-
1
-
-
84906861454
-
Brain imaging analysis
-
Bowman FD. Brain imaging analysis. Annu Rev Stat Appl 2014, 1:61-85.
-
(2014)
Annu Rev Stat Appl
, vol.1
, pp. 61-85
-
-
Bowman, F.D.1
-
3
-
-
67649342618
-
The statistical analysis of fMRI data
-
Lindquist M. The statistical analysis of fMRI data. Stat Sci 2008, 230:439-464.
-
(2008)
Stat Sci
, vol.230
, pp. 439-464
-
-
Lindquist, M.1
-
6
-
-
84862985067
-
Bayesian inference in fMRI
-
Woolrich M. Bayesian inference in fMRI. Neuroimage 2012, 62:801-810.
-
(2012)
Neuroimage
, vol.62
, pp. 801-810
-
-
Woolrich, M.1
-
7
-
-
0028190347
-
Functional and effective connectivity in neuroimaging: a synthesis
-
Friston KJ. Functional and effective connectivity in neuroimaging: a synthesis. Hum Brain Mapp 1994, 2:56-78.
-
(1994)
Hum Brain Mapp
, vol.2
, pp. 56-78
-
-
Friston, K.J.1
-
9
-
-
0031021275
-
A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation
-
Buxton R, Frank L. A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation. J Cereb Blood Flow Metab 1997, 170:64-72.
-
(1997)
J Cereb Blood Flow Metab
, vol.170
, pp. 64-72
-
-
Buxton, R.1
Frank, L.2
-
10
-
-
0028998867
-
Analysis of fMRI time-series revisited
-
Friston KJ, Holmes AP, Poline JB, Grasby PJ, Williams SCR, Frackowiak RSJ, Turner R. Analysis of fMRI time-series revisited. Neuroimage 1995, 20:45-53.
-
(1995)
Neuroimage
, vol.20
, pp. 45-53
-
-
Friston, K.J.1
Holmes, A.P.2
Poline, J.B.3
Grasby, P.J.4
Williams, S.C.R.5
Frackowiak, R.S.J.6
Turner, R.7
-
11
-
-
0039377687
-
Non-linear Fourier time series analysis for human brain mapping by functional magnetic resonance imaging
-
Lange N, Zeger SL. Non-linear Fourier time series analysis for human brain mapping by functional magnetic resonance imaging. J R Stat Soc Ser C Appl Stat 1997, 460:1-29.
-
(1997)
J R Stat Soc Ser C Appl Stat
, vol.460
, pp. 1-29
-
-
Lange, N.1
Zeger, S.L.2
-
12
-
-
0031928387
-
Event-related fMRI: characterizing differential responses
-
Friston KJ, Fletcher P, Josephs O, Holmes A, Rugg MD, Turner R. Event-related fMRI: characterizing differential responses. Neuroimage 1998, 70:30-40.
-
(1998)
Neuroimage
, vol.70
, pp. 30-40
-
-
Friston, K.J.1
Fletcher, P.2
Josephs, O.3
Holmes, A.4
Rugg, M.D.5
Turner, R.6
-
13
-
-
34547880428
-
Validity and power in hemodynamic response modeling: a comparison study and a new approach
-
Lindquist M, Wager T. Validity and power in hemodynamic response modeling: a comparison study and a new approach. Hum Brain Mapp 2007, 280:764-784.
-
(2007)
Hum Brain Mapp
, vol.280
, pp. 764-784
-
-
Lindquist, M.1
Wager, T.2
-
14
-
-
33947179549
-
Bayesian fMRI data analysis with sparse spatial basis function priors
-
Flandin G, Penny W. Bayesian fMRI data analysis with sparse spatial basis function priors. Neuroimage 2007, 340:1108-1125.
-
(2007)
Neuroimage
, vol.340
, pp. 1108-1125
-
-
Flandin, G.1
Penny, W.2
-
15
-
-
0042671121
-
Posterior probability maps and SPMs
-
Friston KJ, Penny W. Posterior probability maps and SPMs. Neuroimage 2003, 190:1240-1249.
-
(2003)
Neuroimage
, vol.190
, pp. 1240-1249
-
-
Friston, K.J.1
Penny, W.2
-
16
-
-
0035013277
-
Bayesian spatio-temporal inference in functional magnetic resonance imaging
-
Gössl C, Auer D, Fahrmeir L. Bayesian spatio-temporal inference in functional magnetic resonance imaging. Biometrics 2001, 570:554-562.
-
(2001)
Biometrics
, vol.570
, pp. 554-562
-
-
Gössl, C.1
Auer, D.2
Fahrmeir, L.3
-
17
-
-
77549088909
-
A Bayesian spatiotemporal model for very large data sets
-
Harrison L, Green G. A Bayesian spatiotemporal model for very large data sets. Neuroimage 2010, 500:1126-1141.
-
(2010)
Neuroimage
, vol.500
, pp. 1126-1141
-
-
Harrison, L.1
Green, G.2
-
18
-
-
44149098492
-
Diffusion-based spatial priors for functional magnetic resonance images
-
Harrison L, Penny W, Daunizeau J, Friston KJ. Diffusion-based spatial priors for functional magnetic resonance images. Neuroimage 2008, 410:408-423.
-
(2008)
Neuroimage
, vol.410
, pp. 408-423
-
-
Harrison, L.1
Penny, W.2
Daunizeau, J.3
Friston, K.J.4
-
19
-
-
84875939607
-
A wavelet-based Bayesian approach to regression models with long memory errors and its application to fMRI data
-
Jeong J, Vannucci M, Ko K. A wavelet-based Bayesian approach to regression models with long memory errors and its application to fMRI data. Biometrics 2013, 69:184-196.
-
(2013)
Biometrics
, vol.69
, pp. 184-196
-
-
Jeong, J.1
Vannucci, M.2
Ko, K.3
-
20
-
-
84894528817
-
Classification of brain activation via spatial Bayesian variable selection in fMRI regression
-
Kalus S, Sämann P, Fahrmeir L. Classification of brain activation via spatial Bayesian variable selection in fMRI regression. Adv Data Anal Classification 2014, 8:63-83.
-
(2014)
Adv Data Anal Classification
, vol.8
, pp. 63-83
-
-
Kalus, S.1
Sämann, P.2
Fahrmeir, L.3
-
21
-
-
84916894479
-
Spatial Bayesian variable selection models on functional magnetic resonance imaging time-series data
-
Lee K, Jones GL, Caffo BS, Bassett SS. Spatial Bayesian variable selection models on functional magnetic resonance imaging time-series data. Bayesian Anal 2014, 90:699-732.
-
(2014)
Bayesian Anal
, vol.90
, pp. 699-732
-
-
Lee, K.1
Jones, G.L.2
Caffo, B.S.3
Bassett, S.S.4
-
22
-
-
0042671302
-
Variational Bayesian inference for fMRI time series
-
Penny W, Kiebel S, Friston KJ. Variational Bayesian inference for fMRI time series. Neuroimage 2003, 190:727-741.
-
(2003)
Neuroimage
, vol.190
, pp. 727-741
-
-
Penny, W.1
Kiebel, S.2
Friston, K.J.3
-
23
-
-
16244387927
-
Bayesian fMRI time series analysis with spatial priors
-
Penny W, Trujillo-Barreto N, Friston KJ. Bayesian fMRI time series analysis with spatial priors. Neuroimage 2005, 240:350-362.
