메뉴 건너뛰기




Volumn 37, Issue 2, 2015, Pages 175-181

Does RNA editing compensate for Alu invasion of the primate genome?

Author keywords

Alu repeat; DsRNA; Primate evolution; RNA editing

Indexed keywords

RNA; TRANSCRIPTOME; ADENOSINE DEAMINASE;

EID: 84921508618     PISSN: 02659247     EISSN: 15211878     Source Type: Journal    
DOI: 10.1002/bies.201400163     Document Type: Article
Times cited : (18)

References (77)
  • 1
    • 84886865162 scopus 로고    scopus 로고
    • Deciphering the functions and regulation of brain-enriched A-to-I RNA editing
    • Li JB, Church GM. 2013. Deciphering the functions and regulation of brain-enriched A-to-I RNA editing. Nat Neurosci 16: 1518-22.
    • (2013) Nat Neurosci , vol.16 , pp. 1518-1522
    • Li, J.B.1    Church, G.M.2
  • 3
    • 77952293063 scopus 로고    scopus 로고
    • Functions and regulation of RNA editing by ADAR deaminases
    • Nishikura K. 2010. Functions and regulation of RNA editing by ADAR deaminases. Annu Rev Biochem 79: 321-9.
    • (2010) Annu Rev Biochem , vol.79 , pp. 321-329
    • Nishikura, K.1
  • 4
    • 0034078399 scopus 로고    scopus 로고
    • A third member of the RNA-specific adenosine deaminase gene family, ADAR3, contains both single- and double-stranded RNA binding domains
    • Chen CX, Cho DS, Wang Q, Lai F, et al. 2000. A third member of the RNA-specific adenosine deaminase gene family, ADAR3, contains both single- and double-stranded RNA binding domains. RNA 6: 755-67.
    • (2000) RNA , vol.6 , pp. 755-767
    • Chen, C.X.1    Cho, D.S.2    Wang, Q.3    Lai, F.4
  • 5
    • 0035997389 scopus 로고    scopus 로고
    • RNA editing by adenosine deaminases that act on RNA
    • Bass BL. 2002. RNA editing by adenosine deaminases that act on RNA. Annu Rev Biochem 71: 817-46.
    • (2002) Annu Rev Biochem , vol.71 , pp. 817-846
    • Bass, B.L.1
  • 6
    • 84873414540 scopus 로고    scopus 로고
    • Identifying RNA editing sites using RNA sequencing data alone
    • Ramaswami G, Zhang R, Piskol R, Keegan LP, et al. 2013. Identifying RNA editing sites using RNA sequencing data alone. Nat Methods 10: 128-32.
    • (2013) Nat Methods , vol.10 , pp. 128-132
    • Ramaswami, G.1    Zhang, R.2    Piskol, R.3    Keegan, L.P.4
  • 7
    • 84887476291 scopus 로고    scopus 로고
    • Genome-wide analysis of A-to-I RNA editing by single-molecule sequencing in Drosophila
    • St Laurent G, Tackett MR, Nechkin S, Shtokalo D, et al. 2013. Genome-wide analysis of A-to-I RNA editing by single-molecule sequencing in Drosophila. Nat Struct Mol Biol 20: 1333-9.
    • (2013) Nat Struct Mol Biol , vol.20 , pp. 1333-1339
    • St Laurent, G.1    Tackett, M.R.2    Nechkin, S.3    Shtokalo, D.4
  • 8
    • 84891670616 scopus 로고    scopus 로고
    • Mammalian conserved ADAR targets comprise only a small fragment of the human editosome
    • Pinto Y, Cohen HY, Levanon EY. 2014. Mammalian conserved ADAR targets comprise only a small fragment of the human editosome. Genome Biol 15: R5.
    • (2014) Genome Biol , vol.15 , pp. R5
    • Pinto, Y.1    Cohen, H.Y.2    Levanon, E.Y.3
  • 9
    • 66349122954 scopus 로고    scopus 로고
    • Genome-wide identification of human RNA editing sites by parallel DNA capturing and sequencing
    • Li JB, Levanon EY, Yoon J-K, Aach J, et al. 2009. Genome-wide identification of human RNA editing sites by parallel DNA capturing and sequencing. Science 324: 1210-3.
