메뉴 건너뛰기




Volumn 7, Issue 1, 2015, Pages

The blood–brain barrier

Author keywords

[No Author keywords available]

Indexed keywords

ASTROCYTE; BASEMENT MEMBRANE; BLOOD BRAIN BARRIER; CENTRAL NERVOUS SYSTEM DISEASE; CYTOLOGY; ENDOTHELIUM CELL; HOMEOSTASIS; HUMAN; METABOLISM; PATHOPHYSIOLOGY; PHYSIOLOGY; TIGHT JUNCTION; VASCULAR SMOOTH MUSCLE;

EID: 84920528714     PISSN: None     EISSN: 19430264     Source Type: Journal    
DOI: 10.1101/cshperspect.a020412     Document Type: Article
Times cited : (2163)

References (156)
  • 2
    • 29244463365 scopus 로고    scopus 로고
    • Astrocyte–endo-thelial interactions at the blood–brain barrier
    • Abbott NJ, Ronnback L, Hansson E. 2006. Astrocyte–endo-thelial interactions at the blood–brain barrier. Nat Rev Neurosci 7: 41–53.
    • (2006) Nat Rev Neurosci , vol.7 , pp. 41-53
    • Abbott, N.J.1    Ronnback, L.2    Hansson, E.3
  • 3
    • 33645869560 scopus 로고    scopus 로고
    • Dystroglycan is selectively cleaved at the parenchymal basement membrane at sites of leukocyte extravasation in experimental autoimmune encephalomyelitis
    • Agrawal S, Anderson P, Durbeej M, van Rooijen N, Ivars F, Opdenakker G, Sorokin LM. 2006. Dystroglycan is selectively cleaved at the parenchymal basement membrane at sites of leukocyte extravasation in experimental autoimmune encephalomyelitis. J Exp Med 203: 1007–1019.
    • (2006) J Exp Med , vol.203 , pp. 1007-1019
    • Agrawal, S.1    Anderson, P.2    Durbeej, M.3    Van Rooijen, N.4    Ivars, F.5    Opdenakker, G.6    Sorokin, L.M.7
  • 4
    • 33846849237 scopus 로고    scopus 로고
    • Phenotypic heterogeneity of the endothe-lium: II. Representative vascular beds
    • Aird WC. 2007a. Phenotypic heterogeneity of the endothe-lium: II. Representative vascular beds. Circ Res 100: 174–190.
    • (2007) Circ Res , vol.100 , pp. 174-190
    • Aird, W.C.1
  • 5
    • 33846798106 scopus 로고    scopus 로고
    • Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms
    • Aird WC. 2007b. Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res 100: 158–173.
    • (2007) Circ Res , vol.100 , pp. 158-173
    • Aird, W.C.1
  • 6
    • 36448994709 scopus 로고    scopus 로고
    • Local self-renewal can sustain CNS microglia maintenance and function throughout adult life
    • Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM. 2007. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10: 1538–1543.
    • (2007) Nat Neurosci , vol.10 , pp. 1538-1543
    • Ajami, B.1    Bennett, J.L.2    Krieger, C.3    Tetzlaff, W.4    Rossi, F.M.5
  • 8
    • 78650173611 scopus 로고    scopus 로고
    • Disruption of central nervous system barriers in multiple sclerosis
    • Alvarez JI, Cayrol R, Prat A. 2011b. Disruption of central nervous system barriers in multiple sclerosis. Biochim Biophys Acta 1812: 252–264.
    • (2011) Biochim Biophys Acta , vol.1812 , pp. 252-264
    • Alvarez, J.I.1    Cayrol, R.2    Prat, A.3
  • 9
    • 84886641249 scopus 로고    scopus 로고
    • Glial influence on the blood brain barrier
    • Alvarez JI, Katayama T, Prat A. 2013. Glial influence on the blood brain barrier. Glia 61: 1939–1958.
    • (2013) Glia , vol.61 , pp. 1939-1958
    • Alvarez, J.I.1    Katayama, T.2    Prat, A.3
  • 11
    • 60649108674 scopus 로고    scopus 로고
    • VEGF-mediated disruption of endothelial CLN-5 promotes blood–brain barrier breakdown
    • Argaw AT, Gurfein BT, Zhang Y, Zameer A, John GR. 2009. VEGF-mediated disruption of endothelial CLN-5 promotes blood–brain barrier breakdown. Proc Natl Acad Sci 106: 1977–1982.
    • (2009) Proc Natl Acad Sci , vol.106 , pp. 1977-1982
    • Argaw, A.T.1    Gurfein, B.T.2    Zhang, Y.3    Zameer, A.4    John, G.R.5
  • 14
    • 79961230399 scopus 로고    scopus 로고
    • Pericytes: Developmental, physiological, and pathological perspectives, problems, and promises
    • Armulik A, Genové G, Betsholtz C. 2011. Pericytes: Developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21: 193–215.
    • (2011) Dev Cell , vol.21 , pp. 193-215
    • Armulik, A.1    Genové, G.2    Betsholtz, C.3
  • 16
    • 0029799520 scopus 로고    scopus 로고
    • Functional dissociation of paracellular permeability and transepithelial electrical resistance and disruption of the apical-basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane protein
    • Balda MS, Whitney JA, Flores C, González S, Cereijido M, Matter K. 1996. Functional dissociation of paracellular permeability and transepithelial electrical resistance and disruption of the apical-basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane protein. J Cell Biol 134: 1031–1049.
    • (1996) J Cell Biol , vol.134 , pp. 1031-1049
    • Balda, M.S.1    Whitney, J.A.2    Flores, C.3    González, S.4    Cereijido, M.5    Matter, K.6
  • 17
    • 0018080931 scopus 로고
    • Polarity of the blood–brain barrier: Neutral amino acid transport into isolated brain capillaries
    • Betz AL, Goldstein GW. 1978. Polarity of the blood–brain barrier: Neutral amino acid transport into isolated brain capillaries. Science 202: 225–227.
    • (1978) Science , vol.202 , pp. 225-227
    • Betz, A.L.1    Goldstein, G.W.2
  • 18
    • 0018855966 scopus 로고
    • Polarity of the blood–brain barrier: Distribution of enzymes between the luminal and antiluminal membranes of brain capillary endothelial cells
    • Betz AL, Firth JA, Goldstein GW. 1980. Polarity of the blood–brain barrier: Distribution of enzymes between the luminal and antiluminal membranes of brain capillary endothelial cells. Brain Res 192: 17–28.
    • (1980) Brain Res , vol.192 , pp. 17-28
    • Betz, A.L.1    Firth, J.A.2    Goldstein, G.W.3
  • 19
    • 0035209367 scopus 로고    scopus 로고
    • Regulation of Th1 and Th2 lymphocyte migration by human adult brain endothelial cells
    • Biernacki K, Prat A, Blain M, Antel JP. 2001. Regulation of Th1 and Th2 lymphocyte migration by human adult brain endothelial cells. J Neuropathol Exp Neurol 60: 1127–1136.
