메뉴 건너뛰기




Volumn 7, Issue 1, 2015, Pages 21-41

Bayesian models for functional magnetic resonance imaging data analysis

Author keywords

Bayesian statistics; Brain connectivity; Classification and prediction; fMRI; Spatiotemporal activation models

Indexed keywords

BAYESIAN NETWORKS; BRAIN; CHEMICAL ACTIVATION; DIFFUSION TENSOR IMAGING; ELECTROPHYSIOLOGY; MAGNETIC RESONANCE IMAGING; TENSORS;

EID: 84919444733     PISSN: 19395108     EISSN: 19390068     Source Type: Journal    
DOI: 10.1002/wics.1339     Document Type: Article
Times cited : (62)

References (141)
  • 1
    • 84906861454 scopus 로고    scopus 로고
    • Brain imaging analysis
    • Bowman FD. Brain imaging analysis. Annu Rev Stat Appl 2014, 1:61-85.
    • (2014) Annu Rev Stat Appl , vol.1 , pp. 61-85
    • Bowman, F.D.1
  • 3
    • 67649342618 scopus 로고    scopus 로고
    • The statistical analysis of fMRI data
    • Lindquist M. The statistical analysis of fMRI data. Stat Sci 2008, 230:439-464.
    • (2008) Stat Sci , vol.230 , pp. 439-464
    • Lindquist, M.1
  • 6
    • 84862985067 scopus 로고    scopus 로고
    • Bayesian inference in fMRI
    • Woolrich M. Bayesian inference in fMRI. Neuroimage 2012, 62:801-810.
    • (2012) Neuroimage , vol.62 , pp. 801-810
    • Woolrich, M.1
  • 7
    • 0028190347 scopus 로고
    • Functional and effective connectivity in neuroimaging: a synthesis
    • Friston KJ. Functional and effective connectivity in neuroimaging: a synthesis. Hum Brain Mapp 1994, 2:56-78.
    • (1994) Hum Brain Mapp , vol.2 , pp. 56-78
    • Friston, K.J.1
  • 9
    • 0031021275 scopus 로고    scopus 로고
    • A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation
    • Buxton R, Frank L. A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation. J Cereb Blood Flow Metab 1997, 170:64-72.
    • (1997) J Cereb Blood Flow Metab , vol.170 , pp. 64-72
    • Buxton, R.1    Frank, L.2
  • 11
    • 0039377687 scopus 로고    scopus 로고
    • Non-linear Fourier time series analysis for human brain mapping by functional magnetic resonance imaging
    • Lange N, Zeger SL. Non-linear Fourier time series analysis for human brain mapping by functional magnetic resonance imaging. J R Stat Soc Ser C Appl Stat 1997, 460:1-29.
    • (1997) J R Stat Soc Ser C Appl Stat , vol.460 , pp. 1-29
    • Lange, N.1    Zeger, S.L.2
  • 13
    • 34547880428 scopus 로고    scopus 로고
    • Validity and power in hemodynamic response modeling: a comparison study and a new approach
    • Lindquist M, Wager T. Validity and power in hemodynamic response modeling: a comparison study and a new approach. Hum Brain Mapp 2007, 280:764-784.
    • (2007) Hum Brain Mapp , vol.280 , pp. 764-784
    • Lindquist, M.1    Wager, T.2
  • 14
    • 33947179549 scopus 로고    scopus 로고
    • Bayesian fMRI data analysis with sparse spatial basis function priors
    • Flandin G, Penny W. Bayesian fMRI data analysis with sparse spatial basis function priors. Neuroimage 2007, 340:1108-1125.
    • (2007) Neuroimage , vol.340 , pp. 1108-1125
    • Flandin, G.1    Penny, W.2
  • 15
    • 0042671121 scopus 로고    scopus 로고
    • Posterior probability maps and SPMs
    • Friston KJ, Penny W. Posterior probability maps and SPMs. Neuroimage 2003, 190:1240-1249.
    • (2003) Neuroimage , vol.190 , pp. 1240-1249
    • Friston, K.J.1    Penny, W.2
  • 16
    • 0035013277 scopus 로고    scopus 로고
    • Bayesian spatio-temporal inference in functional magnetic resonance imaging
    • Gössl C, Auer D, Fahrmeir L. Bayesian spatio-temporal inference in functional magnetic resonance imaging. Biometrics 2001, 570:554-562.
    • (2001) Biometrics , vol.570 , pp. 554-562
    • Gössl, C.1    Auer, D.2    Fahrmeir, L.3
  • 17
    • 77549088909 scopus 로고    scopus 로고
    • A Bayesian spatiotemporal model for very large data sets
    • Harrison L, Green G. A Bayesian spatiotemporal model for very large data sets. Neuroimage 2010, 500:1126-1141.
    • (2010) Neuroimage , vol.500 , pp. 1126-1141
    • Harrison, L.1    Green, G.2
  • 18
    • 44149098492 scopus 로고    scopus 로고
    • Diffusion-based spatial priors for functional magnetic resonance images
    • Harrison L, Penny W, Daunizeau J, Friston KJ. Diffusion-based spatial priors for functional magnetic resonance images. Neuroimage 2008, 410:408-423.
    • (2008) Neuroimage , vol.410 , pp. 408-423
    • Harrison, L.1    Penny, W.2    Daunizeau, J.3    Friston, K.J.4
  • 19
    • 84875939607 scopus 로고    scopus 로고
    • A wavelet-based Bayesian approach to regression models with long memory errors and its application to fMRI data
    • Jeong J, Vannucci M, Ko K. A wavelet-based Bayesian approach to regression models with long memory errors and its application to fMRI data. Biometrics 2013, 69:184-196.
    • (2013) Biometrics , vol.69 , pp. 184-196
    • Jeong, J.1    Vannucci, M.2    Ko, K.3
  • 20
    • 84894528817 scopus 로고    scopus 로고
    • Classification of brain activation via spatial Bayesian variable selection in fMRI regression
    • Kalus S, Sämann P, Fahrmeir L. Classification of brain activation via spatial Bayesian variable selection in fMRI regression. Adv Data Anal Classification 2014, 8:63-83.
