메뉴 건너뛰기




Volumn 54, Issue 2, 2011, Pages 807-823

Multivariate dynamical systems models for estimating causal interactions in fMRI

Author keywords

Bilinear; Causality; Deconvolution; Dynamical systems; Expectation maximization; Kalman smoother; Variational Bayes

Indexed keywords

OXYGEN;

EID: 78649648075     PISSN: 10538119     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neuroimage.2010.09.052     Document Type: Article
Times cited : (97)

References (41)
  • 4
    • 77952881705 scopus 로고    scopus 로고
    • Large-scale brain networks in cognition: emerging methods and principles
    • Bressler S.L., Menon V. Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn. Sci. 2010, 14(6):277-290.
    • (2010) Trends Cogn. Sci. , vol.14 , Issue.6 , pp. 277-290
    • Bressler, S.L.1    Menon, V.2
  • 5
    • 77956074952 scopus 로고    scopus 로고
    • Wiener-Granger causality: a well established methodology
    • (Electronic publication ahead of print)
    • Bressler S.L., Seth A.K. Wiener-Granger causality: a well established methodology. Neuroimage 2010, (Electronic publication ahead of print).
    • (2010) Neuroimage
    • Bressler, S.L.1    Seth, A.K.2
  • 6
    • 0036785214 scopus 로고    scopus 로고
    • Bayesian nonstationary autoregressive models for biomedical signal analysis
    • Cassidy M.J., Penny W.D. Bayesian nonstationary autoregressive models for biomedical signal analysis. IEEE Trans. Biomed. Eng. 2002, 49:1142-1152.
    • (2002) IEEE Trans. Biomed. Eng. , vol.49 , pp. 1142-1152
    • Cassidy, M.J.1    Penny, W.D.2
  • 7
    • 70349243080 scopus 로고    scopus 로고
    • Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models
    • Daunizeau J., Friston K.J., Kiebel S.J. Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models. Physica D 2009, 238:2089-2118.
    • (2009) Physica D , vol.238 , pp. 2089-2118
    • Daunizeau, J.1    Friston, K.J.2    Kiebel, S.J.3
  • 9
    • 41649118613 scopus 로고    scopus 로고
    • Effective connectivity during haptic perception: a study using Granger causality analysis of functional magnetic resonance imaging data
    • Deshpande G., Hu X., Stilla R., Sathian K. Effective connectivity during haptic perception: a study using Granger causality analysis of functional magnetic resonance imaging data. Neuroimage 2008, 40:1807-1814.
    • (2008) Neuroimage , vol.40 , pp. 1807-1814
    • Deshpande, G.1    Hu, X.2    Stilla, R.3    Sathian, K.4
  • 10
    • 77954383549 scopus 로고    scopus 로고
    • Effect of hemodynamic variability on Granger causality analysis of fMRI
    • Deshpande G., Sathian K., Hu X. Effect of hemodynamic variability on Granger causality analysis of fMRI. Neuroimage 2010, 52(3):884-896.
    • (2010) Neuroimage , vol.52 , Issue.3 , pp. 884-896
    • Deshpande, G.1    Sathian, K.2    Hu, X.3
  • 11
    • 61349120207 scopus 로고    scopus 로고
    • Causal modelling and brain connectivity in functional magnetic resonance imaging
    • Friston K. Causal modelling and brain connectivity in functional magnetic resonance imaging. PLoS Biol. 2009, 7:e33.
    • (2009) PLoS Biol. , vol.7
    • Friston, K.1
  • 12
    • 73849119737 scopus 로고    scopus 로고
    • Dynamic causal modeling and Granger causality comments on: The identification of interacting networks in the brain using fMRI: model selection, causality and deconvolution
    • (Electronic publication ahead of print)
    • Friston K. Dynamic causal modeling and Granger causality comments on: The identification of interacting networks in the brain using fMRI: model selection, causality and deconvolution. Neuroimage 2009, (Electronic publication ahead of print).
    • (2009) Neuroimage
    • Friston, K.1
  • 13
    • 70350113448 scopus 로고    scopus 로고
    • Modalities, modes, and models in functional neuroimaging
    • Friston K.J. Modalities, modes, and models in functional neuroimaging. Science 2009, 326:399-403.
    • (2009) Science , vol.326 , pp. 399-403
    • Friston, K.J.1
  • 15
    • 33646834296 scopus 로고    scopus 로고
    • The cognit: a network model of cortical representation
