메뉴 건너뛰기




Volumn 51, Issue 8, 2012, Pages 3356-3367

Development of interval soft sensors using enhanced just-in-time learning and inductive confidence predictor

Author keywords

[No Author keywords available]

Indexed keywords

CHEMICAL PROCESS; CONFIDENCE VALUES; INPUT VARIABLES; JUST-IN-TIME; JUST-IN-TIME LEARNING; MODELING METHOD; MULTI-MODEL ENSEMBLE; ONLINE ANALYZERS; OUTPUT DATA; SOFT SENSORS; TIME VARYING; WASTEWATER TREATMENT PROCESS;

EID: 84863278909     PISSN: 08885885     EISSN: 15205045     Source Type: Journal    
DOI: 10.1021/ie201053j     Document Type: Article
Times cited : (56)

References (34)
  • 1
    • 60649090799 scopus 로고    scopus 로고
    • Moving average PLS soft sensor for online product quality estimation in an industrial batch polymerization process
    • Facco, P.; Doplicher, F.; Bezzo, F.; Barolo, M. Moving average PLS soft sensor for online product quality estimation in an industrial batch polymerization process J. Process Control 2009, 19, 520
    • (2009) J. Process Control , vol.19 , pp. 520
    • Facco, P.1    Doplicher, F.2    Bezzo, F.3    Barolo, M.4
  • 3
    • 78449310514 scopus 로고    scopus 로고
    • Development of Self-Validating Soft Sensors Using Fast Moving Window Partial Least Squares
    • Liu, J.; Chen, D. S. Development of Self-Validating Soft Sensors Using Fast Moving Window Partial Least Squares Ind. Eng. Chem. Res. 2010, 49, 11530
    • (2010) Ind. Eng. Chem. Res. , vol.49 , pp. 11530
    • Liu, J.1    Chen, D.S.2
  • 5
    • 34250639021 scopus 로고    scopus 로고
    • Robustness of PARAFAC and N-PLS regression models in relation to homoscedastic and heteroscedastic noise
    • Khayamian, T. Robustness of PARAFAC and N-PLS regression models in relation to homoscedastic and heteroscedastic noise Chemom. Intell. Lab. Syst. 2007, 88, 35
    • (2007) Chemom. Intell. Lab. Syst. , vol.88 , pp. 35
    • Khayamian, T.1
  • 6
    • 11144284581 scopus 로고    scopus 로고
    • Soft sensors for product quality monitoring in debutanizer distillation columns
    • Fortuna, L.; Graziani, S.; Xibilia, M. G. Soft sensors for product quality monitoring in debutanizer distillation columns Control Eng. Pract. 2004, 13, 499
    • (2004) Control Eng. Pract. , vol.13 , pp. 499
    • Fortuna, L.1    Graziani, S.2    Xibilia, M.G.3
  • 7
    • 0032715981 scopus 로고    scopus 로고
    • Process monitoring and modeling using the self-organizing map
    • Alhoniemi, E. S. A. Process monitoring and modeling using the self-organizing map Integr. Comput.-Aided Eng. 1999, 6, 3
    • (1999) Integr. Comput.-Aided Eng. , vol.6 , pp. 3
    • Alhoniemi, E.S.A.1
  • 8
    • 2342567014 scopus 로고    scopus 로고
    • Soft sensing modeling based on support vector machine and Bayesian model selection
    • Yan, W.; Shao, H.; Wang, X. Soft sensing modeling based on support vector machine and Bayesian model selection Comput. Chem. Eng. 2004, 28, 1489
    • (2004) Comput. Chem. Eng. , vol.28 , pp. 1489
    • Yan, W.1    Shao, H.2    Wang, X.3
  • 9
    • 0032044750 scopus 로고    scopus 로고
    • Recursive PLS algorithms for adaptive data modeling
    • Qin, J. S. Recursive PLS algorithms for adaptive data modeling Comput. Chem. Eng. 1998, 22, 503
    • (1998) Comput. Chem. Eng. , vol.22 , pp. 503
    • Qin, J.S.1
  • 11
    • 0032625723 scopus 로고    scopus 로고
    • Lazy learning for local modeling and control design
    • Bontempi, G.; Birattari, M.; Bersini, H. Lazy learning for local modeling and control design Int. J. Control 1999, 72, 643
    • (1999) Int. J. Control , vol.72 , pp. 643
    • Bontempi, G.1    Birattari, M.2    Bersini, H.3
  • 12
    • 2942558590 scopus 로고    scopus 로고
    • A New Data-Based Methodology for Nonlinear Process Modeling
    • Cheng, C.; Chiu, M. S. A New Data-Based Methodology for Nonlinear Process Modeling Chem. Eng. Sci. 2004, 59, 2801