    • (2014) Adv Data Anal Classification , vol.8 , pp. 63-83
    • Kalus, S.1    Sämann, P.2    Fahrmeir, L.3
  • 21
    • 84916894479 scopus 로고    scopus 로고
    • Spatial Bayesian variable selection models on functional magnetic resonance imaging time-series data
    • Lee K, Jones GL, Caffo BS, Bassett SS. Spatial Bayesian variable selection models on functional magnetic resonance imaging time-series data. Bayesian Anal 2014, 90:699-732.
    • (2014) Bayesian Anal , vol.90 , pp. 699-732
    • Lee, K.1    Jones, G.L.2    Caffo, B.S.3    Bassett, S.S.4
  • 22
    • 0042671302 scopus 로고    scopus 로고
    • Variational Bayesian inference for fMRI time series
    • Penny W, Kiebel S, Friston KJ. Variational Bayesian inference for fMRI time series. Neuroimage 2003, 190:727-741.
    • (2003) Neuroimage , vol.190 , pp. 727-741
    • Penny, W.1    Kiebel, S.2    Friston, K.J.3
  • 23
    • 16244387927 scopus 로고    scopus 로고
    • Bayesian fMRI time series analysis with spatial priors
    • Penny W, Trujillo-Barreto N, Friston KJ. Bayesian fMRI time series analysis with spatial priors. Neuroimage 2005, 240:350-362.
    • (2005) Neuroimage , vol.240 , pp. 350-362
    • Penny, W.1    Trujillo-Barreto, N.2    Friston, K.J.3
  • 24
    • 70349971910 scopus 로고    scopus 로고
    • Bayesian spatiotemporal model of fMRI data
    • Quirós A, Diez R, Gamerman D. Bayesian spatiotemporal model of fMRI data. Neuroimage 2010, 490:442-456.
    • (2010) Neuroimage , vol.490 , pp. 442-456
    • Quirós, A.1    Diez, R.2    Gamerman, D.3
  • 25
    • 34249029761 scopus 로고    scopus 로고
    • Spatial Bayesian variable selection with application to functional magnetic resonance imaging
    • Smith M, Fahrmeir L. Spatial Bayesian variable selection with application to functional magnetic resonance imaging. J Am Stat Assoc 2007, 1020:417-431.
    • (2007) J Am Stat Assoc , vol.1020 , pp. 417-431
    • Smith, M.1    Fahrmeir, L.2
  • 26
    • 0142011000 scopus 로고    scopus 로고
    • Assessing brain activity through spatial Bayesian variable selection
    • Smith M, Pütz B, Auer D, Fahrmeir L. Assessing brain activity through spatial Bayesian variable selection. Neuroimage 2003, 200:802-815.
    • (2003) Neuroimage , vol.200 , pp. 802-815
    • Smith, M.1    Pütz, B.2    Auer, D.3    Fahrmeir, L.4
  • 29
    • 84899692109 scopus 로고    scopus 로고
    • A spatio-temporal nonparametric Bayesian variable selection model of fMRI data for clustering correlated time courses
    • Zhang L, Guindani M, Versace F, Vannucci M. A spatio-temporal nonparametric Bayesian variable selection model of fMRI data for clustering correlated time courses. Neuroimage 2014, 95:162-175.
    • (2014) Neuroimage , vol.95 , pp. 162-175
    • Zhang, L.1    Guindani, M.2    Versace, F.3    Vannucci, M.4
  • 34
    • 0036328554 scopus 로고    scopus 로고
    • Wavelet-generalised least squares: a new BLU estimator of linear regression models with 1/f errors
    • Fadili MJ, Bullmore ET. Wavelet-generalised least squares: a new BLU estimator of linear regression models with 1/f errors. Neuroimage 2002, 15:217-232.
    • (2002) Neuroimage , vol.15 , pp. 217-232
    • Fadili, M.J.1    Bullmore, E.T.2
  • 35
    • 0038660249 scopus 로고    scopus 로고
    • Wavelet-based estimation of a semiparametric generalized linear model of fMRI time-series
    • Meyer FG. Wavelet-based estimation of a semiparametric generalized linear model of fMRI time-series. IEEE Trans Med Imaging 2003, 220:315-322.
    • (2003) IEEE Trans Med Imaging , vol.220 , pp. 315-322
    • Meyer, F.G.1
  • 37
    • 0031526204 scopus 로고    scopus 로고
    • Approaches for Bayesian variable selection
    • George EI, McCulloch RE. Approaches for Bayesian variable selection. Stat Sinica 1997, 70:339-373.
    • (1997) Stat Sinica , vol.70 , pp. 339-373
    • George, E.I.1    McCulloch, R.E.2
  • 39
    • 1842504499 scopus 로고    scopus 로고
    • Constrained linear basis sets for HRF modelling using variational Bayes
    • Woolrich M, Behrens T, Smith S. Constrained linear basis sets for HRF modelling using variational Bayes. Neuroimage 2004, 210:1748-1761.
    • (2004) Neuroimage , vol.210 , pp. 1748-1761
    • Woolrich, M.1    Behrens, T.2    Smith, S.3
  • 41
    • 1042301100 scopus 로고    scopus 로고
    • Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping
    • Goebel R, Roebroeck A, Kim D, Formisano E. Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping. Magn Reson Imaging 2003, 210:1251-1261.
    • (2003) Magn Reson Imaging , vol.210 , pp. 1251-1261
    • Goebel, R.1    Roebroeck, A.2    Kim, D.3    Formisano, E.4
  • 43
    • 4444235995 scopus 로고    scopus 로고
    • Detecting differential gene expression with a semiparametric hierarchical mixture method
    • Newton MA, Noueiry A, Sarkar D, Ahlquist P. Detecting differential gene expression with a semiparametric hierarchical mixture method. Biostatistics 2004, 50:155-176.