    • (2009) Science , vol.324 , pp. 1210-1213
    • Li, J.B.1    Levanon, E.Y.2    Yoon, J.-K.3    Aach, J.4
  • 10
    • 0042528670 scopus 로고    scopus 로고
    • Nervous system targets of RNA editing identified by comparative genomics
    • Hoopengardner B, Bhalla T, Staber C, Reenan R. 2003. Nervous system targets of RNA editing identified by comparative genomics. Science 301: 832-6.
    • (2003) Science , vol.301 , pp. 832-836
    • Hoopengardner, B.1    Bhalla, T.2    Staber, C.3    Reenan, R.4
  • 11
    • 30044443191 scopus 로고    scopus 로고
    • Modulation of microRNA processing and expression through RNA editing by ADAR deaminases
    • Yang W, Chendrimada TP, Wang Q, Higuchi M, et al. 2006. Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat Struct Mol Biol 13: 13-21.
    • (2006) Nat Struct Mol Biol , vol.13 , pp. 13-21
    • Yang, W.1    Chendrimada, T.P.2    Wang, Q.3    Higuchi, M.4
  • 12
    • 33847317017 scopus 로고    scopus 로고
    • Redirection of silencing targets by adenosine-to-inosine editing of miRNAs
    • Kawahara Y, Zinshteyn B, Sethupathy P, Iizasa H, et al. 2007. Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science 315: 1137-40.
    • (2007) Science , vol.315 , pp. 1137-1140
    • Kawahara, Y.1    Zinshteyn, B.2    Sethupathy, P.3    Iizasa, H.4
  • 13
    • 84864591239 scopus 로고    scopus 로고
    • Systematic identification of edited microRNAs in the human brain
    • Alon S, Mor E, Vigneault F, Church GM, et al. 2012. Systematic identification of edited microRNAs in the human brain. Genome Res 22: 1533-40.
    • (2012) Genome Res , vol.22 , pp. 1533-1540
    • Alon, S.1    Mor, E.2    Vigneault, F.3    Church, G.M.4
  • 15
    • 84908156465 scopus 로고    scopus 로고
    • Conserved microRNA editing in mammalian evolution, development and disease
    • Warnefors M, Liechti A, Halbert J, Valloton D, et al. 2014. Conserved microRNA editing in mammalian evolution, development and disease. Genome Biol 15: R83.
    • (2014) Genome Biol , vol.15 , pp. R83
    • Warnefors, M.1    Liechti, A.2    Halbert, J.3    Valloton, D.4
  • 16
    • 66449129109 scopus 로고    scopus 로고
    • Large-scale mRNA sequencing determines global regulation of RNA editing during brain development
    • Wahlstedt H, Daniel C, Enstero M, Ohman M. 2009. Large-scale mRNA sequencing determines global regulation of RNA editing during brain development. Genome Res 19: 978-86.
    • (2009) Genome Res , vol.19 , pp. 978-986
    • Wahlstedt, H.1    Daniel, C.2    Enstero, M.3    Ohman, M.4
  • 17
    • 79952073022 scopus 로고    scopus 로고
    • Consistent levels of A-to-I RNA editing across individuals in coding sequences and non-conserved Alu repeats
    • Greenberger S, Levanon EY, Paz-Yaacov N, Barzilai A, et al. 2010. Consistent levels of A-to-I RNA editing across individuals in coding sequences and non-conserved Alu repeats. BMC Genomics 11: 608.
    • (2010) BMC Genomics , vol.11 , pp. 608
    • Greenberger, S.1    Levanon, E.Y.2    Paz-Yaacov, N.3    Barzilai, A.4
  • 18
    • 84888866436 scopus 로고    scopus 로고
    • Adenosine-to-inosine RNA editing and human disease
    • Slotkin W, Nishikura K. 2013. Adenosine-to-inosine RNA editing and human disease. Genome Med 5: 105.
    • (2013) Genome Med , vol.5 , pp. 105
    • Slotkin, W.1    Nishikura, K.2
  • 19
    • 84855255195 scopus 로고    scopus 로고
    • ADARs: Allies or enemies? The importance of A-to-I RNA editing in human disease: From cancer to HIV-1
    • Gallo A, Locatelli F. 2012. ADARs: Allies or enemies? The importance of A-to-I RNA editing in human disease: From cancer to HIV-1. Biol Rev Camb Philos Soc 87: 95-110.