-
(2005)
Neuroimage
, vol.240
, pp. 350-362
-
-
Penny, W.1
Trujillo-Barreto, N.2
Friston, K.J.3
-
24
-
-
70349971910
-
Bayesian spatiotemporal model of fMRI data
-
Quirós A, Diez R, Gamerman D. Bayesian spatiotemporal model of fMRI data. Neuroimage 2010, 490:442-456.
-
(2010)
Neuroimage
, vol.490
, pp. 442-456
-
-
Quirós, A.1
Diez, R.2
Gamerman, D.3
-
25
-
-
34249029761
-
Spatial Bayesian variable selection with application to functional magnetic resonance imaging
-
Smith M, Fahrmeir L. Spatial Bayesian variable selection with application to functional magnetic resonance imaging. J Am Stat Assoc 2007, 1020:417-431.
-
(2007)
J Am Stat Assoc
, vol.1020
, pp. 417-431
-
-
Smith, M.1
Fahrmeir, L.2
-
26
-
-
0142011000
-
Assessing brain activity through spatial Bayesian variable selection
-
Smith M, Pütz B, Auer D, Fahrmeir L. Assessing brain activity through spatial Bayesian variable selection. Neuroimage 2003, 200:802-815.
-
(2003)
Neuroimage
, vol.200
, pp. 802-815
-
-
Smith, M.1
Pütz, B.2
Auer, D.3
Fahrmeir, L.4
-
27
-
-
1342303479
-
Fully Bayesian spatio-temporal modeling of fMRI data
-
Woolrich M, Jenkinson M, Brady J, Smith S. Fully Bayesian spatio-temporal modeling of fMRI data. IEEE Trans Med Imaging 2004, 230:213-231.
-
(2004)
IEEE Trans Med Imaging
, vol.230
, pp. 213-231
-
-
Woolrich, M.1
Jenkinson, M.2
Brady, J.3
Smith, S.4
-
29
-
-
84899692109
-
A spatio-temporal nonparametric Bayesian variable selection model of fMRI data for clustering correlated time courses
-
Zhang L, Guindani M, Versace F, Vannucci M. A spatio-temporal nonparametric Bayesian variable selection model of fMRI data for clustering correlated time courses. Neuroimage 2014, 95:162-175.
-
(2014)
Neuroimage
, vol.95
, pp. 162-175
-
-
Zhang, L.1
Guindani, M.2
Versace, F.3
Vannucci, M.4
-
30
-
-
0036323974
-
A general statistical analysis for fMRI data
-
Worsley KJ, Liao CH, Aston J, Petre V, Duncan GH, Morales F, Evans AC. A general statistical analysis for fMRI data. Neuroimage 2002, 150:1-15.
-
(2002)
Neuroimage
, vol.150
, pp. 1-15
-
-
Worsley, K.J.1
Liao, C.H.2
Aston, J.3
Petre, V.4
Duncan, G.H.5
Morales, F.6
Evans, A.C.7
-
31
-
-
0026235175
-
Filtering noise from images with wavelet transforms
-
Weaver JB, Xu Y, Healy DM, Cromwell LD. Filtering noise from images with wavelet transforms. Magn Reson Med 1991, 21:288-295.
-
(1991)
Magn Reson Med
, vol.21
, pp. 288-295
-
-
Weaver, J.B.1
Xu, Y.2
Healy, D.M.3
Cromwell, L.D.4
-
32
-
-
0032789990
-
Investigation of low frequency drift in fMRI signal
-
Smith A, Lewis B, Ruttimann U, Ye F, Sinwell T, Yang Y, Duyn J, Frank J. Investigation of low frequency drift in fMRI signal. Neuroimage 1999, 90:526-533.
-
(1999)
Neuroimage
, vol.90
, pp. 526-533
-
-
Smith, A.1
Lewis, B.2
Ruttimann, U.3
Ye, F.4
Sinwell, T.5
Yang, Y.6
Duyn, J.7
Frank, J.8
-
33
-
-
7044229944
-
Wavelets and functional magnetic resonance imaging of the human brain
-
Bullmore E, Fadili J, Maxim V, Şendur L, Whitcher B, Suckling J, Brammer M, Breakspear M. Wavelets and functional magnetic resonance imaging of the human brain. Neuroimage 2004, 23:234-249.
-
(2004)
Neuroimage
, vol.23
, pp. 234-249
-
-
Bullmore, E.1
Fadili, J.2
Maxim, V.3
Şendur, L.4
Whitcher, B.5
Suckling, J.6
Brammer, M.7
Breakspear, M.8
-
34
-
-
0036328554
-
Wavelet-generalised least squares: a new BLU estimator of linear regression models with 1/f errors
-
Fadili MJ, Bullmore ET. Wavelet-generalised least squares: a new BLU estimator of linear regression models with 1/f errors. Neuroimage 2002, 15:217-232.
-
(2002)
Neuroimage
, vol.15
, pp. 217-232
-
-
Fadili, M.J.1
Bullmore, E.T.2
-
35
-
-
0038660249
-
Wavelet-based estimation of a semiparametric generalized linear model of fMRI time-series
-
Meyer FG. Wavelet-based estimation of a semiparametric generalized linear model of fMRI time-series. IEEE Trans Med Imaging 2003, 220:315-322.
-
(2003)
IEEE Trans Med Imaging
, vol.220
, pp. 315-322
-
-
Meyer, F.G.1
-
37
-
-
0031526204
-
Approaches for Bayesian variable selection
-
George EI, McCulloch RE. Approaches for Bayesian variable selection. Stat Sinica 1997, 70:339-373.
-
(1997)
Stat Sinica
, vol.70
, pp. 339-373
-
-
George, E.I.1
McCulloch, R.E.2
-
38
-
-
4444239427
-
Bayesian variable selection in multinomial probit models to indentify molecular signatures of disease stage
-
Sha N, Vannucci M, Tadesse MG, Brown PJ, Dragoni I, Davies N, Roberts TC, Contestabile A, Salmon M, Buckley C, et al. Bayesian variable selection in multinomial probit models to indentify molecular signatures of disease stage. Biometrics 2004, 600:812-819.
-
(2004)
Biometrics
, vol.600
, pp. 812-819
-
-
Sha, N.1
Vannucci, M.2
Tadesse, M.G.3
Brown, P.J.4
Dragoni, I.5
Davies, N.6
Roberts, T.C.7
Contestabile, A.8
Salmon, M.9
Buckley, C.10
-
39
-
-
1842504499
-
Constrained linear basis sets for HRF modelling using variational Bayes
-
Woolrich M, Behrens T, Smith S. Constrained linear basis sets for HRF modelling using variational Bayes. Neuroimage 2004, 210:1748-1761.
-
(2004)
Neuroimage
, vol.210
, pp. 1748-1761
-
-
Woolrich, M.1
Behrens, T.2
Smith, S.3
-
40
-
-
0036334982
-
Classical and Bayesian inference in neuroimaging: theory
-
Friston K, Penny W, Phillips C, Kiebel S, Hinton G, Ashburner J. Classical and Bayesian inference in neuroimaging: theory. Neuroimage 2002, 16:465-483.
-
(2002)
Neuroimage
, vol.16
, pp. 465-483
-
-
Friston, K.1
Penny, W.2
Phillips, C.3
Kiebel, S.4
Hinton, G.5
Ashburner, J.6
-
41
-
-
1042301100
-
Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping
-
Goebel R, Roebroeck A, Kim D, Formisano E. Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping. Magn Reson Imaging 2003, 210:1251-1261.