    • (2004) Biostatistics , vol.50 , pp. 155-176
    • Newton, M.A.1    Noueiry, A.2    Sarkar, D.3    Ahlquist, P.4
  • 44
    • 41349110333 scopus 로고    scopus 로고
    • FDR and Bayesian multiple comparisons rules
    • In: Bernardo JM, Bayarri MJ, Berger JO, Dawid AP, Heckerman D, Smith AFM, West M, eds. . Oxford: Oxford University Press; .
    • Müller P, Parmigiani G, Rice K. FDR and Bayesian multiple comparisons rules. In: Bernardo JM, Bayarri MJ, Berger JO, Dawid AP, Heckerman D, Smith AFM, West M, eds. Bayesian Statistics 8. Oxford: Oxford University Press; 2007.
    • (2007) Bayesian Statistics 8
    • Müller, P.1    Parmigiani, G.2    Rice, K.3
  • 46
    • 84897577693 scopus 로고    scopus 로고
    • Nonlinear responses in fMRI: the Balloon model, Volterra kernels and other hemodynamics
    • Friston KJ, Mechelli A, Turner E, Price CJ. Nonlinear responses in fMRI: the Balloon model, Volterra kernels and other hemodynamics. Neuroimage 2000, 9:416-429.
    • (2000) Neuroimage , vol.9 , pp. 416-429
    • Friston, K.J.1    Mechelli, A.2    Turner, E.3    Price, C.J.4
  • 47
    • 14244266641 scopus 로고    scopus 로고
    • Accounting for nonlinear bold effects in fmri: parameter estimates and a model for prediction in rapid event-related studies
    • Wager TD, Vazquez A, Hernandez L, Noll DC. Accounting for nonlinear bold effects in fmri: parameter estimates and a model for prediction in rapid event-related studies. Neuroimage 2005, 25:206-218.
    • (2005) Neuroimage , vol.25 , pp. 206-218
    • Wager, T.D.1    Vazquez, A.2    Hernandez, L.3    Noll, D.C.4
  • 48
    • 2242458721 scopus 로고    scopus 로고
    • A Bayesian time-course model for functional magnetic resonance imaging data
    • Genovese CR. A Bayesian time-course model for functional magnetic resonance imaging data. J Am Stat Assoc 2000, 950:691-703.
    • (2000) J Am Stat Assoc , vol.950 , pp. 691-703
    • Genovese, C.R.1
  • 49
    • 79961042326 scopus 로고    scopus 로고
    • Adaptive spatial smoothing of fMRI images
    • Yue Y, Loh J, Lindquist MA. Adaptive spatial smoothing of fMRI images. Stat Interf 2010, 3:3-13.
    • (2010) Stat Interf , vol.3 , pp. 3-13
    • Yue, Y.1    Loh, J.2    Lindquist, M.A.3
  • 50
    • 11844293467 scopus 로고    scopus 로고
    • Mixture models with adaptive spatial regularization for segmentation with an application to fMRI data
    • Woolrich M, Behrens T, Beckmann C, Smith S. Mixture models with adaptive spatial regularization for segmentation with an application to fMRI data. IEEE Trans Med Imaging 2005, 240:1-11.
    • (2005) IEEE Trans Med Imaging , vol.240 , pp. 1-11
    • Woolrich, M.1    Behrens, T.2    Beckmann, C.3    Smith, S.4
  • 51
    • 84881450950 scopus 로고    scopus 로고
    • A Bayesian non-parametric Potts model with application to pre-surgical fMRI data
    • Johnson T, Liu Z, Bartsch A, Nichols T. A Bayesian non-parametric Potts model with application to pre-surgical fMRI data. Stat Methods Med Res 2013, 220:364-381.
    • (2013) Stat Methods Med Res , vol.220 , pp. 364-381
    • Johnson, T.1    Liu, Z.2    Bartsch, A.3    Nichols, T.4
  • 53
    • 0001120413 scopus 로고
    • A Bayesian analysis of some nonparametric problems
    • Ferguson TS. A Bayesian analysis of some nonparametric problems. Ann Stat 1973, 10:209-230.
    • (1973) Ann Stat , vol.10 , pp. 209-230
    • Ferguson, T.S.1
  • 54
    • 36148954681 scopus 로고    scopus 로고
    • A Bayesian hierarchical framework for spatial modeling of fMRI data
    • Bowman F, Caffo B, Bassett S, Kilts C. A Bayesian hierarchical framework for spatial modeling of fMRI data. Neuroimage 2008, 390:146-156.
    • (2008) Neuroimage , vol.390 , pp. 146-156
    • Bowman, F.1    Caffo, B.2    Bassett, S.3    Kilts, C.4
  • 55
    • 84866150436 scopus 로고    scopus 로고
    • Bayesian hierarchical multi-subject multiscale analysis of functional MRI data
    • Sanyal N, Ferreira M. Bayesian hierarchical multi-subject multiscale analysis of functional MRI data. Neuroimage 2012, 630:1519-1531.
    • (2012) Neuroimage , vol.630 , pp. 1519-1531
    • Sanyal, N.1    Ferreira, M.2
  • 56
    • 21944448369 scopus 로고    scopus 로고
    • Generalisability, random effects & population inference
    • S754
    • Holmes AP, Friston KJ. Generalisability, random effects & population inference. Neuroimage 1998, 7:S754.
    • (1998) Neuroimage , vol.7
    • Holmes, A.P.1    Friston, K.J.2
  • 57
    • 61449120189 scopus 로고    scopus 로고
    • Modified test statistics by inter-voxel variance shrinkage with an application to fMRI
    • Su S, Caffo B, Garrett-Mayer E, Bassett S. Modified test statistics by inter-voxel variance shrinkage with an application to fMRI. Biostatistics 2009, 100:219-227.