    • (2012) Biol Rev Camb Philos Soc , vol.87 , pp. 95-110
    • Gallo, A.1    Locatelli, F.2
  • 20
    • 34247372269 scopus 로고    scopus 로고
    • Editing modifies the GABA(A) receptor subunit alpha3
    • Ohlson J, Pedersen JS, Haussler D, Ohman M. 2007. Editing modifies the GABA(A) receptor subunit alpha3. RNA 13: 698-703.
    • (2007) RNA , vol.13 , pp. 698-703
    • Ohlson, J.1    Pedersen, J.S.2    Haussler, D.3    Ohman, M.4
  • 21
    • 14844348294 scopus 로고    scopus 로고
    • Evolutionarily conserved human targets of adenosine to inosine RNA editing
    • Levanon EY, Hallegger M, Kinar Y, Shemesh R, et al. 2005. Evolutionarily conserved human targets of adenosine to inosine RNA editing. Nucleic Acids Res 33: 1162-8.
    • (2005) Nucleic Acids Res , vol.33 , pp. 1162-1168
    • Levanon, E.Y.1    Hallegger, M.2    Kinar, Y.3    Shemesh, R.4
  • 22
    • 12344300804 scopus 로고    scopus 로고
    • Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome
    • Athanasiadis A, Rich A, Maas S. 2004. Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. PLoS Biol 2: e391.
    • (2004) PLoS Biol , vol.2 , pp. e391
    • Athanasiadis, A.1    Rich, A.2    Maas, S.3
  • 23
    • 4644324088 scopus 로고    scopus 로고
    • Widespread RNA editing of embedded alu elements in the human transcriptome
    • Kim DDY, Kim TTY, Walsh T, Kobayashi Y, et al. 2004. Widespread RNA editing of embedded alu elements in the human transcriptome. Genome Res 14: 1719-25.
    • (2004) Genome Res , vol.14 , pp. 1719-1725
    • Kim, D.D.Y.1    Kim, T.T.Y.2    Walsh, T.3    Kobayashi, Y.4
  • 24
    • 3543004084 scopus 로고    scopus 로고
    • Systematic identification of abundant A-to-I editing sites in the human transcriptome
    • Levanon EY, Eisenberg E, Yelin R, Nemzer S, et al. 2004. Systematic identification of abundant A-to-I editing sites in the human transcriptome. Nat Biotechnol 22: 1001-5.
    • (2004) Nat Biotechnol , vol.22 , pp. 1001-1005
    • Levanon, E.Y.1    Eisenberg, E.2    Yelin, R.3    Nemzer, S.4
  • 26
    • 84895535383 scopus 로고    scopus 로고
    • A-to-I RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes
    • Bazak L, Haviv A, Barak M, Jacob-Hirsch J, et al. 2014. A-to-I RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes. Genome Res 24: 365-76.
    • (2014) Genome Res , vol.24 , pp. 365-376
    • Bazak, L.1    Haviv, A.2    Barak, M.3    Jacob-Hirsch, J.4
  • 27
    • 0021127698 scopus 로고
    • Alu sequences are processed 7SL RNA genes
    • Ullu E, Tschudi C. 1984. Alu sequences are processed 7SL RNA genes. Nature 312: 171-2.
    • (1984) Nature , vol.312 , pp. 171-172
    • Ullu, E.1    Tschudi, C.2
  • 28
    • 0036250811 scopus 로고    scopus 로고
    • Alu repeats and human genomic diversity
    • Batzer MA, Deininger PL. 2002. Alu repeats and human genomic diversity. Nat Rev Genet 3: 370-9.
    • (2002) Nat Rev Genet , vol.3 , pp. 370-379
    • Batzer, M.A.1    Deininger, P.L.2
  • 29
    • 33749256772 scopus 로고    scopus 로고
    • RNA editing level in the mouse is determined by the genomic repeat repertoire
    • Neeman Y, Levanon EY, Jantsch MF, Eisenberg E. 2006. RNA editing level in the mouse is determined by the genomic repeat repertoire. RNA 12: 1802-9.