    • (2001) J Neuropathol Exp Neurol , vol.60 , pp. 1127-1136
    • Biernacki, K.1    Prat, A.2    Blain, M.3    Antel, J.P.4
  • 20
    • 0014481056 scopus 로고
    • Junctions between intimately apposed cell membranes in the vertebrate brain
    • Brightman MW, Reese TS. 1969. Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 40: 648–677.
    • (1969) J Cell Biol , vol.40 , pp. 648-677
    • Brightman, M.W.1    Reese, T.S.2
  • 22
    • 33646418968 scopus 로고    scopus 로고
    • Activation of Nrf2/ARE pathway protects endothelial cells from oxidant injury and inhibits inflammatory gene expression
    • Chen XL, Dodd G, Thomas S, Zhang X, Wasserman MA, Rovin BH, Kunsch C. 2006. Activation of Nrf2/ARE pathway protects endothelial cells from oxidant injury and inhibits inflammatory gene expression. Am J Physiol Heart Circ Physiol 290: H1862–H1870.
    • (2006) Am J Physiol Heart Circ Physiol , vol.290 , pp. H1862-H1870
    • Chen, X.L.1    Dodd, G.2    Thomas, S.3    Zhang, X.4    Wasserman, M.A.5    Rovin, B.H.6    Kunsch, C.7
  • 24
    • 0038701734 scopus 로고    scopus 로고
    • Claudin extracellular domains determine paracellular charge selectivity and resistance but not tight junction fibril architecture
    • Colegio OR, Van Itallie C, Rahner C, Anderson JM. 2003. Claudin extracellular domains determine paracellular charge selectivity and resistance but not tight junction fibril architecture. Am J Physiol Cell Physiol 284: C1346–C1354.
    • (2003) Am J Physiol Cell Physiol , vol.284 , pp. C1346-C1354
    • Colegio, O.R.1    Van Itallie, C.2    Rahner, C.3    Anderson, J.M.4
  • 26
    • 10744233773 scopus 로고    scopus 로고
    • The diversity of endothelial cells: A challenge for therapeutic angiogenesis
    • Conway EM, Carmeliet P. 2004. The diversity of endothelial cells: A challenge for therapeutic angiogenesis. Genome Biol 5: 207.
    • (2004) Genome Biol , vol.5 , pp. 207
    • Conway, E.M.1    Carmeliet, P.2
  • 27
    • 0022332365 scopus 로고
    • Morphometric analysis of CNS microvascular endothelium
    • Coomber BL, Stewart PA. 1985. Morphometric analysis of CNS microvascular endothelium. Microvasc Res 30: 99–115.
    • (1985) Microvasc Res , vol.30 , pp. 99-115
    • Coomber, B.L.1    Stewart, P.A.2
  • 29
    • 0028127716 scopus 로고
    • The human brain GLUT1 glucose transporter: Ultrastructural localization to the blood–brain barrier endothelia
    • Cornford EM, Hyman S, Swartz BE. 1994. The human brain GLUT1 glucose transporter: Ultrastructural localization to the blood–brain barrier endothelia. J Cereb Blood Flow Metab 14: 106–112.
    • (1994) J Cereb Blood Flow Metab , vol.14 , pp. 106-112
    • Cornford, E.M.1    Hyman, S.2    Swartz, B.E.3
  • 30
    • 0020965804 scopus 로고
    • Fibronectin in the microvascu-lature: Localization in the pericyte-endothelial intersti-tium
    • Courtoy PJ, Boyles J. 1983. Fibronectin in the microvascu-lature: Localization in the pericyte-endothelial intersti-tium. J Ultrastruct Res 83: 258–273.
    • (1983) J Ultrastruct Res , vol.83 , pp. 258-273
    • Courtoy, P.J.1    Boyles, J.2
  • 32
    • 84870408539 scopus 로고    scopus 로고
    • The blood–brain barrier in health and disease
    • Daneman R. 2012. The blood–brain barrier in health and disease. Ann Neurol 72: 648–672.
    • (2012) Ann Neurol , vol.72 , pp. 648-672
    • Daneman, R.1
  • 34
    • 78149456928 scopus 로고    scopus 로고
    • The mouse blood–brain barrier transcriptome: A new resource for understanding the development and function of brain endothelial cells
    • Daneman R, Zhou L, Agalliu D, Cahoy JD, Kaushal A, Barres BA. 2010a. The mouse blood–brain barrier transcriptome: A new resource for understanding the development and function of brain endothelial cells. PLoS ONE 5: e13741.
    • (2010) Plos ONE , pp. 5
    • Daneman, R.1    Zhou, L.2    Agalliu, D.3    Cahoy, J.D.4    Kaushal, A.5    Barres, B.A.6
  • 35
    • 78649487239 scopus 로고    scopus 로고
    • Peri-cytes are required for blood–brain barrier integrity during embryogenesis
    • Daneman R, Zhou L, Kebede AA, Barres BA. 2010b. Peri-cytes are required for blood–brain barrier integrity during embryogenesis. Nature 468: 562–566.
    • (2010) Nature , vol.468 , pp. 562-566
    • Daneman, R.1    Zhou, L.2    Kebede, A.A.3    Barres, B.A.4
  • 37
    • 0025819954 scopus 로고
    • Defective glucose transport across the blood–brain barrier as a cause of persistent hypoglycorrhachia, seizures, and developmental delay
    • De Vivo DC, Trifiletti RR, Jacobson RI, Ronen GM, Beh-mand RA, Harik SI. 1991. Defective glucose transport across the blood–brain barrier as a cause of persistent hypoglycorrhachia, seizures, and developmental delay. N Engl J Med 325: 703–709.
    • (1991) N Englj Med , vol.325 , pp. 703-709
    • De Vivo, D.C.1    Trifiletti, R.R.2    Jacobson, R.I.3    Ronen, G.M.4    Beh-Mand, R.A.5    Harik, S.I.6
  • 38
    • 0037000620 scopus 로고    scopus 로고
    • Glucose transporter 1 deficiency syndrome and other glycolytic defects
    • discussion 3S24–3S25
    • De Vivo DC, Leary L, Wang D. 2002. Glucose transporter 1 deficiency syndrome and other glycolytic defects. J Child Neurol 17: 3S15–3S23; discussion 3S24–3S25.
    • (2002) J Child Neurol , vol.17 , pp. 3S15-3S23
    • De Vivo, D.C.1    Leary, L.2    Wang, D.3
  • 41
    • 3342933212 scopus 로고    scopus 로고
    • Transforming growth factor-b1 upregulates the tight junction and P-glycoprotein of brain microvascular endothelial cells
    • Dohgu S, Yamauchi A, Takata F, Naito M, Tsuruo T, Higuchi S, Sawada Y, Kataoka Y. 2004. Transforming growth factor-b1 upregulates the tight junction and P-glycoprotein of brain microvascular endothelial cells. Cell Mol Neuro-biol 24: 491–497.
    • (2004) Cell Mol Neuro-Biol , vol.24 , pp. 491-497
    • Dohgu, S.1    Yamauchi, A.2    Takata, F.3    Naito, M.4    Tsuruo, T.5    Higuchi, S.6    Sawada, Y.7    Kataoka, Y.8
  • 42
    • 33745521753 scopus 로고    scopus 로고
    • The rat blood–brain barrier transcriptome
    • Enerson BE, Drewes LR. 2006. The rat blood–brain barrier transcriptome. J Cereb Blood Flow Metab 26: 959–973.