    • (2009) Biostatistics , vol.100 , pp. 219-227
    • Su, S.1    Caffo, B.2    Garrett-Mayer, E.3    Bassett, S.4
  • 58
    • 70450242686 scopus 로고    scopus 로고
    • Modeling inter-subject variability in fMRI activation location: A Bayesian hierarchical spatial model
    • Xu L, Johnson TD, Nichols TE, Nee DE. Modeling inter-subject variability in fMRI activation location: A Bayesian hierarchical spatial model. Biometrics 2009, 650:1041-1051.
    • (2009) Biometrics , vol.650 , pp. 1041-1051
    • Xu, L.1    Johnson, T.D.2    Nichols, T.E.3    Nee, D.E.4
  • 60
    • 56349160115 scopus 로고    scopus 로고
    • Multiple-subjects connectivity-based parcellation using hierarchical Dirichlet process mixture models
    • Jbabdi S, Woolrich M, Behrens T. Multiple-subjects connectivity-based parcellation using hierarchical Dirichlet process mixture models. Neuroimage 2009, 440:373-384.
    • (2009) Neuroimage , vol.440 , pp. 373-384
    • Jbabdi, S.1    Woolrich, M.2    Behrens, T.3
  • 61
    • 81355137473 scopus 로고    scopus 로고
    • Functional and effective connectivity: a review
    • Friston KJ. Functional and effective connectivity: a review. Brain Connectivity 2011, 10:13-36.
    • (2011) Brain Connectivity , vol.10 , pp. 13-36
    • Friston, K.J.1
  • 62
    • 84858138977 scopus 로고    scopus 로고
    • On the use of correlation as a measure of network connectivity
    • Zalesky A, Fornito A, Bullmore E. On the use of correlation as a measure of network connectivity. Neuroimage 2012, 60:2096-2106.
    • (2012) Neuroimage , vol.60 , pp. 2096-2106
    • Zalesky, A.1    Fornito, A.2    Bullmore, E.3
  • 63
    • 0032986174 scopus 로고    scopus 로고
    • Principal component analysis of the dynamic response measured by fMRI: a generalized linear systems framework
    • Andersen AH, Gash DM, Avison MJ. Principal component analysis of the dynamic response measured by fMRI: a generalized linear systems framework. Magn Reson Imaging 1999, 170:795-815.
    • (1999) Magn Reson Imaging , vol.170 , pp. 795-815
    • Andersen, A.H.1    Gash, D.M.2    Avison, M.J.3
  • 64
    • 0034753663 scopus 로고    scopus 로고
    • A method for making group inferences from functional MRI data using independent component analysis
    • Calhoun VD, Adali T, Pearlson GD, Pekar JJ. A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp 2001, 140:140-151.
    • (2001) Hum Brain Mapp , vol.140 , pp. 140-151
    • Calhoun, V.D.1    Adali, T.2    Pearlson, G.D.3    Pekar, J.J.4
  • 66
    • 84861338060 scopus 로고    scopus 로고
    • Dynamic connectivity regression: determining state-related changes in brain connectivity
    • Cribben I, Haraldsdottir R, Atlas LY, Wager TD, Lindquist MA. Dynamic connectivity regression: determining state-related changes in brain connectivity. Neuroimage 2012, 61:907-920.
    • (2012) Neuroimage , vol.61 , pp. 907-920
    • Cribben, I.1    Haraldsdottir, R.2    Atlas, L.Y.3    Wager, T.D.4    Lindquist, M.A.5
  • 67
    • 85161970602 scopus 로고    scopus 로고
    • Brain covariance selection: better individual functional connectivity models using population prior
    • In: Zemel R, Shawe-Taylor J, eds. . Vancouver, Canada: Curran Associates, Inc.; :-.
    • Varoquaux G, Gramfort A, Poline JB, Thirion B, Zemel R, Shawe-Taylor J. Brain covariance selection: better individual functional connectivity models using population prior. In: Zemel R, Shawe-Taylor J, eds. Advances in Neural Information Processing Systems. Vancouver, Canada: Curran Associates, Inc.; 2010:2334-2342.
    • (2010) Advances in Neural Information Processing Systems , pp. 2334-2342
    • Varoquaux, G.1    Gramfort, A.2    Poline, J.B.3    Thirion, B.4    Zemel, R.5    Shawe-Taylor, J.6
  • 68
    • 33646882349 scopus 로고    scopus 로고
    • A Bayesian approach to determining connectivity of the human brain
    • Patel R, Bowman F, Rilling J. A Bayesian approach to determining connectivity of the human brain. Hum Brain Mapp 2006, 270:462-470.
    • (2006) Hum Brain Mapp , vol.270 , pp. 462-470
    • Patel, R.1    Bowman, F.2    Rilling, J.3
  • 69
    • 33646882349 scopus 로고    scopus 로고
    • Determining hierarchical functional networks from auditory stimuli fMRI
    • Patel R, Bowman F, Rilling J. Determining hierarchical functional networks from auditory stimuli fMRI. Hum Brain Mapp 2006, 270:462-470.
    • (2006) Hum Brain Mapp , vol.270 , pp. 462-470
    • Patel, R.1    Bowman, F.2    Rilling, J.3
  • 70
    • 84902206379 scopus 로고    scopus 로고
    • Inferring functional interaction and transition patterns via dynamic Bayesian variable partition models
    • Zhang J, Li X, Li C, Lian Z, Huang X, Zhong G, Zhu D, Li K, Jin C, Hu X. Inferring functional interaction and transition patterns via dynamic Bayesian variable partition models. Hum Brain Mapp 2014, 35:3314-3331.
    • (2014) Hum Brain Mapp , vol.35 , pp. 3314-3331
    • Zhang, J.1    Li, X.2    Li, C.3    Lian, Z.4    Huang, X.5    Zhong, G.6    Zhu, D.7    Li, K.8    Jin, C.9    Hu, X.10
  • 71
    • 0030666829 scopus 로고    scopus 로고
    • Modulation of connectivity in visual pathways by attention: cortical interactions evaluated with structural equation modelling and fMRI
    • Büchel C, Friston KJ. Modulation of connectivity in visual pathways by attention: cortical interactions evaluated with structural equation modelling and fMRI. Cereb Cortex 1997, 70:768-778.