    • (2006) RNA , vol.12 , pp. 1802-1809
    • Neeman, Y.1    Levanon, E.Y.2    Jantsch, M.F.3    Eisenberg, E.4
  • 30
    • 77953752896 scopus 로고    scopus 로고
    • Sequence based identification of RNA editing sites
    • Eisenberg E, Li JB, Levanon EY. 2010. Sequence based identification of RNA editing sites. RNA Biol 7: 248-52.
    • (2010) RNA Biol , vol.7 , pp. 248-252
    • Eisenberg, E.1    Li, J.B.2    Levanon, E.Y.3
  • 31
    • 84858328300 scopus 로고    scopus 로고
    • Comment on "Widespread RNA and DNA sequence differences in the human transcriptome
    • author reply 1302.
    • Pickrell JK, Gilad Y, Pritchard JK, Kleinman CL, et al. 2012. Comment on "Widespread RNA and DNA sequence differences in the human transcriptome". Science 335: 1302; author reply 1302.
    • (2012) Science , vol.335 , pp. 1302
    • Pickrell, J.K.1    Gilad, Y.2    Pritchard, J.K.3    Kleinman, C.L.4
  • 32
    • 84858311187 scopus 로고    scopus 로고
    • Comment on "Widespread RNA and DNA sequence differences in the human transcriptome
    • author reply 1302.
    • Lin W, Piskol R, Tan MH, Li JB. 2012. Comment on "Widespread RNA and DNA sequence differences in the human transcriptome". Science 335: 1302; author reply 1302.
    • (2012) Science , vol.335 , pp. 1302
    • Lin, W.1    Piskol, R.2    Tan, M.H.3    Li, J.B.4
  • 33
    • 84858328300 scopus 로고    scopus 로고
    • Comment on "Widespread RNA and DNA sequence differences in the human transcriptome
    • author reply 1302.
    • Kleinman CL, Majewski J. 2012. Comment on "Widespread RNA and DNA sequence differences in the human transcriptome". Science 335: 1302; author reply 1302.
    • (2012) Science , vol.335 , pp. 1302
    • Kleinman, C.L.1    Majewski, J.2
  • 34
    • 84855320189 scopus 로고    scopus 로고
    • Accurate identification of A-to-I RNA editing in human by transcriptome sequencing
    • Bahn JH, Lee J-H, Li G, Greer C, et al. 2012. Accurate identification of A-to-I RNA editing in human by transcriptome sequencing. Genome Res 22: 142-50.
    • (2012) Genome Res , vol.22 , pp. 142-150
    • Bahn, J.H.1    Lee, J.-H.2    Li, G.3    Greer, C.4
  • 36
    • 84863229628 scopus 로고    scopus 로고
    • Comprehensive analysis of RNA-seq data reveals extensive RNA editing in a human transcriptome
    • Peng Z, Cheng Y, Tan BC-M, Kang L, et al. 2012. Comprehensive analysis of RNA-seq data reveals extensive RNA editing in a human transcriptome. Nat Biotechnol 30: 253-60.
    • (2012) Nat Biotechnol , vol.30 , pp. 253-260
    • Peng, Z.1    Cheng, Y.2    Tan, B.-M.3    Kang, L.4
  • 37
    • 84861970552 scopus 로고    scopus 로고
    • Accurate identification of human Alu and non-Alu RNA editing sites
    • Ramaswami G, Lin W, Piskol R, Tan MH, et al. 2012. Accurate identification of human Alu and non-Alu RNA editing sites. Nat Methods 9: 579-81.
    • (2012) Nat Methods , vol.9 , pp. 579-581
    • Ramaswami, G.1    Lin, W.2    Piskol, R.3    Tan, M.H.4
  • 38
    • 84907361822 scopus 로고    scopus 로고
    • A genome-wide map of hyper-edited RNA reveals numerous new sites
    • Porath HT, Carmi S, Levanon EY. 2014. A genome-wide map of hyper-edited RNA reveals numerous new sites. Nat Commun 5: 4726.
    • (2014) Nat Commun , vol.5 , pp. 4726
    • Porath, H.T.1    Carmi, S.2    Levanon, E.Y.3
  • 39
    • 84872564405 scopus 로고    scopus 로고
    • Transcriptome-wide identification of A > I RNA editing sites by inosine specific cleavage
    • Cattenoz PB, Taft RJ, Westhof E, Mattick JS. 2013. Transcriptome-wide identification of A > I RNA editing sites by inosine specific cleavage. RNA 19: 257-70.