    • (2004) Chem. Eng. Sci. , vol.59 , pp. 2801
    • Cheng, C.1    Chiu, M.S.2
  • 13
    • 68049143320 scopus 로고    scopus 로고
    • Soft Sensor Development Using Correlation-Based Just-in-Time Modeling
    • Fujiwara, K.; Kano, M.; Hasebe, S.; Takinami, A. Soft Sensor Development Using Correlation-Based Just-in-Time Modeling AIChE J. 2009, 55, 1754
    • (2009) AIChE J. , vol.55 , pp. 1754
    • Fujiwara, K.1    Kano, M.2    Hasebe, S.3    Takinami, A.4
  • 15
    • 84898947879 scopus 로고    scopus 로고
    • Practical confidence and prediction intervals
    • MIT Press: Cambridge
    • Heskes, T. Practical confidence and prediction intervals. Advances in Neural Information Processing Systems 9; MIT Press: Cambridge, 1997; pp 176 - 182.
    • (1997) Advances in Neural Information Processing Systems 9 , pp. 176-182
    • Heskes, T.1
  • 21
    • 9944241272 scopus 로고    scopus 로고
    • Statistical and computational intelligence techniques for inferential model development: A comparative evaluation and a novel proposition for fusion
    • Warne, K.; Prasad, G.; Rezvani, S. Statistical and computational intelligence techniques for inferential model development: a comparative evaluation and a novel proposition for fusion Eng. Appl. Artif. Intell. 2004, 17, 871
    • (2004) Eng. Appl. Artif. Intell. , vol.17 , pp. 871
    • Warne, K.1    Prasad, G.2    Rezvani, S.3
  • 22
    • 41949124639 scopus 로고    scopus 로고
    • Can multi-model combination really enhance the prediction skill of probabilistic ensemble forecasts?
    • Weigel, A. P.; Liniger, M. A.; Appenzeller, C. Can multi-model combination really enhance the prediction skill of probabilistic ensemble forecasts? Q. J. R. Meteorol. Soc. 2008, 134, 241
    • (2008) Q. J. R. Meteorol. Soc. , vol.134 , pp. 241
    • Weigel, A.P.1    Liniger, M.A.2    Appenzeller, C.3
  • 23
    • 18844431843 scopus 로고    scopus 로고
    • Ensemble methods and partial least squares regression
    • Mevik, B. H.; Segtnan, V. H.; Næs, T. Ensemble methods and partial least squares regression J. Chem. 2004, 18, 498
    • (2004) J. Chem. , vol.18 , pp. 498
    • Mevik, B.H.1    Segtnan, V.H.2
  • 24
    • 34147222905 scopus 로고    scopus 로고
    • On-line soft sensor for polyethylene process with multiple production grades
    • Liu, J. On-line soft sensor for polyethylene process with multiple production grades Control Eng. Pract. 2007, 15, 769
    • (2007) Control Eng. Pract. , vol.15 , pp. 769
    • Liu, J.1
  • 28
    • 84863242063 scopus 로고    scopus 로고
    • Neural networks regression inductive conformal predictor and its application to total electron content prediction
    • In; Springer-Verlag: London
    • Papadopoulos, H.; Haralambous, H. Neural networks regression inductive conformal predictor and its application to total electron content prediction. In International Conference of Artificial Neural Networks (ICANN'2010); Springer-Verlag: London, 2010; p 6352.
    • (2010) International Conference of Artificial Neural Networks (ICANN'2010) , pp. 6352
    • Papadopoulos, H.1    Haralambous, H.2
  • 29
    • 0030127409 scopus 로고
    • Statistical process monitoring and disturbance diagnosis in multivariable continue processes
    • Raich, A.; Cinar, A. Statistical process monitoring and disturbance diagnosis in multivariable continue processes AIChE J. 1994, 42, 995
    • (1994) AIChE J. , vol.42 , pp. 995
    • Raich, A.1    Cinar, A.2
  • 34
    • 0036466543 scopus 로고    scopus 로고
    • Robust regulation of a class of partially observed nonlinear continuous bioreactors
    • Rapaport, A.; Harmand, J. Robust regulation of a class of partially observed nonlinear continuous bioreactors J. Process Control 2002, 12, 291
    • (2002) J. Process Control , vol.12 , pp. 291
    • Rapaport, A.1    Harmand, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.