    • (1997) Cereb Cortex , vol.70 , pp. 768-778
    • Büchel, C.1    Friston, K.J.2
  • 72
    • 0028312413 scopus 로고
    • Structural equation modeling and its application to network analysis in functional brain imaging
    • Mclntosh A, Gonzalez-Lima F. Structural equation modeling and its application to network analysis in functional brain imaging. Hum Brain Mapp 1994, 20:2-22.
    • (1994) Hum Brain Mapp , vol.20 , pp. 2-22
    • Mclntosh, A.1    Gonzalez-Lima, F.2
  • 74
    • 0042178307 scopus 로고    scopus 로고
    • Multivariate autoregressive modeling of fMRI time series
    • Harrison L, Penny W, Friston KJ. Multivariate autoregressive modeling of fMRI time series. Neuroimage 2003, 190:1477-1491.
    • (2003) Neuroimage , vol.190 , pp. 1477-1491
    • Harrison, L.1    Penny, W.2    Friston, K.J.3
  • 75
    • 33746860833 scopus 로고    scopus 로고
    • Learning functional structure from fMR images
    • Zheng X, Rajapakse JC. Learning functional structure from fMR images. Neuroimage 2006, 310:1601-1613.
    • (2006) Neuroimage , vol.310 , pp. 1601-1613
    • Zheng, X.1    Rajapakse, J.C.2
  • 76
    • 0033247467 scopus 로고    scopus 로고
    • Bayesian estimation and testing of structural equation models
    • Scheines R, Hoijtink H, Boomsma A. Bayesian estimation and testing of structural equation models. Psychometrika 1999, 64:37-52.
    • (1999) Psychometrika , vol.64 , pp. 37-52
    • Scheines, R.1    Hoijtink, H.2    Boomsma, A.3
  • 77
    • 0000351727 scopus 로고
    • Investigating causal relations by econometric models and cross-spectral methods
    • Granger C. Investigating causal relations by econometric models and cross-spectral methods. Econometrica 1969, 36:424-438.
    • (1969) Econometrica , vol.36 , pp. 424-438
    • Granger, C.1
  • 80
    • 61349120207 scopus 로고    scopus 로고
    • Causal modelling and brain connectivity in functional magnetic resonance imaging
    • Friston K. Causal modelling and brain connectivity in functional magnetic resonance imaging. PLoS Biol 2009, 7:e33.
    • (2009) PLoS Biol , vol.7 , pp. e33
    • Friston, K.1
  • 81
    • 77955306267 scopus 로고    scopus 로고
    • Dynamic Granger causality based on Kalman filter for evaluation of functional network connectivity in fMRI data
    • Havlicek M, Jan J, Brazdil M, Calhoun VD. Dynamic Granger causality based on Kalman filter for evaluation of functional network connectivity in fMRI data. Neuroimage 2010, 53:65-77.
    • (2010) Neuroimage , vol.53 , pp. 65-77
    • Havlicek, M.1    Jan, J.2    Brazdil, M.3    Calhoun, V.D.4
  • 82
    • 33645775748 scopus 로고    scopus 로고
    • A Bayesian approach to modeling dynamic effective connectivity with fMRI data
    • Bhattacharya S, Ho M, Purkayastha S. A Bayesian approach to modeling dynamic effective connectivity with fMRI data. Neuroimage 2006, 30:794-812.
    • (2006) Neuroimage , vol.30 , pp. 794-812
    • Bhattacharya, S.1    Ho, M.2    Purkayastha, S.3
  • 83
    • 84873486762 scopus 로고    scopus 로고
    • A nonstationary nonparametric Bayesian approach to dynamically modeling effective connectivity in functional magnetic resonance imaging experiments
    • Bhattacharya S, Maitra R. A nonstationary nonparametric Bayesian approach to dynamically modeling effective connectivity in functional magnetic resonance imaging experiments. Ann Appl Stat 2011, 50:1183-1206.
    • (2011) Ann Appl Stat , vol.50 , pp. 1183-1206
    • Bhattacharya, S.1    Maitra, R.2
  • 84
    • 84919428034 scopus 로고    scopus 로고
    • A Bayesian model for activation and connectivity in task-related fMRI data. Submitted for publication.
    • Yu Z, Ombao H, Prado R, Burke E. A Bayesian model for activation and connectivity in task-related fMRI data. Submitted for publication.
    • Yu, Z.1    Ombao, H.2    Prado, R.3    Burke, E.4
  • 85
    • 84887886445 scopus 로고    scopus 로고
    • Hierarchical vector auto-regressive models and their applications to multi-subject effective connectivity
    • Gorrostieta C, Fiecas M, Ombao H, Burke E, CramerS. Hierarchical vector auto-regressive models and their applications to multi-subject effective connectivity. Front Comput Neurosci 2013, 7.
    • (2013) Front Comput Neurosci , vol.7
    • Gorrostieta, C.1    Fiecas, M.2    Ombao, H.3    Burke, E.4    Cramer, S.5
  • 86
    • 78649648075 scopus 로고    scopus 로고
    • Multivariate dynamical systems models for estimating causal interactions in fMRI
    • Ryali S, Supekar K, Chen T, Menon V. Multivariate dynamical systems models for estimating causal interactions in fMRI. Neuroimage 2011, 54:807-823.
    • (2011) Neuroimage , vol.54 , pp. 807-823
    • Ryali, S.1    Supekar, K.2    Chen, T.3    Menon, V.4
  • 87
    • 55349122522 scopus 로고    scopus 로고
    • Hybrid ICA-Bayesian network approach reveals distinct effective connectivity differences in schizophrenia
    • Kim D, Burge J, Lane T, Pearlson G, Kiehl K, Calhoun VD. Hybrid ICA-Bayesian network approach reveals distinct effective connectivity differences in schizophrenia. Neuroimage 2008, 420:1560-1568.