    • (2013) RNA , vol.19 , pp. 257-270
    • Cattenoz, P.B.1    Taft, R.J.2    Westhof, E.3    Mattick, J.S.4
  • 40
    • 84895523999 scopus 로고    scopus 로고
    • A biochemical landscape of A-to-I RNA editing in the human brain transcriptome
    • Sakurai M, Ueda H, Yano T, Okada S, et al. 2014. A biochemical landscape of A-to-I RNA editing in the human brain transcriptome. Genome Res 24: 522-34.
    • (2014) Genome Res , vol.24 , pp. 522-534
    • Sakurai, M.1    Ueda, H.2    Yano, T.3    Okada, S.4
  • 41
    • 84891797364 scopus 로고    scopus 로고
    • RADAR: A rigorously annotated database of A-to-I RNA editing
    • Ramaswami G, Li JB. 2014. RADAR: A rigorously annotated database of A-to-I RNA editing. Nucleic Acids Res 42: D109-13.
    • (2014) Nucleic Acids Res , vol.42 , pp. D109-D113
    • Ramaswami, G.1    Li, J.B.2
  • 42
    • 84865757142 scopus 로고    scopus 로고
    • Landscape of transcription in human cells
    • Djebali S, Davis CA, Merkel A, Dobin A, et al. 2012. Landscape of transcription in human cells. Nature 489: 101-8.
    • (2012) Nature , vol.489 , pp. 101-108
    • Djebali, S.1    Davis, C.A.2    Merkel, A.3    Dobin, A.4
  • 43
    • 84891670616 scopus 로고    scopus 로고
    • Mammalian conserved ADAR targets comprise only a small fragment of the human editosome
    • Pinto Y, Cohen HY, Levanon EY. 2014. Mammalian conserved ADAR targets comprise only a small fragment of the human editosome. Genome Biol 15: R5.
    • (2014) Genome Biol , vol.15 , pp. R5
    • Pinto, Y.1    Cohen, H.Y.2    Levanon, E.Y.3
  • 44
    • 33845315229 scopus 로고    scopus 로고
    • Editor meets silencer: Crosstalk between RNA editing and RNA interference
    • Nishikura K. 2006. Editor meets silencer: Crosstalk between RNA editing and RNA interference. Nat Rev Mol Cell Biol 7: 919-31.
    • (2006) Nat Rev Mol Cell Biol , vol.7 , pp. 919-931
    • Nishikura, K.1
  • 45
    • 84902143592 scopus 로고    scopus 로고
    • An RNA editor, adenosine deaminase acting on double-stranded RNA (ADAR1)
    • George CX, John L, Samuel CE. 2014. An RNA editor, adenosine deaminase acting on double-stranded RNA (ADAR1). J Interferon Cytokine Res 34: 437-46.
    • (2014) J Interferon Cytokine Res , vol.34 , pp. 437-446
    • George, C.X.1    John, L.2    Samuel, C.E.3
  • 46
    • 0037711199 scopus 로고    scopus 로고
    • The dsRNA binding protein family: Critical roles, diverse cellular functions
    • Saunders LR, Barber GN. 2003. The dsRNA binding protein family: Critical roles, diverse cellular functions. FASEB J 17: 961-83.
    • (2003) FASEB J , vol.17 , pp. 961-983
    • Saunders, L.R.1    Barber, G.N.2
  • 47
    • 0023666074 scopus 로고
    • A developmentally regulated activity that unwinds RNA duplexes
    • Bass BL, Weintraub H. 1987. A developmentally regulated activity that unwinds RNA duplexes. Cell 48: 607-13.
    • (1987) Cell , vol.48 , pp. 607-613
    • Bass, B.L.1    Weintraub, H.2
  • 48
    • 0024233053 scopus 로고
    • An unwinding activity that covalently modifies its double-stranded RNA substrate
    • Bass BL, Weintraub H. 1988. An unwinding activity that covalently modifies its double-stranded RNA substrate. Cell 55: 1089-98.