    • Fuster J.M. The cognit: a network model of cortical representation. Int. J. Psychophysiol. 2006, 60:125-132.
    • (2006) Int. J. Psychophysiol. , vol.60 , pp. 125-132
    • Fuster, J.M.1
  • 16
    • 73449105078 scopus 로고    scopus 로고
    • A novel extended Granger Causal Model approach demonstrates brain hemispheric differences during face recognition learning
    • Ge T., Kendrick K.M., Feng J. A novel extended Granger Causal Model approach demonstrates brain hemispheric differences during face recognition learning. PLoS Comput. Biol. 2009, 5:e1000570.
    • (2009) PLoS Comput. Biol. , vol.5
    • Ge, T.1    Kendrick, K.M.2    Feng, J.3
  • 17
    • 0032776471 scopus 로고    scopus 로고
    • Deconvolution of impulse response in event-related BOLD fMRI
    • Glover G.H. Deconvolution of impulse response in event-related BOLD fMRI. Neuroimage 1999, 9:416-429.
    • (1999) Neuroimage , vol.9 , pp. 416-429
    • Glover, G.H.1
  • 18
    • 1042301100 scopus 로고    scopus 로고
    • Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping
    • Goebel R., Roebroeck A., Kim D.S., Formisano E. Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping. Magn. Reson. Imaging 2003, 21:1251-1261.
    • (2003) Magn. Reson. Imaging , vol.21 , pp. 1251-1261
    • Goebel, R.1    Roebroeck, A.2    Kim, D.S.3    Formisano, E.4
  • 19
    • 44949262939 scopus 로고    scopus 로고
    • Uncovering interactions in the frequency domain
    • Guo S., Wu J., Ding M., Feng J. Uncovering interactions in the frequency domain. PLoS Comput. Biol. 2008, 4:e1000087.
    • (2008) PLoS Comput. Biol. , vol.4
    • Guo, S.1    Wu, J.2    Ding, M.3    Feng, J.4
  • 20
    • 77955306267 scopus 로고    scopus 로고
    • Dynamic Granger causality based on Kalman filter for evaluation of functional network connectivity in fMRI data. Neuroimage.
    • Havlicek, M., Jan, J., Brazdil, M., Calhoun, V.D., 2010. Dynamic Granger causality based on Kalman filter for evaluation of functional network connectivity in fMRI data. Neuroimage.
    • (2010)
    • Havlicek, M.1    Jan, J.2    Brazdil, M.3    Calhoun, V.D.4
  • 22
    • 0037473234 scopus 로고    scopus 로고
    • The use of time-variant EEG Granger causality for inspecting directed interdependencies of neural assemblies
    • Hesse W., Moller E., Arnold M., Schack B. The use of time-variant EEG Granger causality for inspecting directed interdependencies of neural assemblies. J. Neurosci. Methods 2003, 124:27-44.
    • (2003) J. Neurosci. Methods , vol.124 , pp. 27-44
    • Hesse, W.1    Moller, E.2    Arnold, M.3    Schack, B.4
  • 24
    • 55349099460 scopus 로고    scopus 로고
    • Bayesian deconvolution of [corrected] fMRI data using bilinear dynamical systems
    • Makni S., Beckmann C., Smith S., Woolrich M. Bayesian deconvolution of [corrected] fMRI data using bilinear dynamical systems. Neuroimage 2008, 42:1381-1396.
    • (2008) Neuroimage , vol.42 , pp. 1381-1396
    • Makni, S.1    Beckmann, C.2    Smith, S.3    Woolrich, M.4
  • 25
    • 0142057012 scopus 로고    scopus 로고
    • A dynamic causal modeling study on category effects: bottom-up or top-down mediation?
    • Mechelli A., Price C.J., Noppeney U., Friston K.J. A dynamic causal modeling study on category effects: bottom-up or top-down mediation?. J. Cogn. Neurosci. 2003, 15:925-934.
    • (2003) J. Cogn. Neurosci. , vol.15 , pp. 925-934
    • Mechelli, A.1    Price, C.J.2    Noppeney, U.3    Friston, K.J.4
  • 27
    • 0036674417 scopus 로고    scopus 로고
    • The anatomical basis of functional localization in the cortex
    • Passingham R.E., Stephan K.E., Kotter R. The anatomical basis of functional localization in the cortex. Nat. Rev. Neurosci. 2002, 3:606-616.
    • (2002) Nat. Rev. Neurosci. , vol.3 , pp. 606-616
    • Passingham, R.E.1    Stephan, K.E.2    Kotter, R.3
  • 29
    • 0001091737 scopus 로고
    • Generating surrogate data for time series with several simultaneously measured variables
    • Prichard D., Theiler J. Generating surrogate data for time series with several simultaneously measured variables. Phys. Rev. Lett. 1994, 73:951-954.