    • (2006) J Cereb Blood Flow Metab , vol.26 , pp. 959-973
    • Enerson, B.E.1    Drewes, L.R.2
  • 43
    • 53049110581 scopus 로고    scopus 로고
    • Immune cell entry into the central nervous system: Involvement of adhesion molecules and chemokines
    • Engelhardt B. 2008. Immune cell entry into the central nervous system: Involvement of adhesion molecules and chemokines. J Neurol Sci 274: 23–26.
    • (2008) J Neurol Sci , vol.274 , pp. 23-26
    • Engelhardt, B.1
  • 44
    • 73449115641 scopus 로고    scopus 로고
    • The blood–brain and the blood–cerebrospinal fluid barriers: Function and dysfunction
    • Engelhardt B, Sorokin L. 2009. The blood–brain and the blood–cerebrospinal fluid barriers: Function and dysfunction. Semin Immunopathol 31: 497–511.
    • (2009) Semin Immunopathol , vol.31 , pp. 497-511
    • Engelhardt, B.1    Sorokin, L.2
  • 46
    • 0036354737 scopus 로고    scopus 로고
    • Hypoxia-induced hyperpermeability in brain microves-sel endothelial cells involves VEGF-mediated changes in the expression of zonula occludens-1
    • Fischer S, Wobben M, Marti HH, Renz D, Schaper W. 2002. Hypoxia-induced hyperpermeability in brain microves-sel endothelial cells involves VEGF-mediated changes in the expression of zonula occludens-1. Microvasc Res 63: 70–80.
    • (2002) Microvasc Res , vol.63 , pp. 70-80
    • Fischer, S.1    Wobben, M.2    Marti, H.H.3    Renz, D.4    Schaper, W.5
  • 47
    • 1242317092 scopus 로고    scopus 로고
    • Simultaneous activation of several second messengers in hypoxia-induced hyperpermeability of brain derived en-dothelial cells
    • Fischer S, Wiesnet M, Marti HH, Renz D, Schaper W. 2004. Simultaneous activation of several second messengers in hypoxia-induced hyperpermeability of brain derived en-dothelial cells. J Cell Physiol 198: 359–369.
    • (2004) J Cell Physiol , vol.198 , pp. 359-369
    • Fischer, S.1    Wiesnet, M.2    Marti, H.H.3    Renz, D.4    Schaper, W.5
  • 49
    • 77952756845 scopus 로고    scopus 로고
    • Molecular basis of the core structure of tight junctions
    • Furuse M. 2010. Molecular basis of the core structure of tight junctions. Cold Spring Harb Perspect Biol 2: a002907.
    • (2010) Cold Spring Harb Perspect Biol , pp. 2
    • Furuse, M.1
  • 50
    • 0032547833 scopus 로고    scopus 로고
    • A single gene product, claudin-1 or -2, reconstitutes tight junction strands and recruits occludin in fibroblasts
    • Furuse M, Sasaki H, Fujimoto K, Tsukita S. 1998. A single gene product, claudin-1 or -2, reconstitutes tight junction strands and recruits occludin in fibroblasts. J Cell Biol 143: 391–401.
    • (1998) J Cell Biol , vol.143 , pp. 391-401
    • Furuse, M.1    Sasaki, H.2    Fujimoto, K.3    Tsukita, S.4
  • 51
    • 0035897412 scopus 로고    scopus 로고
    • Conversion of zonulae occludentes from tight to leaky strand type by introducing claudin-2 into Madin-Darby canine kidney I cells
    • Furuse M, Furuse K, Sasaki H, Tsukita S. 2001. Conversion of zonulae occludentes from tight to leaky strand type by introducing claudin-2 into Madin-Darby canine kidney I cells. J Cell Biol 153: 263–272.
    • (2001) J Cell Biol , vol.153 , pp. 263-272
    • Furuse, M.1    Furuse, K.2    Sasaki, H.3    Tsukita, S.4
  • 52
    • 0037128938 scopus 로고    scopus 로고
    • Claudin-based tight junctions are crucial for the mammalian epidermal barrier: A lesson from claudin-1-deficient mice
    • Furuse M, Hata M, Furuse K, Yoshida Y, Haratake A, Sugitani Y, Noda T, Kubo A, Tsukita S. 2002. Claudin-based tight junctions are crucial for the mammalian epidermal barrier: A lesson from claudin-1-deficient mice. J Cell Biol 156: 1099–111.
    • (2002) J Cell Biol , vol.156 , pp. 1099-1111
    • Furuse, M.1    Hata, M.2    Furuse, K.3    Yoshida, Y.4    Haratake, A.5    Sugitani, Y.6    Noda, T.7    Kubo, A.8    Tsukita, S.9
  • 53
    • 0033927061 scopus 로고    scopus 로고
    • N-cadherin mediates pericytic–endothelial interaction during brain angiogenesis in the chicken
    • Gerhardt H, Wolburg H, Redies C. 2000. N-cadherin mediates pericytic–endothelial interaction during brain angiogenesis in the chicken. Dev Dyn 218: 472–479.
    • (2000) Dev Dyn , vol.218 , pp. 472-479
    • Gerhardt, H.1    Wolburg, H.2    Redies, C.3
  • 54
    • 0026650593 scopus 로고
    • Carbonic anhydrase IVon brain capillary endothe-lial cells: A marker associated with the blood–brain barrier
    • Ghandour MS, Langley OK, Zhu XL, Waheed A, Sly WS. 1992. Carbonic anhydrase IVon brain capillary endothe-lial cells: A marker associated with the blood–brain barrier. Proc Natl Acad Sci 89: 6823–6827.
    • (1992) Proc Natl Acad Sci , vol.89 , pp. 6823-6827
    • Ghandour, M.S.1    Langley, O.K.2    Zhu, X.L.3    Waheed, A.4    Sly, W.S.5
  • 56
    • 79952588804 scopus 로고    scopus 로고
    • Bidirectional control of arteriole diameter by astrocytes
    • Gordon GR, Howarth C, MacVicar BA. 2011. Bidirectional control of arteriole diameter by astrocytes. Exp Physiol 96: 393–399.
    • (2011) Exp Physiol , vol.96 , pp. 393-399
    • Gordon, G.R.1    Howarth, C.2    Macvicar, B.A.3
  • 58
    • 78651063705 scopus 로고    scopus 로고
    • Review: Leucocyte-endothelial cell crosstalk at the blood–brain barrier: A prerequisite for successful immune cell entry to the brain
    • Greenwood J, Heasman SJ, Alvarez JI, Prat A, Lyck R, En-gelhardt B. 2011. Review: Leucocyte-endothelial cell crosstalk at the blood–brain barrier: A prerequisite for successful immune cell entry to the brain. Neuropathol Appl Neurobiol 37: 24–39.