    • (1988) Cell , vol.55 , pp. 1089-1098
    • Bass, B.L.1    Weintraub, H.2
  • 49
    • 12344290084 scopus 로고    scopus 로고
    • Is abundant A-to-I RNA editing primate-specific
    • Eisenberg E, Nemzer S, Kinar Y, Sorek R, et al. 2005. Is abundant A-to-I RNA editing primate-specific? Trends Genet 21: 77-81.
    • (2005) Trends Genet , vol.21 , pp. 77-81
    • Eisenberg, E.1    Nemzer, S.2    Kinar, Y.3    Sorek, R.4
  • 50
    • 84887617987 scopus 로고    scopus 로고
    • ADAR regulates RNA editing, transcript stability, and gene expression
    • Wang IX, So E, Devlin JL, Zhao Y, et al. 2013. ADAR regulates RNA editing, transcript stability, and gene expression. Cell Rep 5: 849-60.
    • (2013) Cell Rep , vol.5 , pp. 849-860
    • Wang, I.X.1    So, E.2    Devlin, J.L.3    Zhao, Y.4
  • 51
  • 52
    • 44149094073 scopus 로고    scopus 로고
    • Specificity of ADAR-mediated RNA editing in newly identified targets
    • Riedmann EM, Schopoff S, Hartner JC, Jantsch MF. 2008. Specificity of ADAR-mediated RNA editing in newly identified targets. RNA 14: 1110-8.
    • (2008) RNA , vol.14 , pp. 1110-1118
    • Riedmann, E.M.1    Schopoff, S.2    Hartner, J.C.3    Jantsch, M.F.4
  • 53
    • 57349192059 scopus 로고    scopus 로고
    • Newly identified ADAR-mediated A-to-I editing positions as a tool for ALS research
    • Kwak S, Nishimoto Y, Yamashita T. 2008. Newly identified ADAR-mediated A-to-I editing positions as a tool for ALS research. RNA Biol 5: 193-7.
    • (2008) RNA Biol , vol.5 , pp. 193-197
    • Kwak, S.1    Nishimoto, Y.2    Yamashita, T.3
  • 54
    • 0030916712 scopus 로고    scopus 로고
    • Regulation of serotonin-2C receptor G-protein coupling by RNA editing
    • Burns CM, Chu H, Rueter SM, Hutchinson LK, et al. 1997. Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature 387: 303-8.
    • (1997) Nature , vol.387 , pp. 303-308
    • Burns, C.M.1    Chu, H.2    Rueter, S.M.3    Hutchinson, L.K.4
  • 55
    • 42749096310 scopus 로고    scopus 로고
    • Determination of editors at the novel A-to-I editing positions
    • Nishimoto Y, Yamashita T, Hideyama T, Tsuji S, et al. 2008. Determination of editors at the novel A-to-I editing positions. Neurosci Res 61: 201-6.
    • (2008) Neurosci Res , vol.61 , pp. 201-206
    • Nishimoto, Y.1    Yamashita, T.2    Hideyama, T.3    Tsuji, S.4
  • 57
    • 4744347763 scopus 로고    scopus 로고
    • Control of human potassium channel inactivation by editing of a small mRNA hairpin
    • Bhalla T, Rosenthal JJ, Holmgren M, Reenan R. 2004. Control of human potassium channel inactivation by editing of a small mRNA hairpin. Nat Struct Mol Biol 11: 950-6.
    • (2004) Nat Struct Mol Biol , vol.11 , pp. 950-956
    • Bhalla, T.1    Rosenthal, J.J.2    Holmgren, M.3    Reenan, R.4
  • 58
    • 84874618556 scopus 로고    scopus 로고
    • A high-throughput screen to identify enhancers of ADAR-mediated RNA-editing
    • Garncarz W, Tariq A, Handl C, Pusch O, et al. 2013. A high-throughput screen to identify enhancers of ADAR-mediated RNA-editing. RNA Biol 10: 192-204.
    • (2013) RNA Biol , vol.10 , pp. 192-204
    • Garncarz, W.1    Tariq, A.2    Handl, C.3    Pusch, O.4
  • 59
    • 33646247399 scopus 로고    scopus 로고
    • Estimating the retrotransposition rate of human Alu elements
    • Cordaux R, Hedges DJ, Herke SW, Batzer MA. 2006. Estimating the retrotransposition rate of human Alu elements. Gene 373: 134-7.
