polymerization process
    • Facco P., Doplicher F., Bezzo F., Barolo M. Moving average PLS soft sensor for online product quality estimation in an industrial batch polymerization process. Journal of Process Control 2009, 19:520-529.
    • (2009) Journal of Process Control , vol.19 , pp. 520-529
    • Facco, P.1    Doplicher, F.2    Bezzo, F.3    Barolo, M.4
  • 19
    • 0032044750 scopus 로고    scopus 로고
    • Recursive PLS algorithms for adaptive data modeling
    • Joe Qin S. Recursive PLS algorithms for adaptive data modeling. Computers and Chemical Engineering 1998, 22:503-514.
    • (1998) Computers and Chemical Engineering , vol.22 , pp. 503-514
    • Joe Qin, S.1
  • 20
    • 56349151772 scopus 로고    scopus 로고
    • Combining KPCA with LSSVM for the Mooney-viscosity forecasting
    • 2nd International Conference on Genetic and Evolutionary Computing, Jingzhou, Hubei, China
    • Liu M., Huang D., Sun Z., Chen Z. Combining KPCA with LSSVM for the Mooney-viscosity forecasting. Inst. of Elec. and Elec. Eng. Computer Society 2008.
    • (2008) Inst. of Elec. and Elec. Eng. Computer Society
    • Liu, M.1    Huang, D.2    Sun, Z.3    Chen, Z.4
  • 21
    • 0032625723 scopus 로고    scopus 로고
    • Bersini Lazy learning for local modeling and control design
    • Bontempi G., BirattariH M., Bersini Lazy learning for local modeling and control design. International Journal of Control 1997, 72:643-658.
    • (1997) International Journal of Control , vol.72 , pp. 643-658
    • Bontempi, G.1    Birattari, H.M.2
  • 22
    • 2942558590 scopus 로고    scopus 로고
    • A new data-based methodology for nonlinear process modeling
    • Cheng C., Chiu M.S. A new data-based methodology for nonlinear process modeling. Chemical Engineering Science 2004, 59:2801-2810.
    • (2004) Chemical Engineering Science , vol.59 , pp. 2801-2810
    • Cheng, C.1    Chiu, M.S.2
  • 23
    • 68049143320 scopus 로고    scopus 로고
    • Soft-sensor development using correlation-based just-in-time modeling
    • Fujiwara K., Kano M., Hasebe S., Takinami A. Soft-sensor development using correlation-based just-in-time modeling. AICHE Journal 2009, 55:1754-1765.
    • (2009) AICHE Journal , vol.55 , pp. 1754-1765
    • Fujiwara, K.1    Kano, M.2    Hasebe, S.3    Takinami, A.4
  • 28
    • 0030269512 scopus 로고    scopus 로고
    • Identification of faulty sensors using principal component analysis
    • Dunia R., Qin S.J., Edgar T.F., McAvoy T.J. Identification of faulty sensors using principal component analysis. AICHE Journal 1996, 42:2797-2812.
    • (1996) AICHE Journal , vol.42 , pp. 2797-2812
    • Dunia, R.1    Qin, S.J.2    Edgar, T.F.3    McAvoy, T.J.4
  • 29
    • 0030127409 scopus 로고    scopus 로고
    • Statistical process monitoring and disturbance diagnosis in multivariable continue processes
    • Raich A., Cinar A. Statistical process monitoring and disturbance diagnosis in multivariable continue processes. AICHE Journal 1996, 42:995-1009.
    • (1996) AICHE Journal , vol.42 , pp. 995-1009
    • Raich, A.1    Cinar, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.