    • (2011) Neuropathol Appl Neurobiol , vol.37 , pp. 24-39
    • Greenwood, J.1    Heasman, S.J.2    Alvarez, J.I.3    Prat, A.4    Lyck, R.5    En-Gelhardt, B.6
  • 59
    • 83755190692 scopus 로고    scopus 로고
    • Caveolin-1 regulates nitric oxide-mediated matrix metalloproteinases activity and blood–brain barrier permeability in focal cerebral ischemia and reperfusion injury
    • Gu Y, Zheng G, Xu M, Li Y, Chen X, Zhu W, Tong Y, Chung SK, Liu KJ, Shen J. 2012. Caveolin-1 regulates nitric oxide-mediated matrix metalloproteinases activity and blood–brain barrier permeability in focal cerebral ischemia and reperfusion injury. J Neurochem 120: 147–156.
    • (2012) J Neurochem , vol.120 , pp. 147-156
    • Gu, Y.1    Zheng, G.2    Xu, M.3    Li, Y.4    Chen, X.5    Zhu, W.6    Tong, Y.7    Chung, S.K.8    Liu, K.J.9    Shen, J.10
  • 60
    • 77951745982 scopus 로고    scopus 로고
    • Claudins: Unlocking the code to tight junction function during embryogenesis and in disease
    • Gupta IR, Ryan AK. 2010. Claudins: Unlocking the code to tight junction function during embryogenesis and in disease. Clin Genet 77: 314–325.
    • (2010) Clin Genet , vol.77 , pp. 314-325
    • Gupta, I.R.1    Ryan, A.K.2
  • 61
    • 35448949586 scopus 로고    scopus 로고
    • Mini review on molecular modeling of P-glycoprotein (Pgp)
    • Ha SN, Hochman J, Sheridan RP. 2007. Mini review on molecular modeling of P-glycoprotein (Pgp). Curr Top Med Chem 7: 1525–1529.
    • (2007) Curr Top Med Chem , vol.7 , pp. 1525-1529
    • Ha, S.N.1    Hochman, J.2    Sheridan, R.P.3
  • 65
    • 53549090146 scopus 로고    scopus 로고
    • Familial hypo-magnesaemia with hypercalciuria and nephrocalcinosis (FHHNC): Compound heterozygous mutation in the claudin 16 (CLDN16)gene
    • Hampson G, Konrad MA, Scoble J. 2008. Familial hypo-magnesaemia with hypercalciuria and nephrocalcinosis (FHHNC): Compound heterozygous mutation in the claudin 16 (CLDN16) gene. BMC Nephrol 9: 12.
    • (2008) BMC Nephrol , vol.9 , pp. 12
    • Hampson, G.1    Konrad, M.A.2    Scoble, J.3
  • 67
    • 0023949553 scopus 로고
    • Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo
    • Hickey WF, Kimura H. 1988. Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science 239: 290–292.
    • (1988) Science , vol.239 , pp. 290-292
    • Hickey, W.F.1    Kimura, H.2
  • 68
    • 78649749290 scopus 로고    scopus 로고
    • Shared molecular mechanisms regulate multiple catenin proteins: Canonical Wnt signals and components modulate p120–catenin isoform-1 and additional p120 subfamily member
    • Hong JY, Park JI, Cho K, Gu D, Ji H, Artandi SE, McCrea PD. 2010. Shared molecular mechanisms regulate multiple catenin proteins: Canonical Wnt signals and components modulate p120–catenin isoform-1 and additional p120 subfamily members. J Cell Sci 123: 4351–4365.
    • (2010) J Cell Sci , vol.123 , pp. 4351-4365
    • Hong, J.Y.1    Park, J.I.2    Cho, K.3    Gu, D.4    Ji, H.5    Artandi, S.E.6    McCrea, P.D.7
  • 69
    • 33845991201 scopus 로고    scopus 로고
    • Study of claudin function by RNA interference
    • Hou J, Gomes AS, Paul DL, Goodenough DA. 2006. Study of claudin function by RNA interference. J Biol Chem 281: 36117–36123.
    • (2006) J Biol Chem , vol.281 , pp. 36117-36123
    • Hou, J.1    Gomes, A.S.2    Paul, D.L.3    Goodenough, D.A.4
  • 70
    • 0032692563 scopus 로고    scopus 로고
    • Biphasic opening of the blood–brain barrier following transient focal ischemia: Effects of hypothermia
    • Huang ZG, Xue D, Preston E, Karbalai H, Buchan AM. 1999. Biphasic opening of the blood–brain barrier following transient focal ischemia: Effects of hypothermia. Can J Neurol Sci 26: 298–304.
    • (1999) Canj Neurol Sci , vol.26 , pp. 298-304
    • Huang, Z.G.1    Xue, D.2    Preston, E.3    Karbalai, H.4    Buchan, A.M.5
  • 71
    • 33747781747 scopus 로고    scopus 로고
    • Inflammation in stroke and focal cerebral ischemia
    • Huang J, Upadhyay UM, Tamargo RJ. 2006. Inflammation in stroke and focal cerebral ischemia. Surg Neurol 66: 232–245.
    • (2006) Surg Neurol , vol.66 , pp. 232-245
    • Huang, J.1    Upadhyay, U.M.2    Tamargo, R.J.3
  • 72
    • 26244449275 scopus 로고    scopus 로고
    • Astrocytes and microglia differentially regulate trafficking of lymphocyte subsets across brain endothelial cells
    • Hudson LC, Bragg DC, Tompkins MB, Meeker RB. 2005. Astrocytes and microglia differentially regulate trafficking of lymphocyte subsets across brain endothelial cells. Brain Res 1058: 148–160.
    • (2005) Brain Res , vol.1058 , pp. 148-160
    • Hudson, L.C.1    Bragg, D.C.2    Tompkins, M.B.3    Meeker, R.B.4
  • 73
    • 0023108382 scopus 로고
    • Astrocytes induce blood–brain barrier properties in endothelial cells
    • Janzer RC, Raff MC. 1987. Astrocytes induce blood–brain barrier properties in endothelial cells. Nature 325: 253–257.
    • (1987) Nature , vol.325 , pp. 253-257
    • Janzer, R.C.1    Raff, M.C.2
  • 74
    • 0036785376 scopus 로고    scopus 로고
    • Junctional adhesion molecule-2 (JAM-2) promotes lymphocyte transendothelial migration
    • Johnson-Leger CA, Aurrand-Lions M, Beltraminelli N, Fasel N, Imhof BA. 2002. Junctional adhesion molecule-2 (JAM-2) promotes lymphocyte transendothelial migration. Blood 100: 2479–2486.
    • (2002) Blood , vol.100 , pp. 2479-2486
    • Johnson-Leger, C.A.1    Aurrand-Lions, M.2    Beltraminelli, N.3    Fasel, N.4    Imhof, B.A.5
  • 78
    • 0942290526 scopus 로고    scopus 로고
    • Inherited hypercalciuric syndromes: Dent’s disease (CLC-5) and familial hypomag-nesemia with hypercalciuria (paracellin-1)
    • Knohl SJ, Scheinman SJ. 2004. Inherited hypercalciuric syndromes: Dent’s disease (CLC-5) and familial hypomag-nesemia with hypercalciuria (paracellin-1). Semin Neph-rol 24: 55–60.
    • (2004) Seminneph-Rol , vol.24 , pp. 55-60
    • Knohl, S.J.1    Scheinman, S.J.2
  • 81
    • 0022410974 scopus 로고
    • The biphasic opening of the blood–brain barrier to proteins following temporary middle cerebral artery occlusion
    • Kuroiwa T, Ting P, Martinez H, Klatzo I. 1985. The biphasic opening of the blood–brain barrier to proteins following temporary middle cerebral artery occlusion. Acta Neuro-pathol 68: 122–129.