-
(2003)
Magn Reson Imaging
, vol.210
, pp. 1251-1261
-
-
Goebel, R.1
Roebroeck, A.2
Kim, D.3
Formisano, E.4
-
43
-
-
4444235995
-
Detecting differential gene expression with a semiparametric hierarchical mixture method
-
Newton MA, Noueiry A, Sarkar D, Ahlquist P. Detecting differential gene expression with a semiparametric hierarchical mixture method. Biostatistics 2004, 50:155-176.
-
(2004)
Biostatistics
, vol.50
, pp. 155-176
-
-
Newton, M.A.1
Noueiry, A.2
Sarkar, D.3
Ahlquist, P.4
-
44
-
-
41349110333
-
FDR and Bayesian multiple comparisons rules
-
In: Bernardo JM, Bayarri MJ, Berger JO, Dawid AP, Heckerman D, Smith AFM, West M, eds. . Oxford: Oxford University Press; .
-
Müller P, Parmigiani G, Rice K. FDR and Bayesian multiple comparisons rules. In: Bernardo JM, Bayarri MJ, Berger JO, Dawid AP, Heckerman D, Smith AFM, West M, eds. Bayesian Statistics 8. Oxford: Oxford University Press; 2007.
-
(2007)
Bayesian Statistics 8
-
-
Müller, P.1
Parmigiani, G.2
Rice, K.3
-
46
-
-
84897577693
-
Nonlinear responses in fMRI: the Balloon model, Volterra kernels and other hemodynamics
-
Friston KJ, Mechelli A, Turner E, Price CJ. Nonlinear responses in fMRI: the Balloon model, Volterra kernels and other hemodynamics. Neuroimage 2000, 9:416-429.
-
(2000)
Neuroimage
, vol.9
, pp. 416-429
-
-
Friston, K.J.1
Mechelli, A.2
Turner, E.3
Price, C.J.4
-
47
-
-
14244266641
-
Accounting for nonlinear bold effects in fmri: parameter estimates and a model for prediction in rapid event-related studies
-
Wager TD, Vazquez A, Hernandez L, Noll DC. Accounting for nonlinear bold effects in fmri: parameter estimates and a model for prediction in rapid event-related studies. Neuroimage 2005, 25:206-218.
-
(2005)
Neuroimage
, vol.25
, pp. 206-218
-
-
Wager, T.D.1
Vazquez, A.2
Hernandez, L.3
Noll, D.C.4
-
48
-
-
2242458721
-
A Bayesian time-course model for functional magnetic resonance imaging data
-
Genovese CR. A Bayesian time-course model for functional magnetic resonance imaging data. J Am Stat Assoc 2000, 950:691-703.
-
(2000)
J Am Stat Assoc
, vol.950
, pp. 691-703
-
-
Genovese, C.R.1
-
49
-
-
79961042326
-
Adaptive spatial smoothing of fMRI images
-
Yue Y, Loh J, Lindquist MA. Adaptive spatial smoothing of fMRI images. Stat Interf 2010, 3:3-13.
-
(2010)
Stat Interf
, vol.3
, pp. 3-13
-
-
Yue, Y.1
Loh, J.2
Lindquist, M.A.3
-
50
-
-
11844293467
-
Mixture models with adaptive spatial regularization for segmentation with an application to fMRI data
-
Woolrich M, Behrens T, Beckmann C, Smith S. Mixture models with adaptive spatial regularization for segmentation with an application to fMRI data. IEEE Trans Med Imaging 2005, 240:1-11.
-
(2005)
IEEE Trans Med Imaging
, vol.240
, pp. 1-11
-
-
Woolrich, M.1
Behrens, T.2
Beckmann, C.3
Smith, S.4
-
51
-
-
84881450950
-
A Bayesian non-parametric Potts model with application to pre-surgical fMRI data
-
Johnson T, Liu Z, Bartsch A, Nichols T. A Bayesian non-parametric Potts model with application to pre-surgical fMRI data. Stat Methods Med Res 2013, 220:364-381.
-
(2013)
Stat Methods Med Res
, vol.220
, pp. 364-381
-
-
Johnson, T.1
Liu, Z.2
Bartsch, A.3
Nichols, T.4
-
53
-
-
0001120413
-
A Bayesian analysis of some nonparametric problems
-
Ferguson TS. A Bayesian analysis of some nonparametric problems. Ann Stat 1973, 10:209-230.
-
(1973)
Ann Stat
, vol.10
, pp. 209-230
-
-
Ferguson, T.S.1
-
54
-
-
36148954681
-
A Bayesian hierarchical framework for spatial modeling of fMRI data
-
Bowman F, Caffo B, Bassett S, Kilts C. A Bayesian hierarchical framework for spatial modeling of fMRI data. Neuroimage 2008, 390:146-156.
-
(2008)
Neuroimage
, vol.390
, pp. 146-156
-
-
Bowman, F.1
Caffo, B.2
Bassett, S.3
Kilts, C.4
-
55
-
-
84866150436
-
Bayesian hierarchical multi-subject multiscale analysis of functional MRI data
-
Sanyal N, Ferreira M. Bayesian hierarchical multi-subject multiscale analysis of functional MRI data. Neuroimage 2012, 630:1519-1531.
-
(2012)
Neuroimage
, vol.630
, pp. 1519-1531
-
-
Sanyal, N.1
Ferreira, M.2
-
56
-
-
21944448369
-
Generalisability, random effects & population inference
-
S754
-
Holmes AP, Friston KJ. Generalisability, random effects & population inference. Neuroimage 1998, 7:S754.
-
(1998)
Neuroimage
, vol.7
-
-
Holmes, A.P.1
Friston, K.J.2
-
57
-
-
61449120189
-
Modified test statistics by inter-voxel variance shrinkage with an application to fMRI
-
Su S, Caffo B, Garrett-Mayer E, Bassett S. Modified test statistics by inter-voxel variance shrinkage with an application to fMRI. Biostatistics 2009, 100:219-227.
-
(2009)
Biostatistics
, vol.100
, pp. 219-227
-
-
Su, S.1
Caffo, B.2
Garrett-Mayer, E.3
Bassett, S.4
-
58
-
-
70450242686
-
Modeling inter-subject variability in fMRI activation location: A Bayesian hierarchical spatial model
-
Xu L, Johnson TD, Nichols TE, Nee DE. Modeling inter-subject variability in fMRI activation location: A Bayesian hierarchical spatial model. Biometrics 2009, 650:1041-1051.
-
(2009)
Biometrics
, vol.650
, pp. 1041-1051
-
-
Xu, L.1
Johnson, T.D.2
Nichols, T.E.3
Nee, D.E.4
-
59
-
-
34548457746
-
High level group analsis of fMRI data based on Dirichlet process mixture models
-
Thirion B, Tucholka A, Keller M, Pinel P, Roche A, Mangin J, Poline J. High level group analsis of fMRI data based on Dirichlet process mixture models. Inf Process Med Imaging 2007, 20:482-494.
-
(2007)
Inf Process Med Imaging
, vol.20
, pp. 482-494
-
-
Thirion, B.1
Tucholka, A.2
Keller, M.3
Pinel, P.4
Roche, A.5
Mangin, J.6
Poline, J.7
-
60
-
-
56349160115
-
Multiple-subjects connectivity-based parcellation using hierarchical Dirichlet process mixture models
-
Jbabdi S, Woolrich M, Behrens T. Multiple-subjects connectivity-based parcellation using hierarchical Dirichlet process mixture models. Neuroimage 2009, 440:373-384.