    • (2008) Neuroimage , vol.420 , pp. 1560-1568
    • Kim, D.1    Burge, J.2    Lane, T.3    Pearlson, G.4    Kiehl, K.5    Calhoun, V.D.6
  • 88
    • 44249123488 scopus 로고    scopus 로고
    • Dynamic Bayesian network modeling of fMRI: a comparison of group-analysis methods
    • Li J, Wang Z, Palmer S, McKeown M. Dynamic Bayesian network modeling of fMRI: a comparison of group-analysis methods. Neuroimage 2008, 410:398-407.
    • (2008) Neuroimage , vol.410 , pp. 398-407
    • Li, J.1    Wang, Z.2    Palmer, S.3    McKeown, M.4
  • 89
    • 79955479652 scopus 로고    scopus 로고
    • Large-scale directional connections among multi resting-state neural networks in human brain: a functional MRI and Bayesian network modeling study
    • Li R, Chen K, Fleisher A, Reiman E, Yao L, WuX. Large-scale directional connections among multi resting-state neural networks in human brain: a functional MRI and Bayesian network modeling study. Neuroimage 2011, 560:1035-1042.
    • (2011) Neuroimage , vol.560 , pp. 1035-1042
    • Li, R.1    Chen, K.2    Fleisher, A.3    Reiman, E.4    Yao, L.5    Wu, X.6
  • 90
    • 84876175622 scopus 로고    scopus 로고
    • Alterations of directional connectivity among resting-state networks in Alzheimer disease
    • Li R, Wu X, Chen K, Fleisher A, Reiman E, YaoL. Alterations of directional connectivity among resting-state networks in Alzheimer disease. Am J Neuroradiol 2012, 340:340-345.
    • (2012) Am J Neuroradiol , vol.340 , pp. 340-345
    • Li, R.1    Wu, X.2    Chen, K.3    Fleisher, A.4    Reiman, E.5    Yao, L.6
  • 91
    • 34547839743 scopus 로고    scopus 로고
    • Learning effective brain connectivity with dynamic Bayesian networks
    • Rajapakse J, Zhou J. Learning effective brain connectivity with dynamic Bayesian networks. Neuroimage 2007, 370:749-760.
    • (2007) Neuroimage , vol.370 , pp. 749-760
    • Rajapakse, J.1    Zhou, J.2
  • 92
    • 33947544379 scopus 로고    scopus 로고
    • Dynamic causal models of neural system dynamics: current state and future extensions
    • Stephan K, Harrison L, Kiebel S, David O, Penny W, Friston KJ. Dynamic causal models of neural system dynamics: current state and future extensions. J Biosci 2007, 320:129-144.
    • (2007) J Biosci , vol.320 , pp. 129-144
    • Stephan, K.1    Harrison, L.2    Kiebel, S.3    David, O.4    Penny, W.5    Friston, K.J.6
  • 93
    • 80051795744 scopus 로고    scopus 로고
    • Effective connectivity: influence, causality and biophysical modeling
    • Valdes-Sosa PA, Roebroeck A, Daunizeau J, Friston KJ. Effective connectivity: influence, causality and biophysical modeling. Neuroimage 2011, 58:339-361.
    • (2011) Neuroimage , vol.58 , pp. 339-361
    • Valdes-Sosa, P.A.1    Roebroeck, A.2    Daunizeau, J.3    Friston, K.J.4
  • 94
    • 70349243080 scopus 로고    scopus 로고
    • Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models
    • Daunizeau J, Friston KJ, Kiebel S. Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models. Physica D 2009, 2380:2089-2118.
    • (2009) Physica D , vol.2380 , pp. 2089-2118
    • Daunizeau, J.1    Friston, K.J.2    Kiebel, S.3
  • 95
    • 79957502813 scopus 로고    scopus 로고
    • Post hoc Bayesian model selection
    • Friston KJ, Penny W. Post hoc Bayesian model selection. Neuroimage 2089-2099, 560:2011.
    • (2089) Neuroimage , vol.560 , pp. 2011
    • Friston, K.J.1    Penny, W.2
  • 99
    • 51449118420 scopus 로고    scopus 로고
    • Predicting the brain response to treatment using a Bayesian hierarchical model with application to a study of schizophrenia
    • Guo Y, Bowman FD, Kilts C. Predicting the brain response to treatment using a Bayesian hierarchical model with application to a study of schizophrenia. Hum Brain Mapp 2008, 290:1092-1109.
    • (2008) Hum Brain Mapp , vol.290 , pp. 1092-1109
    • Guo, Y.1    Bowman, F.D.2    Kilts, C.3
  • 100
    • 84881422357 scopus 로고    scopus 로고
    • Predicting brain activity using a Bayesian spatial model
    • Derado G, Bowman FD, Zhang L. Predicting brain activity using a Bayesian spatial model. Stat Methods Med Res 2013, 220:382-397.
    • (2013) Stat Methods Med Res , vol.220 , pp. 382-397
    • Derado, G.1    Bowman, F.D.2    Zhang, L.3
  • 101
    • 80052647600 scopus 로고    scopus 로고
    • Multiclass sparse Bayesian regression for fMRI-based prediction
    • 2011.
    • Michel V, Eger E, Keribin C, Thirion B. Multiclass sparse Bayesian regression for fMRI-based prediction. J Biomed Imaging 2011, 2011.
    • (2011) J Biomed Imaging
    • Michel, V.1    Eger, E.2    Keribin, C.3    Thirion, B.4
  • 102
    • 75249099795 scopus 로고    scopus 로고
    • Efficient Bayesian multivariate fMRI analysis using a sparsifying spatio-temporal prior
    • van Gerven MAJ, Cseke B, de Lange FP, Heskes T. Efficient Bayesian multivariate fMRI analysis using a sparsifying spatio-temporal prior. Neuroimage 2010, 500:150-161.
    • (2010) Neuroimage , vol.500 , pp. 150-161
    • van Gerven, M.A.J.1    Cseke, B.2    de Lange, F.P.3    Heskes, T.4
  • 103
    • 83055181197 scopus 로고    scopus 로고
    • Decoding episodic memory in ageing: a Bayesian analysis of activity patterns predicting memory
    • Morcom A, Friston KJ. Decoding episodic memory in ageing: a Bayesian analysis of activity patterns predicting memory. Neuroimage 2012, 590:1772-1782.