    • (1985) Acta Neuro-Pathol , vol.68 , pp. 122-129
    • Kuroiwa, T.1    Ting, P.2    Martinez, H.3    Klatzo, I.4
  • 82
    • 81755179424 scopus 로고    scopus 로고
    • How do immune cells overcome the blood–brain barrier in multiple sclerosis?
    • Larochelle C, Alvarez JI, Prat A. 2011. How do immune cells overcome the blood–brain barrier in multiple sclerosis? FEBS Lett 585: 3770–3780.
    • (2011) FEBS Lett , vol.585 , pp. 3770-3780
    • Larochelle, C.1    Alvarez, J.I.2    Prat, A.3
  • 83
    • 84903740461 scopus 로고    scopus 로고
    • Recent advances in delivery through the blood–brain barrier
    • Larsen JM, Martin DR, Byrne ME. 2014. Recent advances in delivery through the blood–brain barrier. Curr Top Med Chem 14: 1148–1160.
    • (2014) Curr Top Med Chem , vol.14 , pp. 1148-1160
    • Larsen, J.M.1    Martin, D.R.2    Byrne, M.E.3
  • 84
    • 0023413619 scopus 로고
    • Junctional transfer of small molecules in cultured bovine brain microvascular endothelial cells and pericytes
    • Larson DM, Carson MP, Haudenschild CC. 1987. Junctional transfer of small molecules in cultured bovine brain microvascular endothelial cells and pericytes. Microvasc Res 34: 184–199.
    • (1987) Microvasc Res , vol.34 , pp. 184-199
    • Larson, D.M.1    Carson, M.P.2    Haudenschild, C.C.3
  • 86
    • 84905173637 scopus 로고    scopus 로고
    • Analysis of the expression of nine secreted matrix metalloproteinases and their endogenous inhibitors in the brain of mice subjected to ischaemic stroke
    • Lenglet S, Montecucco F, Mach F, Schaller K, Gasche Y, Copin JC. 2014. Analysis of the expression of nine secreted matrix metalloproteinases and their endogenous inhibitors in the brain of mice subjected to ischaemic stroke. Thromb Haemost 112: 363–378.
    • (2014) Thromb Haemost , vol.112 , pp. 363-378
    • Lenglet, S.1    Montecucco, F.2    Mach, F.3    Schaller, K.4    Gasche, Y.5    Copin, J.C.6
  • 90
    • 77956058742 scopus 로고    scopus 로고
    • Bradykinin increases the permeability of the blood-tumor barrier by the caveolae-mediated transcellular pathway
    • Liu LB, Xue YX, Liu YH. 2010. Bradykinin increases the permeability of the blood-tumor barrier by the caveolae-mediated transcellular pathway. J Neurooncol 99: 187–194.
    • (2010) J Neurooncol , vol.99 , pp. 187-194
    • Liu, L.B.1    Xue, Y.X.2    Liu, Y.H.3
  • 91
    • 12344262373 scopus 로고    scopus 로고
    • Blood–brain barrier active efflux transporters: ATP-binding cassette gene family
    • Loscher W, Potschka H. 2005. Blood–brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx 2: 86–98.
    • (2005) Neurorx , vol.2 , pp. 86-98
    • Loscher, W.1    Potschka, H.2
  • 93
    • 41049089072 scopus 로고    scopus 로고
    • Bioluminescence in vivo imaging of autoimmune encephalomyelitis predicts disease
    • Luo J, Ho P, Steinman L, Wyss-Coray T. 2008. Bioluminescence in vivo imaging of autoimmune encephalomyelitis predicts disease. J Neuroinflammation 5: 6.
    • (2008) J Neuroinflammation , vol.5 , pp. 6
    • Luo, J.1    Ho, P.2    Steinman, L.3    Wyss-Coray, T.4
  • 94
    • 34249289023 scopus 로고    scopus 로고
    • Developmental basis of vascular smooth muscle diversity
    • Majesky MW. 2007. Developmental basis of vascular smooth muscle diversity. Arterioscler Thromb Vasc Biol 27: 1248–1258.
    • (2007) Arterioscler Thromb Vasc Biol , vol.27 , pp. 1248-1258
    • Majesky, M.W.1
  • 95
    • 0036084919 scopus 로고    scopus 로고
    • Cerebral microvascular changes in permeability and tight junctions induced by hypoxia-re-oxygenation
    • Mark KS, Davis TP. 2002. Cerebral microvascular changes in permeability and tight junctions induced by hypoxia-re-oxygenation. Am J Physiol Heart Circ Physiol 282: H1485–H1494.
    • (2002) Amj Physiol Heart Circ Physiol , vol.282 , pp. H1485-H1494
    • Mark, K.S.1    Davis, T.P.2
  • 96
    • 2642614521 scopus 로고    scopus 로고
    • Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration
    • Martin-Padura I, Lostaglio S, Schneemann M, Williams L, Romano M, Fruscella P, Panzeri C, Stoppacciaro A, Ruco L, Villa A, et al. 1998. Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol 142: 117–127.
    • (1998) J Cell Biol , vol.142 , pp. 117-127
    • Martin-Padura, I.1    Lostaglio, S.2    Schneemann, M.3    Williams, L.4    Romano, M.5    Fruscella, P.6    Panzeri, C.7    Stoppacciaro, A.8    Ruco, L.9    Villa, A.10
  • 99
    • 79954506893 scopus 로고    scopus 로고
    • Exploiting nutrient transporters at the blood–brain barrier to improve brain distribution of small molecules
    • Mittapalli RK, Manda VK, Adkins CE, Geldenhuys WJ, Lockman PR. 2010. Exploiting nutrient transporters at the blood–brain barrier to improve brain distribution of small molecules. Ther Deliv 1: 775–784.
    • (2010) Ther Deliv , vol.1 , pp. 775-784
    • Mittapalli, R.K.1    Manda, V.K.2    Adkins, C.E.3    Geldenhuys, W.J.4    Lockman, P.R.5
  • 102
    • 0033523758 scopus 로고    scopus 로고
    • Endothelial claudin: Claudin-5/TMVCF constitutes tight junction strands in endothelial cells
    • Morita K, Sasaki H, Furuse M, Tsukita S. 1999. Endothelial claudin: Claudin-5/TMVCF constitutes tight junction strands in endothelial cells. J Cell Biol 147: 185–194.
    • (1999) J Cell Biol , vol.147 , pp. 185-194
    • Morita, K.1    Sasaki, H.2    Furuse, M.3    Tsukita, S.4
  • 106
    • 0041970282 scopus 로고    scopus 로고
    • Altered expression of angiopoietins during blood–brain barrier breakdown and angiogenesis
    • Nourhaghighi N, Teichert-Kuliszewska K, Davis J, Stewart DJ, Nag S. 2003. Altered expression of angiopoietins during blood–brain barrier breakdown and angiogenesis. Lab Invest 83: 1211–1222.