-
(2009)
Neuroimage
, vol.440
, pp. 373-384
-
-
Jbabdi, S.1
Woolrich, M.2
Behrens, T.3
-
61
-
-
81355137473
-
Functional and effective connectivity: a review
-
Friston KJ. Functional and effective connectivity: a review. Brain Connectivity 2011, 10:13-36.
-
(2011)
Brain Connectivity
, vol.10
, pp. 13-36
-
-
Friston, K.J.1
-
62
-
-
84858138977
-
On the use of correlation as a measure of network connectivity
-
Zalesky A, Fornito A, Bullmore E. On the use of correlation as a measure of network connectivity. Neuroimage 2012, 60:2096-2106.
-
(2012)
Neuroimage
, vol.60
, pp. 2096-2106
-
-
Zalesky, A.1
Fornito, A.2
Bullmore, E.3
-
63
-
-
0032986174
-
Principal component analysis of the dynamic response measured by fMRI: a generalized linear systems framework
-
Andersen AH, Gash DM, Avison MJ. Principal component analysis of the dynamic response measured by fMRI: a generalized linear systems framework. Magn Reson Imaging 1999, 170:795-815.
-
(1999)
Magn Reson Imaging
, vol.170
, pp. 795-815
-
-
Andersen, A.H.1
Gash, D.M.2
Avison, M.J.3
-
64
-
-
0034753663
-
A method for making group inferences from functional MRI data using independent component analysis
-
Calhoun VD, Adali T, Pearlson GD, Pekar JJ. A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp 2001, 140:140-151.
-
(2001)
Hum Brain Mapp
, vol.140
, pp. 140-151
-
-
Calhoun, V.D.1
Adali, T.2
Pearlson, G.D.3
Pekar, J.J.4
-
65
-
-
0031861367
-
Analysis of fMRI data by blind separation into independent spatial components
-
McKeown M, Makeig S, Brown G, Jung T, Kindermann S, Bell A, Sejnowski T. Analysis of fMRI data by blind separation into independent spatial components. Hum Brain Mapp 1998, 6:160-188.
-
(1998)
Hum Brain Mapp
, vol.6
, pp. 160-188
-
-
McKeown, M.1
Makeig, S.2
Brown, G.3
Jung, T.4
Kindermann, S.5
Bell, A.6
Sejnowski, T.7
-
66
-
-
84861338060
-
Dynamic connectivity regression: determining state-related changes in brain connectivity
-
Cribben I, Haraldsdottir R, Atlas LY, Wager TD, Lindquist MA. Dynamic connectivity regression: determining state-related changes in brain connectivity. Neuroimage 2012, 61:907-920.
-
(2012)
Neuroimage
, vol.61
, pp. 907-920
-
-
Cribben, I.1
Haraldsdottir, R.2
Atlas, L.Y.3
Wager, T.D.4
Lindquist, M.A.5
-
67
-
-
85161970602
-
Brain covariance selection: better individual functional connectivity models using population prior
-
In: Zemel R, Shawe-Taylor J, eds. . Vancouver, Canada: Curran Associates, Inc.; :-.
-
Varoquaux G, Gramfort A, Poline JB, Thirion B, Zemel R, Shawe-Taylor J. Brain covariance selection: better individual functional connectivity models using population prior. In: Zemel R, Shawe-Taylor J, eds. Advances in Neural Information Processing Systems. Vancouver, Canada: Curran Associates, Inc.; 2010:2334-2342.
-
(2010)
Advances in Neural Information Processing Systems
, pp. 2334-2342
-
-
Varoquaux, G.1
Gramfort, A.2
Poline, J.B.3
Thirion, B.4
Zemel, R.5
Shawe-Taylor, J.6
-
68
-
-
33646882349
-
A Bayesian approach to determining connectivity of the human brain
-
Patel R, Bowman F, Rilling J. A Bayesian approach to determining connectivity of the human brain. Hum Brain Mapp 2006, 270:462-470.
-
(2006)
Hum Brain Mapp
, vol.270
, pp. 462-470
-
-
Patel, R.1
Bowman, F.2
Rilling, J.3
-
69
-
-
33646882349
-
Determining hierarchical functional networks from auditory stimuli fMRI
-
Patel R, Bowman F, Rilling J. Determining hierarchical functional networks from auditory stimuli fMRI. Hum Brain Mapp 2006, 270:462-470.
-
(2006)
Hum Brain Mapp
, vol.270
, pp. 462-470
-
-
Patel, R.1
Bowman, F.2
Rilling, J.3
-
70
-
-
84902206379
-
Inferring functional interaction and transition patterns via dynamic Bayesian variable partition models
-
Zhang J, Li X, Li C, Lian Z, Huang X, Zhong G, Zhu D, Li K, Jin C, Hu X. Inferring functional interaction and transition patterns via dynamic Bayesian variable partition models. Hum Brain Mapp 2014, 35:3314-3331.
-
(2014)
Hum Brain Mapp
, vol.35
, pp. 3314-3331
-
-
Zhang, J.1
Li, X.2
Li, C.3
Lian, Z.4
Huang, X.5
Zhong, G.6
Zhu, D.7
Li, K.8
Jin, C.9
Hu, X.10
-
71
-
-
0030666829
-
Modulation of connectivity in visual pathways by attention: cortical interactions evaluated with structural equation modelling and fMRI
-
Büchel C, Friston KJ. Modulation of connectivity in visual pathways by attention: cortical interactions evaluated with structural equation modelling and fMRI. Cereb Cortex 1997, 70:768-778.
-
(1997)
Cereb Cortex
, vol.70
, pp. 768-778
-
-
Büchel, C.1
Friston, K.J.2
-
72
-
-
0028312413
-
Structural equation modeling and its application to network analysis in functional brain imaging
-
Mclntosh A, Gonzalez-Lima F. Structural equation modeling and its application to network analysis in functional brain imaging. Hum Brain Mapp 1994, 20:2-22.
-
(1994)
Hum Brain Mapp
, vol.20
, pp. 2-22
-
-
Mclntosh, A.1
Gonzalez-Lima, F.2
-
74
-
-
0042178307
-
Multivariate autoregressive modeling of fMRI time series
-
Harrison L, Penny W, Friston KJ. Multivariate autoregressive modeling of fMRI time series. Neuroimage 2003, 190:1477-1491.
-
(2003)
Neuroimage
, vol.190
, pp. 1477-1491
-
-
Harrison, L.1
Penny, W.2
Friston, K.J.3
-
75
-
-
33746860833
-
Learning functional structure from fMR images
-
Zheng X, Rajapakse JC. Learning functional structure from fMR images. Neuroimage 2006, 310:1601-1613.
-
(2006)
Neuroimage
, vol.310
, pp. 1601-1613
-
-
Zheng, X.1
Rajapakse, J.C.2
-
76
-
-
0033247467
-
Bayesian estimation and testing of structural equation models
-
Scheines R, Hoijtink H, Boomsma A. Bayesian estimation and testing of structural equation models. Psychometrika 1999, 64:37-52.
-
(1999)
Psychometrika
, vol.64
, pp. 37-52
-
-
Scheines, R.1
Hoijtink, H.2
Boomsma, A.3
-
77
-
-
0000351727
-
Investigating causal relations by econometric models and cross-spectral methods
-
Granger C. Investigating causal relations by econometric models and cross-spectral methods. Econometrica 1969, 36:424-438.