    • (2012) Neuroimage , vol.590 , pp. 1772-1782
    • Morcom, A.1    Friston, K.J.2
  • 104
    • 84901808735 scopus 로고    scopus 로고
    • Smooth scalar-on-image regression via spatial Bayesian variable selection
    • Goldsmith J, Huang L, Crainiceanu CM. Smooth scalar-on-image regression via spatial Bayesian variable selection. J Comput Graph Stat 2014, 230:46-64.
    • (2014) J Comput Graph Stat , vol.230 , pp. 46-64
    • Goldsmith, J.1    Huang, L.2    Crainiceanu, C.M.3
  • 105
    • 84919428032 scopus 로고    scopus 로고
    • Spatial Bayesian variable selection and grouping in high-dimensional scalar-on-image regressions. Submitted for publication.
    • Li F, Zhang T, Wang Q, Gonzalez MZ, Maresh EL, Coan J. Spatial Bayesian variable selection and grouping in high-dimensional scalar-on-image regressions. Submitted for publication.
    • Li, F.1    Zhang, T.2    Wang, Q.3    Gonzalez, M.Z.4    Maresh, E.L.5    Coan, J.6
  • 106
    • 84919428031 scopus 로고    scopus 로고
    • Neuroimage: special issue on multimodal data fusion
    • In press.
    • Calhoun VD, Lemieux L. Neuroimage: special issue on multimodal data fusion. Neuroimage. In press.
    • Neuroimage
    • Calhoun, V.D.1    Lemieux, L.2
  • 107
    • 84897036365 scopus 로고    scopus 로고
    • A review of multivariate analyses in imaging genetics
    • Article 29
    • Liu J, Calhoun VD. A review of multivariate analyses in imaging genetics. Front Neuroinform 2014, 8:Article 29.
    • (2014) Front Neuroinform , vol.8
    • Liu, J.1    Calhoun, V.D.2
  • 110
    • 26244462082 scopus 로고
    • Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain
    • Hämäläinen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV. Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 1993, 650:413-497.
    • (1993) Rev Mod Phys , vol.650 , pp. 413-497
    • Hämäläinen, M.1    Hari, R.2    Ilmoniemi, R.J.3    Knuutila, J.4    Lounasmaa, O.V.5
  • 112
    • 84908645103 scopus 로고    scopus 로고
    • EEG-fMRI integration for the study of human brain function
    • In press.
    • Jorge J, van der Zwaag W, Figueiredo P. EEG-fMRI integration for the study of human brain function. Neuroimage. In press.
    • Neuroimage
    • Jorge, J.1    van der Zwaag, W.2    Figueiredo, P.3
  • 113
    • 84919428029 scopus 로고    scopus 로고
    • fMRI activation detection with EEG priors. Technical Report 146, University of Munich
    • Kalus S, Sämann P, Czisch M, Fahrmeir L. fMRI activation detection with EEG priors. Technical Report 146, University of Munich, 2013.
    • (2013)
    • Kalus, S.1    Sämann, P.2    Czisch, M.3    Fahrmeir, L.4
  • 115
    • 78349267620 scopus 로고    scopus 로고
    • A parametric empirical Bayesian framework for fMRI-constrained MEG/EEG source reconstruction
    • Henson R, Flandin G, Friston KJ, Mattout J. A parametric empirical Bayesian framework for fMRI-constrained MEG/EEG source reconstruction. Hum Brain Mapp 2010, 310:1512-1531.
    • (2010) Hum Brain Mapp , vol.310 , pp. 1512-1531
    • Henson, R.1    Flandin, G.2    Friston, K.J.3    Mattout, J.4
  • 117
    • 33645737307 scopus 로고    scopus 로고
    • MEG source localization under multiple constraints: an extended Bayesian framework
    • Mattout J, Phillips C, Penny W, Rugg M, Friston KJ. MEG source localization under multiple constraints: an extended Bayesian framework. Neuroimage 2006, 300:753-767.
    • (2006) Neuroimage , vol.300 , pp. 753-767
    • Mattout, J.1    Phillips, C.2    Penny, W.3    Rugg, M.4    Friston, K.J.5
  • 118
    • 12844268707 scopus 로고    scopus 로고
    • An empirical Bayesian solution to the source reconstruction problem in EEG
    • Phillips C, Mattout J, Rugg M, Maquet P, Friston KJ. An empirical Bayesian solution to the source reconstruction problem in EEG. Neuroimage 2005, 240:997-1011.
    • (2005) Neuroimage , vol.240 , pp. 997-1011
    • Phillips, C.1    Mattout, J.2    Rugg, M.3    Maquet, P.4    Friston, K.J.5
  • 123
    • 78951475125 scopus 로고    scopus 로고
    • Bayesian symmetrical EEG/fMRI fusion with spatially adaptive priors
    • Luessi M, Babacan S, Molina R, Booth J, Katsaggelos A. Bayesian symmetrical EEG/fMRI fusion with spatially adaptive priors. Neuroimage 2011, 550:113-132.
    • (2011) Neuroimage , vol.550 , pp. 113-132
    • Luessi, M.1    Babacan, S.2    Molina, R.3    Booth, J.4    Katsaggelos, A.5
  • 125
    • 84863533525 scopus 로고    scopus 로고
    • Determining functional connectivity using fMRI data with diffusion-based anatomical weighting
    • Bowman FD, Zhang L, Derado G, Chen S. Determining functional connectivity using fMRI data with diffusion-based anatomical weighting. Neuroimage 2012, 62:1769-1779.
    • (2012) Neuroimage , vol.62 , pp. 1769-1779
    • Bowman, F.D.1    Zhang, L.2    Derado, G.3    Chen, S.4
  • 126
    • 70349787004 scopus 로고    scopus 로고
    • Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity
    • Damoiseaux JS, Greicius MD. Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity. Brain Struct Funct 2009, 213:525-533.