    • (2003) Lab Invest , vol.83 , pp. 1211-1222
    • Nourhaghighi, N.1    Teichert-Kuliszewska, K.2    Davis, J.3    Stewart, D.J.4    Nag, S.5
  • 107
    • 84901056306 scopus 로고    scopus 로고
    • Quantitative targeted proteomics for understanding the blood–brain barrier: Towards phar-macoproteomics
    • Ohtsuki S, Hirayama M, Ito S, Uchida Y, Tachikawa M, Terasaki T. 2014. Quantitative targeted proteomics for understanding the blood–brain barrier: Towards phar-macoproteomics. Expert Rev Proteomics 11: 303–313.
    • (2014) Expert Rev Proteomics , vol.11 , pp. 303-313
    • Ohtsuki, S.1    Hirayama, M.2    Ito, S.3    Uchida, Y.4    Tachikawa, M.5    Terasaki, T.6
  • 108
    • 0017487289 scopus 로고
    • The large apparent work capability of the blood–brain barrier: A study of the mitochondrial content of capillary endothe-lial cells in brain and other tissues of the rat
    • Oldendorf WH, Cornford ME, Brown WJ. 1977. The large apparent work capability of the blood–brain barrier: A study of the mitochondrial content of capillary endothe-lial cells in brain and other tissues of the rat. Ann Neurol 1: 409–417.
    • (1977) Ann Neurol , vol.1 , pp. 409-417
    • Oldendorf, W.H.1    Cornford, M.E.2    Brown, W.J.3
  • 109
    • 0016375397 scopus 로고
    • γ-Glutamyl
    • Orlowski M, Sessa G, Green JP. 1974. γ-Glutamyl transpep-tidase in brain capillaries: Possible site of a blood–brain barrier for amino acids. Science 184: 66–68.
    • (1974) Science , vol.184 , pp. 66-68
    • Orlowski, M.1    Sessa, G.2    Green, J.P.3
  • 110
    • 84863250734 scopus 로고    scopus 로고
    • Retinoic acid-dependent signaling pathways and lineage events in the developing mouse spinal cord
    • Paschaki M, Lin SC, Wong RL, Finnell RH, Dollé P, Niederreither K. 2012. Retinoic acid-dependent signaling pathways and lineage events in the developing mouse spinal cord. PLoS ONE 7: e32447.
    • (2012) Plos ONE , pp. 7
    • Paschaki, M.1    Lin, S.C.2    Wong, R.L.3    Finnell, R.H.4    Dollé, P.5    Niederreither, K.6
  • 111
    • 33749860102 scopus 로고    scopus 로고
    • Bidirectional control of CNS capillary diameter by pericytes
    • Peppiatt CM, Howarth C, Mobbs P, Attwell D.2006. Bidirectional control of CNS capillary diameter by pericytes. Nature 443: 700–704.
    • (2006) Nature , vol.443 , pp. 700-704
    • Peppiatt, C.M.1    Howarth, C.2    Mobbs, P.3    Attwell, D.4
  • 112
    • 0032733230 scopus 로고    scopus 로고
    • Microglial and astrocyte chemokines regulate monocyte migration through the blood–brain barrier in human immunodeficiency virus-1 encephalitis
    • Persidsky Y, Ghorpade A, Rasmussen J, Limoges J, Liu XJ, Stins M, Fiala M, Way D, Kim KS, Witte MH, et al. 1999. Microglial and astrocyte chemokines regulate monocyte migration through the blood–brain barrier in human immunodeficiency virus-1 encephalitis. Am J Pathol 155: 1599–1611.
    • (1999) Amj Pathol , vol.155 , pp. 1599-1611
    • Persidsky, Y.1    Ghorpade, A.2    Rasmussen, J.3    Limoges, J.4    Liu, X.J.5    Stins, M.6    Fiala, M.7    Way, D.8    Kim, K.S.9    Witte, M.H.10
  • 114
    • 0035900333 scopus 로고    scopus 로고
    • P-glycoprotein and multidrug resistance-associated protein are involved in the regulation of extracellular levels of the major anti-epileptic drug carbamazepine in the brain
    • Potschka H, Fedrowitz M, Loscher W. 2001. P-glycoprotein and multidrug resistance-associated protein are involved in the regulation of extracellular levels of the major anti-epileptic drug carbamazepine in the brain. Neuroreport 12: 3557–3560.
    • (2001) Neuroreport , vol.12 , pp. 3557-3560
    • Potschka, H.1    Fedrowitz, M.2    Loscher, W.3
  • 115
    • 0035153208 scopus 로고    scopus 로고
    • Glial cell influence on the human blood–brain barrier
    • Prat A, Biernacki K, Wosik K, Antel JP. 2001. Glial cell influence on the human blood–brain barrier. Glia 36: 145–155.
    • (2001) Glia , vol.36 , pp. 145-155
    • Prat, A.1    Biernacki, K.2    Wosik, K.3    Antel, J.P.4
  • 116
    • 0014109002 scopus 로고
    • Fine structural localization of a blood–brain barrier to exogenous peroxidase
    • Reese TS, Karnovsky MJ. 1967. Fine structural localization of a blood–brain barrier to exogenous peroxidase. J Cell Biol 34: 207–217.
    • (1967) J Cell Biol , vol.34 , pp. 207-217
    • Reese, T.S.1    Karnovsky, M.J.2
  • 117
    • 0042343822 scopus 로고    scopus 로고
    • Functions of fibroblast growth factor (FGF)-2 and FGF-5 in astroglial differentiation and blood–brain barrier permeability: Evidence from mouse mutants
    • Reuss B, Dono R, Unsicker K. 2003. Functions of fibroblast growth factor (FGF)-2 and FGF-5 in astroglial differentiation and blood–brain barrier permeability: Evidence from mouse mutants. J Neurosci 23: 6404–6412.
    • (2003) J Neurosci , vol.23 , pp. 6404-6412
    • Reuss, B.1    Dono, R.2    Unsicker, K.3
  • 118
    • 0031693557 scopus 로고    scopus 로고
    • Matrix metal-loproteinases and TIMPs are associated with blood–brain barrier opening after reperfusion in rat brain
    • Rosenberg GA, Estrada EY, Dencoff JE. 1998. Matrix metal-loproteinases and TIMPs are associated with blood–brain barrier opening after reperfusion in rat brain. Stroke 29: 2189–2195.
    • (1998) Stroke , vol.29 , pp. 2189-2195
    • Rosenberg, G.A.1    Estrada, E.Y.2    Dencoff, J.E.3
  • 121
    • 0028825399 scopus 로고
    • Absence of the mdr1a P-Glycoprotein in mice affects tissue distribution and pharmacokinetics of dexa-methasone, digoxin, and cyclosporin A
    • Schinkel AH, Wagenaar E, van Deemter L, Mol CA, Borst P. 1995. Absence of the mdr1a P-Glycoprotein in mice affects tissue distribution and pharmacokinetics of dexa-methasone, digoxin, and cyclosporin A. J Clin Invest 96: 1698–1705.