-
(1969)
Econometrica
, vol.36
, pp. 424-438
-
-
Granger, C.1
-
78
-
-
83055194440
-
The danger of systematic bias in group-level FMRI-lag-based causality estimation
-
Smith SM, Bandettini PA, Miller KL, Behrens TEJ, Friston KJ, David O, Liue T, Woolrich M, Nichols TE. The danger of systematic bias in group-level FMRI-lag-based causality estimation. Neuroimage 2012, 59:1228-1229.
-
(2012)
Neuroimage
, vol.59
, pp. 1228-1229
-
-
Smith, S.M.1
Bandettini, P.A.2
Miller, K.L.3
Behrens, T.E.J.4
Friston, K.J.5
David, O.6
Liue, T.7
Woolrich, M.8
Nichols, T.E.9
-
79
-
-
78649717035
-
Network modeling methods for FMRI
-
Smith SM, Miller KL, Salimi-Khorshidi G, Webster M, Beckmann C, Nichols T, Ramsey J, Woolrich M. Network modeling methods for FMRI. Neuroimage 2011, 54:875-891.
-
(2011)
Neuroimage
, vol.54
, pp. 875-891
-
-
Smith, S.M.1
Miller, K.L.2
Salimi-Khorshidi, G.3
Webster, M.4
Beckmann, C.5
Nichols, T.6
Ramsey, J.7
Woolrich, M.8
-
80
-
-
61349120207
-
Causal modelling and brain connectivity in functional magnetic resonance imaging
-
Friston K. Causal modelling and brain connectivity in functional magnetic resonance imaging. PLoS Biol 2009, 7:e33.
-
(2009)
PLoS Biol
, vol.7
, pp. e33
-
-
Friston, K.1
-
81
-
-
77955306267
-
Dynamic Granger causality based on Kalman filter for evaluation of functional network connectivity in fMRI data
-
Havlicek M, Jan J, Brazdil M, Calhoun VD. Dynamic Granger causality based on Kalman filter for evaluation of functional network connectivity in fMRI data. Neuroimage 2010, 53:65-77.
-
(2010)
Neuroimage
, vol.53
, pp. 65-77
-
-
Havlicek, M.1
Jan, J.2
Brazdil, M.3
Calhoun, V.D.4
-
82
-
-
33645775748
-
A Bayesian approach to modeling dynamic effective connectivity with fMRI data
-
Bhattacharya S, Ho M, Purkayastha S. A Bayesian approach to modeling dynamic effective connectivity with fMRI data. Neuroimage 2006, 30:794-812.
-
(2006)
Neuroimage
, vol.30
, pp. 794-812
-
-
Bhattacharya, S.1
Ho, M.2
Purkayastha, S.3
-
83
-
-
84873486762
-
A nonstationary nonparametric Bayesian approach to dynamically modeling effective connectivity in functional magnetic resonance imaging experiments
-
Bhattacharya S, Maitra R. A nonstationary nonparametric Bayesian approach to dynamically modeling effective connectivity in functional magnetic resonance imaging experiments. Ann Appl Stat 2011, 50:1183-1206.
-
(2011)
Ann Appl Stat
, vol.50
, pp. 1183-1206
-
-
Bhattacharya, S.1
Maitra, R.2
-
84
-
-
84919428034
-
-
A Bayesian model for activation and connectivity in task-related fMRI data. Submitted for publication.
-
Yu Z, Ombao H, Prado R, Burke E. A Bayesian model for activation and connectivity in task-related fMRI data. Submitted for publication.
-
-
-
Yu, Z.1
Ombao, H.2
Prado, R.3
Burke, E.4
-
85
-
-
84887886445
-
Hierarchical vector auto-regressive models and their applications to multi-subject effective connectivity
-
Gorrostieta C, Fiecas M, Ombao H, Burke E, CramerS. Hierarchical vector auto-regressive models and their applications to multi-subject effective connectivity. Front Comput Neurosci 2013, 7.
-
(2013)
Front Comput Neurosci
, vol.7
-
-
Gorrostieta, C.1
Fiecas, M.2
Ombao, H.3
Burke, E.4
Cramer, S.5
-
86
-
-
78649648075
-
Multivariate dynamical systems models for estimating causal interactions in fMRI
-
Ryali S, Supekar K, Chen T, Menon V. Multivariate dynamical systems models for estimating causal interactions in fMRI. Neuroimage 2011, 54:807-823.
-
(2011)
Neuroimage
, vol.54
, pp. 807-823
-
-
Ryali, S.1
Supekar, K.2
Chen, T.3
Menon, V.4
-
87
-
-
55349122522
-
Hybrid ICA-Bayesian network approach reveals distinct effective connectivity differences in schizophrenia
-
Kim D, Burge J, Lane T, Pearlson G, Kiehl K, Calhoun VD. Hybrid ICA-Bayesian network approach reveals distinct effective connectivity differences in schizophrenia. Neuroimage 2008, 420:1560-1568.
-
(2008)
Neuroimage
, vol.420
, pp. 1560-1568
-
-
Kim, D.1
Burge, J.2
Lane, T.3
Pearlson, G.4
Kiehl, K.5
Calhoun, V.D.6
-
88
-
-
44249123488
-
Dynamic Bayesian network modeling of fMRI: a comparison of group-analysis methods
-
Li J, Wang Z, Palmer S, McKeown M. Dynamic Bayesian network modeling of fMRI: a comparison of group-analysis methods. Neuroimage 2008, 410:398-407.
-
(2008)
Neuroimage
, vol.410
, pp. 398-407
-
-
Li, J.1
Wang, Z.2
Palmer, S.3
McKeown, M.4
-
89
-
-
79955479652
-
Large-scale directional connections among multi resting-state neural networks in human brain: a functional MRI and Bayesian network modeling study
-
Li R, Chen K, Fleisher A, Reiman E, Yao L, WuX. Large-scale directional connections among multi resting-state neural networks in human brain: a functional MRI and Bayesian network modeling study. Neuroimage 2011, 560:1035-1042.
-
(2011)
Neuroimage
, vol.560
, pp. 1035-1042
-
-
Li, R.1
Chen, K.2
Fleisher, A.3
Reiman, E.4
Yao, L.5
Wu, X.6
-
90
-
-
84876175622
-
Alterations of directional connectivity among resting-state networks in Alzheimer disease
-
Li R, Wu X, Chen K, Fleisher A, Reiman E, YaoL. Alterations of directional connectivity among resting-state networks in Alzheimer disease. Am J Neuroradiol 2012, 340:340-345.
-
(2012)
Am J Neuroradiol
, vol.340
, pp. 340-345
-
-
Li, R.1
Wu, X.2
Chen, K.3
Fleisher, A.4
Reiman, E.5
Yao, L.6
-
91
-
-
34547839743
-
Learning effective brain connectivity with dynamic Bayesian networks
-
Rajapakse J, Zhou J. Learning effective brain connectivity with dynamic Bayesian networks. Neuroimage 2007, 370:749-760.
-
(2007)
Neuroimage
, vol.370
, pp. 749-760
-
-
Rajapakse, J.1
Zhou, J.2
-
92
-
-
33947544379
-
Dynamic causal models of neural system dynamics: current state and future extensions
-
Stephan K, Harrison L, Kiebel S, David O, Penny W, Friston KJ. Dynamic causal models of neural system dynamics: current state and future extensions. J Biosci 2007, 320:129-144.
-
(2007)
J Biosci
, vol.320
, pp. 129-144
-
-
Stephan, K.1
Harrison, L.2
Kiebel, S.3
David, O.4
Penny, W.5
Friston, K.J.6
-
93
-
-
80051795744
-
Effective connectivity: influence, causality and biophysical modeling
-
Valdes-Sosa PA, Roebroeck A, Daunizeau J, Friston KJ. Effective connectivity: influence, causality and biophysical modeling. Neuroimage 2011, 58:339-361.