    • (2009) Brain Struct Funct , vol.213 , pp. 525-533
    • Damoiseaux, J.S.1    Greicius, M.D.2
  • 127
    • 57749172272 scopus 로고    scopus 로고
    • Resting-state functional connectivity reflects structural connectivity in the default mode network
    • Greicius MD, Supekar K, Menon V, Dougherty RF. Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex 2009, 19:72-78.
    • (2009) Cereb Cortex , vol.19 , pp. 72-78
    • Greicius, M.D.1    Supekar, K.2    Menon, V.3    Dougherty, R.F.4
  • 128
    • 84875781969 scopus 로고    scopus 로고
    • Inferring functional connectivity in MRI using Bayesian network structure learning with a modified PC algorithm
    • Iyer SP, Shafran I, Grayson D, Gates K, Nigg JT, Fair DA. Inferring functional connectivity in MRI using Bayesian network structure learning with a modified PC algorithm. Neuroimage 2013, 75:165-175.
    • (2013) Neuroimage , vol.75 , pp. 165-175
    • Iyer, S.P.1    Shafran, I.2    Grayson, D.3    Gates, K.4    Nigg, J.T.5    Fair, D.A.6
  • 130
    • 58149359426 scopus 로고    scopus 로고
    • Combining fMRI and SNP data to investigate connections between brain function and genetics using parallel ICA
    • Liu J, Pearlson G, Windemuth A, Ruano G, Perrone-Bizzozero N, Calhoun V. Combining fMRI and SNP data to investigate connections between brain function and genetics using parallel ICA. Hum Brain Mapp 2009, 300:241-255.
    • (2009) Hum Brain Mapp , vol.300 , pp. 241-255
    • Liu, J.1    Pearlson, G.2    Windemuth, A.3    Ruano, G.4    Perrone-Bizzozero, N.5    Calhoun, V.6
  • 131
    • 77956215911 scopus 로고    scopus 로고
    • Discovering genetic associations with high-dimensional neuroimaging phenotypes: a sparse reduced-rank regression approach
    • Vounou M, Nichols TE, Montana G. Discovering genetic associations with high-dimensional neuroimaging phenotypes: a sparse reduced-rank regression approach. Neuroimage 2010, 530:1147-1159.
    • (2010) Neuroimage , vol.530 , pp. 1147-1159
    • Vounou, M.1    Nichols, T.E.2    Montana, G.3
  • 132
    • 84886646957 scopus 로고    scopus 로고
    • An integrative Bayesian modeling approach to imaging genetics
    • Stingo F, Guindani M, Vannucci M, Calhoun V. An integrative Bayesian modeling approach to imaging genetics. J Am Stat Assoc 2013, 1080:876-891.
    • (2013) J Am Stat Assoc , vol.1080 , pp. 876-891
    • Stingo, F.1    Guindani, M.2    Vannucci, M.3    Calhoun, V.4
  • 133
    • 84919428026 scopus 로고    scopus 로고
    • A Bayesian framework for joint analysis of heterogeneous neuroscience data. Submitted for publication.
    • Salazar E, Nikolova Y, Hariri AR, Carin L. A Bayesian framework for joint analysis of heterogeneous neuroscience data. Submitted for publication.
    • Salazar, E.1    Nikolova, Y.2    Hariri, A.R.3    Carin, L.4
  • 135
    • 33646356512 scopus 로고    scopus 로고
    • Individual differences in puberty onset in girls: Bayesian estimation of heritabilities and genetic correlations
    • van den Berg SM, Setiawan A, Bartels M, PoldermanT, van der Vaart AW, Boomsma DI. Individual differences in puberty onset in girls: Bayesian estimation of heritabilities and genetic correlations. Behav Genet 2006, 360:261-270.
    • (2006) Behav Genet , vol.360 , pp. 261-270
    • van den Berg, S.M.1    Setiawan, A.2    Bartels, M.3    Polderman, T.4    van der Vaart, A.W.5    Boomsma, D.I.6
  • 137
    • 62849120031 scopus 로고    scopus 로고
    • Approximate Bayesian inference for latent Gaussian models by using integrate nested laplace approximations
    • Rue H, Maritno S, Chopin N. Approximate Bayesian inference for latent Gaussian models by using integrate nested laplace approximations. J R Stat Soc Ser B 2009, 71:319-392.
    • (2009) J R Stat Soc Ser B , vol.71 , pp. 319-392
    • Rue, H.1    Maritno, S.2    Chopin, N.3
  • 139
    • 79954452670 scopus 로고    scopus 로고
    • Meta analysis of functional neuroimaging data via Bayesian spatial point processes
    • Kang J, Johnson TD, Nichols TE, Wager TD. Meta analysis of functional neuroimaging data via Bayesian spatial point processes. J Am Stat Assoc 2011, 1060:124-134.
    • (2011) J Am Stat Assoc , vol.1060 , pp. 124-134
    • Kang, J.1    Johnson, T.D.2    Nichols, T.E.3    Wager, T.D.4
  • 140
    • 84919428025 scopus 로고    scopus 로고
    • A Bayesian hierarchical spatial point process model for multi-type neuroimaging meta analysis. Ann Appl Stat. In press.
    • Kang J, Nichols TE, Wager TD, Johnson TD. A Bayesian hierarchical spatial point process model for multi-type neuroimaging meta analysis. Ann Appl Stat. In press.
    • Kang, J.1    Nichols, T.E.2    Wager, T.D.3    Johnson, T.D.4
  • 141
    • 84866244608 scopus 로고    scopus 로고
    • Meta-analysis of functional neuroimaging data using Bayesian nonparametric binary regression
    • Yue YR, Lindquist MA, Loh J. Meta-analysis of functional neuroimaging data using Bayesian nonparametric binary regression. Ann Appl Stat 2012, 6:697-718.
    • (2012) Ann Appl Stat , vol.6 , pp. 697-718
    • Yue, Y.R.1    Lindquist, M.A.2    Loh, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.