    • (1994) Phys. Rev. Lett. , vol.73 , pp. 951-954
    • Prichard, D.1    Theiler, J.2
  • 30
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • Rabiner L.R. A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 1989, 77:257-285.
    • (1989) Proc. IEEE , vol.77 , pp. 257-285
    • Rabiner, L.R.1
  • 31
    • 34547839743 scopus 로고    scopus 로고
    • Learning effective brain connectivity with dynamic Bayesian networks
    • Rajapakse J.C., Zhou J. Learning effective brain connectivity with dynamic Bayesian networks. Neuroimage 2007, 37:749-760.
    • (2007) Neuroimage , vol.37 , pp. 749-760
    • Rajapakse, J.C.1    Zhou, J.2
  • 33
    • 14244259417 scopus 로고    scopus 로고
    • Mapping directed influence over the brain using Granger causality and fMRI
    • Roebroeck A., Formisano E., Goebel R. Mapping directed influence over the brain using Granger causality and fMRI. Neuroimage 2005, 25:230-242.
    • (2005) Neuroimage , vol.25 , pp. 230-242
    • Roebroeck, A.1    Formisano, E.2    Goebel, R.3
  • 34
    • 73849124694 scopus 로고    scopus 로고
    • The identification of interacting networks in the brain using fMRI: model selection, causality and deconvolution
    • (Electronic publication ahead of print)
    • Roebroeck A., Formisano E., Goebel R. The identification of interacting networks in the brain using fMRI: model selection, causality and deconvolution. Neuroimage 2009, (Electronic publication ahead of print).
    • (2009) Neuroimage
    • Roebroeck, A.1    Formisano, E.2    Goebel, R.3
  • 35
    • 33747441407 scopus 로고    scopus 로고
    • A method to produce evolving functional connectivity maps during the course of an fMRI experiment using wavelet-based time-varying Granger causality
    • Sato J.R., Junior E.A., Takahashi D.Y., de Maria Felix M., Brammer M.J., Morettin P.A. A method to produce evolving functional connectivity maps during the course of an fMRI experiment using wavelet-based time-varying Granger causality. Neuroimage 2006, 31:187-196.
    • (2006) Neuroimage , vol.31 , pp. 187-196
    • Sato, J.R.1    Junior, E.A.2    Takahashi, D.Y.3    de Maria Felix, M.4    Brammer, M.J.5    Morettin, P.A.6
  • 36
    • 33745595378 scopus 로고    scopus 로고
    • Causal connectivity of evolved neural networks during behavior
    • Seth A.K. Causal connectivity of evolved neural networks during behavior. Network 2005, 16:35-54.
    • (2005) Network , vol.16 , pp. 35-54
    • Seth, A.K.1
  • 37
    • 74149089224 scopus 로고    scopus 로고
    • A MATLAB toolbox for Granger causal connectivity analysis
    • Seth A.K. A MATLAB toolbox for Granger causal connectivity analysis. J. Neurosci. Methods 2010, 186:262-273.
    • (2010) J. Neurosci. Methods , vol.186 , pp. 262-273
    • Seth, A.K.1
  • 38
    • 77954383250 scopus 로고    scopus 로고
    • Identification and validation of effective connectivity networks in functional magnetic resonance imaging using switching linear dynamic systems
    • Smith J.F., Pillai A., Chen K., Horwitz B. Identification and validation of effective connectivity networks in functional magnetic resonance imaging using switching linear dynamic systems. Neuroimage 2010, 52(3):1027-1040.
    • (2010) Neuroimage , vol.52 , Issue.3 , pp. 1027-1040
    • Smith, J.F.1    Pillai, A.2    Chen, K.3    Horwitz, B.4
  • 39
    • 50449099617 scopus 로고    scopus 로고
    • A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks
    • Sridharan D., Levitin D.J., Menon V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc. Natl. Acad. Sci. U. S. A. 2008, 105:12569-12574.
    • (2008) Proc. Natl. Acad. Sci. U. S. A. , vol.105 , pp. 12569-12574
    • Sridharan, D.1    Levitin, D.J.2    Menon, V.3
  • 40
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and relevant vector machine
    • Tipping M. Sparse Bayesian learning and relevant vector machine. J. Mach. Learn. Res. 2001, 1:211-244.
    • (2001) J. Mach. Learn. Res. , vol.1 , pp. 211-244
    • Tipping, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.