    • (1995) J Clin Invest , vol.96 , pp. 1698-1705
    • Schinkel, A.H.1    Wagenaar, E.2    Van Deemter, L.3    Mol, C.A.4    Borst, P.5
  • 122
    • 0029892497 scopus 로고    scopus 로고
    • P-glycoprotein in the blood–brain barrier of mice influences the brain penetration and pharmacological activity of many drugs
    • Schinkel AH, Wagenaar E, Mol CA, van Deemter L. 1996. P-glycoprotein in the blood–brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J Clin Invest 97: 2517–2524.
    • (1996) J Clin Invest , vol.97 , pp. 2517-2524
    • Schinkel, A.H.1    Wagenaar, E.2    Mol, C.A.3    Van Deemter, L.4
  • 123
    • 0036846795 scopus 로고    scopus 로고
    • Hypoxia-induced vascular endothelial growth factor expression causes vascular leakage in the brain
    • Schoch HJ, Fischer S, Marti HH. 2002. Hypoxia-induced vascular endothelial growth factor expression causes vascular leakage in the brain. Brain 125: 2549–2557.
    • (2002) Brain , vol.125 , pp. 2549-2557
    • Schoch, H.J.1    Fischer, S.2    Marti, H.H.3
  • 125
    • 82555165050 scopus 로고    scopus 로고
    • Coexpression of angiopoietin-1 with VEGF increases the structural integrity of the blood–brain barrier and reduces atrophy volume
    • Shen F, Walker EJ, Jiang L, Degos V, Li J, Sun B, Heriyanto F, Young WL, Su H. 2011. Coexpression of angiopoietin-1 with VEGF increases the structural integrity of the blood–brain barrier and reduces atrophy volume. J Cereb Blood Flow Metab 31: 2343–2351.
    • (2011) J Cereb Blood Flow Metab , vol.31 , pp. 2343-2351
    • Shen, F.1    Walker, E.J.2    Jiang, L.3    Degos, V.4    Li, J.5    Sun, B.6    Heriyanto, F.7    Young, W.L.8    Su, H.9
  • 126
    • 0027319870 scopus 로고
    • Pericyte physiology
    • Shepro D, Morel NM. 1993. Pericyte physiology. FASEB J 7: 1031–1038.
    • (1993) FASEBJ , vol.7 , pp. 1031-1038
    • Shepro, D.1    Morel, N.M.2
  • 127
    • 41049099175 scopus 로고    scopus 로고
    • Plasmalemmal vesicle associated protein-1 (PV-1) is a marker of blood–brain barrier disruption in rodent models
    • Shue EH, Carson-Walter EB, Liu Y, Winans BN, Ali ZS, Chen J, Walter KA. 2008. Plasmalemmal vesicle associated protein-1 (PV-1) is a marker of blood–brain barrier disruption in rodent models. BMC Neurosci 9: 29.
    • (2008) BMC Neurosci , vol.9 , pp. 29
    • Shue, E.H.1    Carson-Walter, E.B.2    Liu, Y.3    Winans, B.N.4    Ali, Z.S.5    Chen, J.6    Walter, K.A.7
  • 128
    • 0022567611 scopus 로고
    • The pericyte—A review
    • Sims DE. 1986. The pericyte—A review. Tissue Cell 18: 153–174.
    • (1986) Tissue Cell , vol.18 , pp. 153-174
    • Sims, D.E.1
  • 129
    • 77957221743 scopus 로고    scopus 로고
    • The impact of the extracellular matrix on inflammation
    • Sorokin L. 2010. The impact of the extracellular matrix on inflammation. Nat Rev Immunol 10: 712–723.
    • (2010) Nat Rev Immunol , vol.10 , pp. 712-723
    • Sorokin, L.1
  • 130
    • 56749104928 scopus 로고    scopus 로고
    • Canonical Wnt signaling regulates organ-specific assemblyand differentiation of CNS vasculature
    • Stenman JM, Rajagopal J, Carroll TJ, Ishibashi M, McMa-hon J, McMahon AP. 2008. Canonical Wnt signaling regulates organ-specific assemblyand differentiation of CNS vasculature. Science 322: 1247–1250.
    • (2008) Science , vol.322 , pp. 1247-1250
    • Stenman, J.M.1    Rajagopal, J.2    Carroll, T.J.3    Ishibashi, M.4    McMa-Hon, J.5    McMahon, A.P.6
  • 131
    • 0019798883 scopus 로고
    • Developing nervous tissue induces formation of blood–brain barrier characteristics in invading endothelial cells: A study using quail–chick transplantation chimeras
    • Stewart PA, Wiley MJ. 1981. Developing nervous tissue induces formation of blood–brain barrier characteristics in invading endothelial cells: A study using quail–chick transplantation chimeras. Dev Biol 84: 183–192.
    • (1981) Dev Biol , vol.84 , pp. 183-192
    • Stewart, P.A.1    Wiley, M.J.2
  • 133
    • 0024576304 scopus 로고
    • Immunohistochemical localization in normal tissues of different epitopes in the multi-drug transport protein P170: Evidence for localization in brain capillaries and crossreactivity of one antibody with a muscle protein
    • Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I, Willingham MC. 1989. Immunohistochemical localization in normal tissues of different epitopes in the multi-drug transport protein P170: Evidence for localization in brain capillaries and crossreactivity of one antibody with a muscle protein. J Histochem Cytochem 37: 159–164.
    • (1989) J Histochem Cytochem , vol.37 , pp. 159-164
    • Thiebaut, F.1    Tsuruo, T.2    Hamada, H.3    Gottesman, M.M.4    Pastan, I.5    Willingham, M.C.6
  • 134
    • 84896548871 scopus 로고    scopus 로고
    • Blood borne hormones in a cross-talk between peripheral and brain mechanisms regulating blood pressure, the role of circumventricular organs
    • Ufnal M, Skrzypecki J. 2014. Blood borne hormones in a cross-talk between peripheral and brain mechanisms regulating blood pressure, the role of circumventricular organs. Neuropeptides 48: 65–73.
    • (2014) Neuropeptides , vol.48 , pp. 65-73
    • Ufnal, M.1    Skrzypecki, J.2
  • 135
    • 0027275150 scopus 로고
    • Male donor-derived cells in the brains of female sex-mismatched bone marrow transplant recipients: A Y-chromosome specific in situ hybridization study
    • Unger ER, Sung JH, Manivel JC, Chenggis ML, Blazar BR, Krivit W. 1993. Male donor-derived cells in the brains of female sex-mismatched bone marrow transplant recipients: A Y-chromosome specific in situ hybridization study. J Neuropathol Exp Neurol 52: 460–470.
    • (1993) J Neuropathol Exp Neurol , vol.52 , pp. 460-470
    • Unger, E.R.1    Sung, J.H.2    Manivel, J.C.3    Chenggis, M.L.4    Blazar, B.R.5    Krivit, W.6
  • 136
    • 33645963995 scopus 로고    scopus 로고
    • Claudins and epithelial paracellular transport
    • Van Itallie CM, Anderson JM. 2006. Claudins and epithelial paracellular transport. Annu Rev Physiol 68: 403–429.
    • (2006) Annu Rev Physiol , vol.68 , pp. 403-429
    • Van Itallie, C.M.1    Erson, J.M.2
  • 137
    • 84913551633 scopus 로고    scopus 로고
    • Claudin interactions in and out of the tight junction
    • Van Itallie CM, Anderson JM. 2013. Claudin interactions in and out of the tight junction. Tissue Barriers 1: e25247.