    • (2006) Gene , vol.373 , pp. 134-137
    • Cordaux, R.1    Hedges, D.J.2    Herke, S.W.3    Batzer, M.A.4
  • 60
    • 80053564717 scopus 로고    scopus 로고
    • Exonization of transposed elements: A challenge and opportunity for evolution
    • Schmitz J, Brosius J. 2011. Exonization of transposed elements: A challenge and opportunity for evolution. Biochimie 93: 1928-34.
    • (2011) Biochimie , vol.93 , pp. 1928-1934
    • Schmitz, J.1    Brosius, J.2
  • 61
    • 0038701605 scopus 로고    scopus 로고
    • The birth of an alternatively spliced exon: 3′ splice-site selection in Alu exons
    • Lev-Maor G, Sorek R, Shomron N, Ast G. 2003. The birth of an alternatively spliced exon: 3′ splice-site selection in Alu exons. Science 300: 1288-91.
    • (2003) Science , vol.300 , pp. 1288-1291
    • Lev-Maor, G.1    Sorek, R.2    Shomron, N.3    Ast, G.4
  • 62
    • 34748869000 scopus 로고    scopus 로고
    • Comparative analysis of transposed element insertion within human and mouse genomes reveals Alu's unique role in shaping the human transcriptome
    • Sela N, Mersch B, Gal-Mark N, Lev-Maor G, et al. 2007. Comparative analysis of transposed element insertion within human and mouse genomes reveals Alu's unique role in shaping the human transcriptome. Genome Biol 8: R127.
    • (2007) Genome Biol , vol.8 , pp. R127
    • Sela, N.1    Mersch, B.2    Gal-Mark, N.3    Lev-Maor, G.4
  • 64
    • 84896707317 scopus 로고    scopus 로고
    • Alu elements shape the primate transcriptome by cis-regulation of RNA editing
    • Daniel C, Silberberg G, Behm M, Ohman M. 2014. Alu elements shape the primate transcriptome by cis-regulation of RNA editing. Genome Biol 15: R28.
    • (2014) Genome Biol , vol.15 , pp. R28
    • Daniel, C.1    Silberberg, G.2    Behm, M.3    Ohman, M.4
  • 65
    • 33748577987 scopus 로고    scopus 로고
    • Alu elements within human mRNAs are probable microRNA targets
    • Smalheiser NR, Torvik VI. 2006. Alu elements within human mRNAs are probable microRNA targets. Trends Genet 22: 532-6.
    • (2006) Trends Genet , vol.22 , pp. 532-536
    • Smalheiser, N.R.1    Torvik, V.I.2
  • 66
    • 33947719472 scopus 로고    scopus 로고
    • Hypothesis: RNA editing of microRNA target sites in humans
    • Liang H, Landweber LF. 2007. Hypothesis: RNA editing of microRNA target sites in humans? RNA 13: 463-7.
    • (2007) RNA , vol.13 , pp. 463-467
    • Liang, H.1    Landweber, L.F.2
  • 67
    • 84875612231 scopus 로고    scopus 로고
    • The majority of endogenous microRNA targets within Alu elements avoid the microRNA machinery
    • Hoffman Y, Dahary D, Bublik DR, Oren M, et al. 2013. The majority of endogenous microRNA targets within Alu elements avoid the microRNA machinery. Bioinformatics 29: 894-902.
    • (2013) Bioinformatics , vol.29 , pp. 894-902
    • Hoffman, Y.1    Dahary, D.2    Bublik, D.R.3    Oren, M.4
  • 68
    • 77956341106 scopus 로고    scopus 로고
    • Double-stranded RNAs containing multiple IU pairs are sufficient to suppress interferon induction and apoptosis
    • Vitali P, Scadden ADJ. 2010. Double-stranded RNAs containing multiple IU pairs are sufficient to suppress interferon induction and apoptosis. Nat Struct Mol Biol 17: 1043-50.