-
(2011)
Neuroimage
, vol.58
, pp. 339-361
-
-
Valdes-Sosa, P.A.1
Roebroeck, A.2
Daunizeau, J.3
Friston, K.J.4
-
94
-
-
70349243080
-
Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models
-
Daunizeau J, Friston KJ, Kiebel S. Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models. Physica D 2009, 2380:2089-2118.
-
(2009)
Physica D
, vol.2380
, pp. 2089-2118
-
-
Daunizeau, J.1
Friston, K.J.2
Kiebel, S.3
-
95
-
-
79957502813
-
Post hoc Bayesian model selection
-
Friston KJ, Penny W. Post hoc Bayesian model selection. Neuroimage 2089-2099, 560:2011.
-
(2089)
Neuroimage
, vol.560
, pp. 2011
-
-
Friston, K.J.1
Penny, W.2
-
96
-
-
79955473472
-
Network discovery with DCM
-
Friston KJ, Li B, Daunizeau J, Stephan K. Network discovery with DCM. Neuroimage 2011, 560:1202-1221.
-
(2011)
Neuroimage
, vol.560
, pp. 1202-1221
-
-
Friston, K.J.1
Li, B.2
Daunizeau, J.3
Stephan, K.4
-
97
-
-
80051788915
-
Generalised filtering and stochastic DCM for fMRI
-
Li B, Daunizeau J, Stephan K, Penny W, Hu D, Friston KJ. Generalised filtering and stochastic DCM for fMRI. Neuroimage 2011, 580:442-457.
-
(2011)
Neuroimage
, vol.580
, pp. 442-457
-
-
Li, B.1
Daunizeau, J.2
Stephan, K.3
Penny, W.4
Hu, D.5
Friston, K.J.6
-
98
-
-
47949122936
-
Nonlinear dynamic causal models for fMRI
-
Stephan K, Kasper L, Harrison L, Daunizeau J, den Ouden H, Breakspear M, Friston KJ. Nonlinear dynamic causal models for fMRI. Neuroimage 2008, 420:649-662.
-
(2008)
Neuroimage
, vol.420
, pp. 649-662
-
-
Stephan, K.1
Kasper, L.2
Harrison, L.3
Daunizeau, J.4
den Ouden, H.5
Breakspear, M.6
Friston, K.J.7
-
99
-
-
51449118420
-
Predicting the brain response to treatment using a Bayesian hierarchical model with application to a study of schizophrenia
-
Guo Y, Bowman FD, Kilts C. Predicting the brain response to treatment using a Bayesian hierarchical model with application to a study of schizophrenia. Hum Brain Mapp 2008, 290:1092-1109.
-
(2008)
Hum Brain Mapp
, vol.290
, pp. 1092-1109
-
-
Guo, Y.1
Bowman, F.D.2
Kilts, C.3
-
100
-
-
84881422357
-
Predicting brain activity using a Bayesian spatial model
-
Derado G, Bowman FD, Zhang L. Predicting brain activity using a Bayesian spatial model. Stat Methods Med Res 2013, 220:382-397.
-
(2013)
Stat Methods Med Res
, vol.220
, pp. 382-397
-
-
Derado, G.1
Bowman, F.D.2
Zhang, L.3
-
102
-
-
75249099795
-
Efficient Bayesian multivariate fMRI analysis using a sparsifying spatio-temporal prior
-
van Gerven MAJ, Cseke B, de Lange FP, Heskes T. Efficient Bayesian multivariate fMRI analysis using a sparsifying spatio-temporal prior. Neuroimage 2010, 500:150-161.
-
(2010)
Neuroimage
, vol.500
, pp. 150-161
-
-
van Gerven, M.A.J.1
Cseke, B.2
de Lange, F.P.3
Heskes, T.4
-
103
-
-
83055181197
-
Decoding episodic memory in ageing: a Bayesian analysis of activity patterns predicting memory
-
Morcom A, Friston KJ. Decoding episodic memory in ageing: a Bayesian analysis of activity patterns predicting memory. Neuroimage 2012, 590:1772-1782.
-
(2012)
Neuroimage
, vol.590
, pp. 1772-1782
-
-
Morcom, A.1
Friston, K.J.2
-
104
-
-
84901808735
-
Smooth scalar-on-image regression via spatial Bayesian variable selection
-
Goldsmith J, Huang L, Crainiceanu CM. Smooth scalar-on-image regression via spatial Bayesian variable selection. J Comput Graph Stat 2014, 230:46-64.
-
(2014)
J Comput Graph Stat
, vol.230
, pp. 46-64
-
-
Goldsmith, J.1
Huang, L.2
Crainiceanu, C.M.3
-
105
-
-
84919428032
-
-
Spatial Bayesian variable selection and grouping in high-dimensional scalar-on-image regressions. Submitted for publication.
-
Li F, Zhang T, Wang Q, Gonzalez MZ, Maresh EL, Coan J. Spatial Bayesian variable selection and grouping in high-dimensional scalar-on-image regressions. Submitted for publication.
-
-
-
Li, F.1
Zhang, T.2
Wang, Q.3
Gonzalez, M.Z.4
Maresh, E.L.5
Coan, J.6
-
106
-
-
84919428031
-
Neuroimage: special issue on multimodal data fusion
-
In press.
-
Calhoun VD, Lemieux L. Neuroimage: special issue on multimodal data fusion. Neuroimage. In press.
-
Neuroimage
-
-
Calhoun, V.D.1
Lemieux, L.2
-
107
-
-
84897036365
-
A review of multivariate analyses in imaging genetics
-
Article 29
-
Liu J, Calhoun VD. A review of multivariate analyses in imaging genetics. Front Neuroinform 2014, 8:Article 29.
-
(2014)
Front Neuroinform
, vol.8
-
-
Liu, J.1
Calhoun, V.D.2
-
108
-
-
84880326040
-
Genetics of the connectome
-
Thompson PM, Ge T, Glahn DC, Jahanshad N, Nichols TE. Genetics of the connectome. Neuroimage 2013, 80:475-488.
-
(2013)
Neuroimage
, vol.80
, pp. 475-488
-
-
Thompson, P.M.1
Ge, T.2
Glahn, D.C.3
Jahanshad, N.4
Nichols, T.E.5
-
110
-
-
26244462082
-
Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain
-
Hämäläinen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV. Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 1993, 650:413-497.
-
(1993)
Rev Mod Phys
, vol.650
, pp. 413-497
-
-
Hämäläinen, M.1
Hari, R.2
Ilmoniemi, R.J.3
Knuutila, J.4
Lounasmaa, O.V.5
-
111
-
-
0035080580
-
Diffusion tensor imaging: concepts and applications
-
Le Bihan D, Mangin J, Poupon C, Clark C, PappataS, Molko N, Chabriat H. Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 2001, 130:534-546.
-
(2001)
J Magn Reson Imaging
, vol.130
, pp. 534-546
-
-
Le Bihan, D.1
Mangin, J.2
Poupon, C.3
Clark, C.4
Pappata, S.5
Molko, N.6
Chabriat, H.7
-
113
-
-
84919428029
-
-
fMRI activation detection with EEG priors. Technical Report 146, University of Munich
-
Kalus S, Sämann P, Czisch M, Fahrmeir L. fMRI activation detection with EEG priors. Technical Report 146, University of Munich, 2013.