    • (2013) Tissue Barriers , vol.1
    • Van Itallie, C.M.1    Erson, J.M.2
  • 138
    • 0035013499 scopus 로고    scopus 로고
    • Regulated expression of claudin-4 decreases paracellular conductance through a selective decrease in sodium permeability
    • Van Itallie C, Rahner C, Anderson JM. 2001. Regulated expression of claudin-4 decreases paracellular conductance through a selective decrease in sodium permeability. J Clin Invest 107: 1319–1327.
    • (2001) J Clin Invest , vol.107 , pp. 1319-1327
    • Van Itallie, C.1    Rahner, C.2    Anderson, J.M.3
  • 140
    • 0027431164 scopus 로고
    • Bone marrow-derived elements in the peripheral nervous system. Animmunohistochemical and ultrastructural investigation in chimeric rats
    • Vass K, Hickey WF, Schmidt RE, Lassmann H. 1993. Bone marrow-derived elements in the peripheral nervous system. Animmunohistochemical and ultrastructural investigation in chimeric rats. Lab Invest 69: 275–282.
    • (1993) Lab Invest , vol.69 , pp. 275-282
    • Vass, K.1    Hickey, W.F.2    Schmidt, R.E.3    Lassmann, H.4
  • 143
    • 55849127421 scopus 로고    scopus 로고
    • Paradoxical dysregulation of the neural stem cell pathway Sonic Hedgehog-Gli1 in autoimmune en-cephalomyelitis and multiple sclerosis
    • Wang Y, Imitola J, Rasmussen S, O’Connor KC, Khoury SJ. 2008. Paradoxical dysregulation of the neural stem cell pathway Sonic Hedgehog-Gli1 in autoimmune en-cephalomyelitis and multiple sclerosis. Ann Neurol 64: 417–427.
    • (2008) Ann Neurol , vol.64 , pp. 417-427
    • Wang, Y.1    Imitola, J.2    Rasmussen, S.3    O’Connor, K.C.4    Khoury, S.J.5
  • 144
    • 84870897220 scopus 로고    scopus 로고
    • Norrin/Frizzled4 signaling in retinal vascular development and blood brain barrier plasticity
    • Wang Y, Rattner A, Zhou Y, Williams J, Smallwood PM, Nathans J. 2012. Norrin/Frizzled4 signaling in retinal vascular development and blood brain barrier plasticity. Cell 151: 1332–1344.
    • (2012) Cell , vol.151 , pp. 1332-1344
    • Wang, Y.1    Rattner, A.2    Zhou, Y.3    Williams, J.4    Smallwood, P.M.5    Nathans, J.6
  • 145
    • 0015862443 scopus 로고
    • Transport of Proteins across Normal Cerebral Arterioles
    • Westergaard E, Brightman MW. 1973. Transport of proteins across normal cerebral arterioles.J Comp Neurol 152: 17–44.
    • (1973) J Comp Neurol , vol.152 , pp. 17-44
    • Westergaard, E.1    Brightman, M.W.2
  • 146
    • 0035152834 scopus 로고    scopus 로고
    • Central nervous system perivascular cells are immunoregulatory cells that connect the CNS with the peripheral immune system
    • Williams K, Alvarez X, Lackner AA. 2001. Central nervous system perivascular cells are immunoregulatory cells that connect the CNS with the peripheral immune system. Glia 36: 156–164.
    • (2001) Glia , vol.36 , pp. 156-164
    • Williams, K.1    Alvarez, X.2    Lackner, A.A.3
  • 147
    • 37249084760 scopus 로고    scopus 로고
    • Reoxy-genation stress on blood–brain barrier paracellular permeability and edema in the rat
    • Witt KA, Mark KS, Sandoval KE, Davis TP. 2008. Reoxy-genation stress on blood–brain barrier paracellular permeability and edema in the rat. Microvasc Res 75: 91–96.
    • (2008) Microvasc Res , vol.75 , pp. 91-96
    • Witt, K.A.1    Mark, K.S.2    Sandoval, K.E.3    Davis, T.P.4
  • 149
    • 0031047483 scopus 로고    scopus 로고
    • A syntheticpeptide corresponding to the extracellular domain of occludin perturbs the tight junction permeability barrier
    • Wong V, Gumbiner BM. 1997. A synthetic peptide corresponding to the extracellular domain of occludin perturbs the tight junction permeability barrier. J Cell Biol 136: 399–409.
    • (1997) J Cell Biol , vol.136 , pp. 399-409
    • Wong, V.1    Gumbiner, B.M.2
  • 152
    • 12144289950 scopus 로고    scopus 로고
    • Vascular development in the retina and inner ear: Control by Norrin and Frizzled-4, a high-affinity ligand-receptor pair
    • Xu Q, Wang Y, Dabdoub A, Smallwood PM, Williams J, Woods C, Kelley MW, Jiang L, Tasman W, Zhang K, et al. 2004. Vascular development in the retina and inner ear: Control by Norrin and Frizzled-4, a high-affinity ligand-receptor pair. Cell 116: 883–895.
    • (2004) Cell , vol.116 , pp. 883-895
    • Xu, Q.1    Wang, Y.2    Dabdoub, A.3    Smallwood, P.M.4    Williams, J.5    Woods, C.6    Kelley, M.W.7    Jiang, L.8    Tasman, W.9    Zhang, K.10
  • 153
    • 77956267435 scopus 로고    scopus 로고
    • The Norrin/Frizzled4 signaling pathway in retinal vascular development and disease
    • Ye X, Wang Y, Nathans J. 2010. The Norrin/Frizzled4 signaling pathway in retinal vascular development and disease. Trends Mol Med 16: 417–425.
    • (2010) Trends Mol Med , vol.16 , pp. 417-425
    • Ye, X.1    Wang, Y.2    Nathans, J.3
  • 154
    • 0042344708 scopus 로고    scopus 로고
    • Protein kinase signaling in the modulation of microvascular permeability
    • Yuan SY. 2002. Protein kinase signaling in the modulation of microvascular permeability. Vascul Pharmacol 39: 213–223.
    • (2002) Vascul Pharmacol , vol.39 , pp. 213-223
    • Yuan, S.Y.1
  • 155
    • 79955915694 scopus 로고    scopus 로고
    • Vascular endothelial growth factor increases permeability of the blood–tumor barrier via caveolae-me-diated transcellular pathway
    • Zhao LN, Yang ZH, Liu YH, Ying HQ, Zhang H, Xue YX. 2011. Vascular endothelial growth factor increases permeability of the blood–tumor barrier via caveolae-me-diated transcellular pathway. J Mol Neurosci 44: 122–129.
    • (2011) J Mol Neurosci , vol.44 , pp. 122-129
    • Zhao, L.N.1    Yang, Z.H.2    Liu, Y.H.3    Ying, H.Q.4    Zhang, H.5    Xue, Y.X.6
  • 156
    • 38149090292 scopus 로고    scopus 로고
    • The blood–brain barrier in health and chronic neurodegenerative disorders
    • Zlokovic BV. 2008. The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron 57: 178–201.
    • (2008) Neuron , vol.57 , pp. 178-201
    • Zlokovic, B.V.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.