    • (2010) Nat Struct Mol Biol , vol.17 , pp. 1043-1050
    • Vitali, P.1    Scadden, A.D.J.2
  • 69
    • 26844440157 scopus 로고    scopus 로고
    • Regulating gene expression through RNA nuclear retention
    • Prasanth KV, Prasanth SG, Xuan Z, Hearn S, et al. 2005. Regulating gene expression through RNA nuclear retention. Cell 123: 249-63.
    • (2005) Cell , vol.123 , pp. 249-263
    • Prasanth, K.V.1    Prasanth, S.G.2    Xuan, Z.3    Hearn, S.4
  • 70
    • 0035943347 scopus 로고    scopus 로고
    • The fate of dsRNA in the nucleus: A p54(nrb)-containing complex mediates the nuclear retention of promiscuously A-to-I edited RNAs
    • Zhang Z, Carmichael GG. 2001. The fate of dsRNA in the nucleus: A p54(nrb)-containing complex mediates the nuclear retention of promiscuously A-to-I edited RNAs. Cell 106: 465-75.
    • (2001) Cell , vol.106 , pp. 465-475
    • Zhang, Z.1    Carmichael, G.G.2
  • 71
    • 0033529064 scopus 로고    scopus 로고
    • Regulation of alternative splicing by RNA editing
    • Rueter SM, Dawson TR, Emeson RB. 1999. Regulation of alternative splicing by RNA editing. Nature 399: 75-80.
    • (1999) Nature , vol.399 , pp. 75-80
    • Rueter, S.M.1    Dawson, T.R.2    Emeson, R.B.3
  • 72
    • 69049093856 scopus 로고    scopus 로고
    • Widespread cleavage of A-to-I hyperediting substrates
    • Osenberg S, Dominissini D, Rechavi G, Eisenberg E. 2009. Widespread cleavage of A-to-I hyperediting substrates. RNA 15: 1632-9.
    • (2009) RNA , vol.15 , pp. 1632-1639
    • Osenberg, S.1    Dominissini, D.2    Rechavi, G.3    Eisenberg, E.4
  • 73
    • 84889242806 scopus 로고    scopus 로고
    • RNA editing regulates transposon-mediated heterochromatic gene silencing
    • Savva YA, Jepson JEC, Chang Y-J, Whitaker R, et al. 2013. RNA editing regulates transposon-mediated heterochromatic gene silencing. Nat Commun 4: 2745.
    • (2013) Nat Commun , vol.4 , pp. 2745
    • Savva, Y.A.1    Jepson, J.E.C.2    Chang, Y.-J.3    Whitaker, R.4
  • 74
    • 73349105307 scopus 로고    scopus 로고
    • Evidence for large diversity in the human transcriptome created by Alu RNA editing
    • Barak M, Levanon EY, Eisenberg E, Paz N, et al. 2009. Evidence for large diversity in the human transcriptome created by Alu RNA editing. Nucleic Acids Res 37: 6905-15.
    • (2009) Nucleic Acids Res , vol.37 , pp. 6905-6915
    • Barak, M.1    Levanon, E.Y.2    Eisenberg, E.3    Paz, N.4
  • 75
    • 0034625260 scopus 로고    scopus 로고
    • Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity
    • Schmucker D, Clemens JC, Shu H, Worby CA, et al. 2000. Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell 101: 671-84.
    • (2000) Cell , vol.101 , pp. 671-684
    • Schmucker, D.1    Clemens, J.C.2    Shu, H.3    Worby, C.A.4
  • 76
    • 77955455395 scopus 로고    scopus 로고
    • Adenosine-to-inosine RNA editing shapes transcriptome diversity in primates
    • Paz-Yaacov N, Levanon EY, Nevo E, Kinar Y, et al. 2010. Adenosine-to-inosine RNA editing shapes transcriptome diversity in primates. Proc Natl Acad Sci USA 107: 12174-9.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 12174-12179
    • Paz-Yaacov, N.1    Levanon, E.Y.2    Nevo, E.3    Kinar, Y.4
  • 77
    • 43049105810 scopus 로고    scopus 로고
    • RNA editing, DNA recoding and the evolution of human cognition
    • Mattick JS, Mehler MF. 2008. RNA editing, DNA recoding and the evolution of human cognition. Trends Neurosci 31: 227-33.
    • (2008) Trends Neurosci , vol.31 , pp. 227-233
    • Mattick, J.S.1    Mehler, M.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.