-
(2013)
-
-
Kalus, S.1
Sämann, P.2
Czisch, M.3
Fahrmeir, L.4
-
114
-
-
27644488836
-
Assessing the relevance of fMRI-based prior in the EEG inverse problem: a Bayesian model comparison approach
-
Daunizeau J, Grova C, Mattout J, Marrelec G, ClondaD, Goulard B, Pélégrini-Issac M, Lina J, Benali H. Assessing the relevance of fMRI-based prior in the EEG inverse problem: a Bayesian model comparison approach. IEEE Trans Signal Process 2005, 530:3461-3472.
-
(2005)
IEEE Trans Signal Process
, vol.530
, pp. 3461-3472
-
-
Daunizeau, J.1
Grova, C.2
Mattout, J.3
Marrelec, G.4
Clonda, D.5
Goulard, B.6
Pélégrini-Issac, M.7
Lina, J.8
Benali, H.9
-
115
-
-
78349267620
-
A parametric empirical Bayesian framework for fMRI-constrained MEG/EEG source reconstruction
-
Henson R, Flandin G, Friston KJ, Mattout J. A parametric empirical Bayesian framework for fMRI-constrained MEG/EEG source reconstruction. Hum Brain Mapp 2010, 310:1512-1531.
-
(2010)
Hum Brain Mapp
, vol.310
, pp. 1512-1531
-
-
Henson, R.1
Flandin, G.2
Friston, K.J.3
Mattout, J.4
-
116
-
-
41849106408
-
Bayesian brain source imaging based on combined MEG/EEG and fMRI using MCMC
-
Jun S, George J, Kim W, Paré-Blagoev J, Plis S, RankenD, Schmidt D. Bayesian brain source imaging based on combined MEG/EEG and fMRI using MCMC. Neuroimage 2008, 400:1581-1594.
-
(2008)
Neuroimage
, vol.400
, pp. 1581-1594
-
-
Jun, S.1
George, J.2
Kim, W.3
Paré-Blagoev, J.4
Plis, S.5
Ranken, D.6
Schmidt, D.7
-
117
-
-
33645737307
-
MEG source localization under multiple constraints: an extended Bayesian framework
-
Mattout J, Phillips C, Penny W, Rugg M, Friston KJ. MEG source localization under multiple constraints: an extended Bayesian framework. Neuroimage 2006, 300:753-767.
-
(2006)
Neuroimage
, vol.300
, pp. 753-767
-
-
Mattout, J.1
Phillips, C.2
Penny, W.3
Rugg, M.4
Friston, K.J.5
-
118
-
-
12844268707
-
An empirical Bayesian solution to the source reconstruction problem in EEG
-
Phillips C, Mattout J, Rugg M, Maquet P, Friston KJ. An empirical Bayesian solution to the source reconstruction problem in EEG. Neuroimage 2005, 240:997-1011.
-
(2005)
Neuroimage
, vol.240
, pp. 997-1011
-
-
Phillips, C.1
Mattout, J.2
Rugg, M.3
Maquet, P.4
Friston, K.J.5
-
119
-
-
7444245570
-
Hierarchical Bayesian estimation for MEG inverse problem
-
Sato M, Yoshioka T, Kajihara S, Toyama K, GodaN, Doya K, Kawato M. Hierarchical Bayesian estimation for MEG inverse problem. Neuroimage 2004, 230:806-826.
-
(2004)
Neuroimage
, vol.230
, pp. 806-826
-
-
Sato, M.1
Yoshioka, T.2
Kajihara, S.3
Toyama, K.4
Goda, N.5
Doya, K.6
Kawato, M.7
-
120
-
-
67249090617
-
Variational Bayesian framework for estimating parameters of integrated E/MEG and fMRI model
-
In:, Orlando, FL, 72621T-1-72621T-11
-
Babajani-Feremi A, Bowyer S, Moran J, Elisevich K, Soltanian-Zadeh H. Variational Bayesian framework for estimating parameters of integrated E/MEG and fMRI model. In: Proceedings of SPIE 7262, Medical Imaging: Biomedical Applications in Molecular, Structural, and Functional Imaging, Orlando, FL, 2009;72621T-1-72621T-11.
-
(2009)
Proceedings of SPIE 7262, Medical Imaging: Biomedical Applications in Molecular, Structural, and Functional Imaging
-
-
Babajani-Feremi, A.1
Bowyer, S.2
Moran, J.3
Elisevich, K.4
Soltanian-Zadeh, H.5
-
121
-
-
34247384639
-
Symmetrical event-related EEG/fMRI information fusion in a variational Bayesian framework
-
Daunizeau J, Grova C, Marrelec G, Mattout J, JbabdiS, Pélégrini-Issac M, Lina J, Benali H. Symmetrical event-related EEG/fMRI information fusion in a variational Bayesian framework. Neuroimage 2007, 360:69-87.
-
(2007)
Neuroimage
, vol.360
, pp. 69-87
-
-
Daunizeau, J.1
Grova, C.2
Marrelec, G.3
Mattout, J.4
Jbabdi, S.5
Pélégrini-Issac, M.6
Lina, J.7
Benali, H.8
-
122
-
-
77953561807
-
Multimodal functional imaging using fMRI-informed regional EEG/MEG source estimation
-
Ou W, Nummenmaa A, Ahveninen J, Belliveau J, Hämäläinen M, Golland P. Multimodal functional imaging using fMRI-informed regional EEG/MEG source estimation. Neuroimage 2010, 520:97-108.
-
(2010)
Neuroimage
, vol.520
, pp. 97-108
-
-
Ou, W.1
Nummenmaa, A.2
Ahveninen, J.3
Belliveau, J.4
Hämäläinen, M.5
Golland, P.6
-
123
-
-
78951475125
-
Bayesian symmetrical EEG/fMRI fusion with spatially adaptive priors
-
Luessi M, Babacan S, Molina R, Booth J, Katsaggelos A. Bayesian symmetrical EEG/fMRI fusion with spatially adaptive priors. Neuroimage 2011, 550:113-132.
-
(2011)
Neuroimage
, vol.550
, pp. 113-132
-
-
Luessi, M.1
Babacan, S.2
Molina, R.3
Booth, J.4
Katsaggelos, A.5
-
124
-
-
84919428027
-
Fusing DTI and fMRI data: a survey of methods and applications
-
In press.
-
Zhu D, Zhang T, Jiang X, Hu X, Chen H, Yang N, LvJ, Han J, Guo L, Liu T. Fusing DTI and fMRI data: a survey of methods and applications. Neuroimage. In press.
-
Neuroimage
-
-
Zhu, D.1
Zhang, T.2
Jiang, X.3
Hu, X.4
Chen, H.5
Yang, N.6
Lv, J.7
Han, J.8
Guo, L.9
Liu, T.10
-
125
-
-
84863533525
-
Determining functional connectivity using fMRI data with diffusion-based anatomical weighting
-
Bowman FD, Zhang L, Derado G, Chen S. Determining functional connectivity using fMRI data with diffusion-based anatomical weighting. Neuroimage 2012, 62:1769-1779.
-
(2012)
Neuroimage
, vol.62
, pp. 1769-1779
-
-
Bowman, F.D.1
Zhang, L.2
Derado, G.3
Chen, S.4
-
126
-
-
70349787004
-
Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity
-
Damoiseaux JS, Greicius MD. Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity. Brain Struct Funct 2009, 213:525-533.
-
(2009)
Brain Struct Funct
, vol.213
, pp. 525-533
-
-
Damoiseaux, J.S.1
Greicius, M.D.2
-
127
-
-
57749172272
-
Resting-state functional connectivity reflects structural connectivity in the default mode network
-
Greicius MD, Supekar K, Menon V, Dougherty RF. Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex 2009, 19:72-78.
-
(2009)
Cereb Cortex
, vol.19
, pp. 72-78
-
-
Greicius, M.D.1
Supekar, K.2
Menon, V.3
Dougherty, R.F.4
-
128
-
-
84875781969
-
Inferring functional connectivity in MRI using Bayesian network structure learning with a modified PC algorithm
-
Iyer SP, Shafran I, Grayson D, Gates K, Nigg JT, Fair DA. Inferring functional connectivity in MRI using Bayesian network structure learning with a modified PC algorithm. Neuroimage 2013, 75:165-175.
-
(2013)
Neuroimage
, vol.75
, pp. 165-175
-
-
Iyer, S.P.1
Shafran, I.2
Grayson, D.3
Gates, K.4
Nigg, J.T.5
Fair, D.A.6
-
129
-
-
84861334676
-
Multifaceted genomic risk for brain function in schizophrenia
-
Chen J, Calhoun V, Pearlson G, Ehrlich S, Turner J, Ho B, Wassink T, Michael A, Liu J. Multifaceted genomic risk for brain function in schizophrenia. Neuroimage 2012, 610:866-875.
-
(2012)
Neuroimage
, vol.610
, pp. 866-875
-
-
Chen, J.1
Calhoun, V.2
Pearlson, G.3
Ehrlich, S.4
Turner, J.5
Ho, B.6
Wassink, T.7
Michael, A.8
Liu, J.9
-
130
-
-
58149359426
-
Combining fMRI and SNP data to investigate connections between brain function and genetics using parallel ICA
-
Liu J, Pearlson G, Windemuth A, Ruano G, Perrone-Bizzozero N, Calhoun V. Combining fMRI and SNP data to investigate connections between brain function and genetics using parallel ICA. Hum Brain Mapp 2009, 300:241-255.
-
(2009)
Hum Brain Mapp
, vol.300
, pp. 241-255
-
-
Liu, J.1
Pearlson, G.2
Windemuth, A.3
Ruano, G.4
Perrone-Bizzozero, N.5
Calhoun, V.6
-
131
-
-
77956215911
-
Discovering genetic associations with high-dimensional neuroimaging phenotypes: a sparse reduced-rank regression approach
-
Vounou M, Nichols TE, Montana G. Discovering genetic associations with high-dimensional neuroimaging phenotypes: a sparse reduced-rank regression approach. Neuroimage 2010, 530:1147-1159.
-
(2010)
Neuroimage
, vol.530
, pp. 1147-1159
-
-
Vounou, M.1
Nichols, T.E.2
Montana, G.3
-
132
-
-
84886646957
-
An integrative Bayesian modeling approach to imaging genetics
-
Stingo F, Guindani M, Vannucci M, Calhoun V. An integrative Bayesian modeling approach to imaging genetics. J Am Stat Assoc 2013, 1080:876-891.
-
(2013)
J Am Stat Assoc
, vol.1080
, pp. 876-891
-
-
Stingo, F.1
Guindani, M.2
Vannucci, M.3
Calhoun, V.4
-
133
-
-
84919428026
-
-
A Bayesian framework for joint analysis of heterogeneous neuroscience data. Submitted for publication.
-
Salazar E, Nikolova Y, Hariri AR, Carin L. A Bayesian framework for joint analysis of heterogeneous neuroscience data. Submitted for publication.
-
-
-
Salazar, E.1
Nikolova, Y.2
Hariri, A.R.3
Carin, L.4
-
134
-
-
75749118564
-
Genetic control over the resting brain
-
Glahn DC, Winkler AM, Kochunov P, Almasy L, Duggirala R, Carless MA, Curran JC, Olvera RL, Laird AR, Smith SM. Genetic control over the resting brain. Proc Natl Acad Sci USA 2010, 1070:1223-1228.
-
(2010)
Proc Natl Acad Sci USA
, vol.1070
, pp. 1223-1228
-
-
Glahn, D.C.1
Winkler, A.M.2
Kochunov, P.3
Almasy, L.4
Duggirala, R.5
Carless, M.A.6
Curran, J.C.7
Olvera, R.L.8
Laird, A.R.9
Smith, S.M.10
-
135
-
-
33646356512
-
Individual differences in puberty onset in girls: Bayesian estimation of heritabilities and genetic correlations
-
van den Berg SM, Setiawan A, Bartels M, PoldermanT, van der Vaart AW, Boomsma DI. Individual differences in puberty onset in girls: Bayesian estimation of heritabilities and genetic correlations. Behav Genet 2006, 360:261-270.
-
(2006)
Behav Genet
, vol.360
, pp. 261-270
-
-
van den Berg, S.M.1
Setiawan, A.2
Bartels, M.3
Polderman, T.4
van der Vaart, A.W.5
Boomsma, D.I.6
-
137
-
-
62849120031
-
Approximate Bayesian inference for latent Gaussian models by using integrate nested laplace approximations
-
Rue H, Maritno S, Chopin N. Approximate Bayesian inference for latent Gaussian models by using integrate nested laplace approximations. J R Stat Soc Ser B 2009, 71:319-392.
-
(2009)
J R Stat Soc Ser B
, vol.71
, pp. 319-392
-
-
Rue, H.1
Maritno, S.2
Chopin, N.3
-
138
-
-
65549131149
-
Bayesian analysis of neuroimaging data in fsl
-
Woolrich MW, Jbabdi S, Patenaude B, Chappell M, Makni S, Behrens T, Beckmann C, Jenkinson M, Smith S. Bayesian analysis of neuroimaging data in fsl. Neuroimage 2009, 450:S173-186.
-
(2009)
Neuroimage
, vol.450
, pp. S173-S186
-
-
Woolrich, M.W.1
Jbabdi, S.2
Patenaude, B.3
Chappell, M.4
Makni, S.5
Behrens, T.6
Beckmann, C.7
Jenkinson, M.8
Smith, S.9
-
139
-
-
79954452670
-
Meta analysis of functional neuroimaging data via Bayesian spatial point processes
-
Kang J, Johnson TD, Nichols TE, Wager TD. Meta analysis of functional neuroimaging data via Bayesian spatial point processes. J Am Stat Assoc 2011, 1060:124-134.
-
(2011)
J Am Stat Assoc
, vol.1060
, pp. 124-134
-
-
Kang, J.1
Johnson, T.D.2
Nichols, T.E.3
Wager, T.D.4
-
140
-
-
84919428025
-
-
A Bayesian hierarchical spatial point process model for multi-type neuroimaging meta analysis. Ann Appl Stat. In press.
-
Kang J, Nichols TE, Wager TD, Johnson TD. A Bayesian hierarchical spatial point process model for multi-type neuroimaging meta analysis. Ann Appl Stat. In press.
-
-
-
Kang, J.1
Nichols, T.E.2
Wager, T.D.3
Johnson, T.D.4
-
141
-
-
84866244608
-
Meta-analysis of functional neuroimaging data using Bayesian nonparametric binary regression
-
Yue YR, Lindquist MA, Loh J. Meta-analysis of functional neuroimaging data using Bayesian nonparametric binary regression. Ann Appl Stat 2012, 6:697-718.
-
(2012)
Ann Appl Stat
, vol.6
, pp. 697-718
-
-
Yue, Y.R.1
Lindquist, M.A.2
Loh, J.3
|