메뉴 건너뛰기




Volumn 58, Issue 2, 2011, Pages 339-361

Effective connectivity: Influence, causality and biophysical modeling

Author keywords

Dynamic Causal Modeling; EEG; Effective connectivity; FMRI; Granger Causality

Indexed keywords

BAYES THEOREM; BIOPHYSICS; CAUSAL MODELING; EFFECTIVE CONNECTIVITY; EPIDEMIOLOGY; FUNCTIONAL MAGNETIC RESONANCE IMAGING; NERVOUS SYSTEM PARAMETERS; NOTE; PRIORITY JOURNAL; STATISTICAL MODEL;

EID: 80051795744     PISSN: 10538119     EISSN: 10959572     Source Type: Journal    
DOI: 10.1016/j.neuroimage.2011.03.058     Document Type: Note
Times cited : (333)

References (168)
  • 1
    • 0007360887 scopus 로고
    • Dynamic modeling and causality
    • Aalen O.O. Dynamic modeling and causality. Scand. Actuarial J. 1987, 13:177-190.
    • (1987) Scand. Actuarial J. , vol.13 , pp. 177-190
    • Aalen, O.O.1
  • 2
    • 33847416508 scopus 로고    scopus 로고
    • What can statistics contribute to a causal understanding
    • Aalen O.O., Frigessi A. What can statistics contribute to a causal understanding. Scand. J. Stat. 2007, 34(1):155-168. 10.1111/j.1467-9469.2006.00549.x.
    • (2007) Scand. J. Stat. , vol.34 , Issue.1 , pp. 155-168
    • Aalen, O.O.1    Frigessi, A.2
  • 3
    • 0008402220 scopus 로고
    • On the use of a linear model for the identification of feedback systems
    • Springer, Retrieved from
    • Akaike H. On the use of a linear model for the identification of feedback systems. Annals of the Institute of Statistical Mathematics 1968, 20(1):425-439. Springer, Retrieved from. http://www.springerlink.com/index/MP5748216213R74Q.pdf.
    • (1968) Annals of the Institute of Statistical Mathematics , pp. 425-439
    • Akaike, H.1
  • 4
    • 80051785375 scopus 로고    scopus 로고
    • Temporal aggregation and closure of VARMA models: some new results
    • Springer Berlin Heidelberg, Berlin, Heidelberg, F. Palumbo, C.N. Lauro, M.J. Greenacre (Eds.)
    • Amendola A., Niglio M., Vitale C. Temporal aggregation and closure of VARMA models: some new results. Data Analysis and Classification 2010, 435-443. Springer Berlin Heidelberg, Berlin, Heidelberg. 10.1007/978-3-642-03739-9. F. Palumbo, C.N. Lauro, M.J. Greenacre (Eds.).
    • (2010) Data Analysis and Classification , pp. 435-443
    • Amendola, A.1    Niglio, M.2    Vitale, C.3
  • 5
    • 77949278566 scopus 로고    scopus 로고
    • On analytic and algebraic observability of nonlinear delay systems
    • Elsevier Ltd.
    • Anguelova M., Wennberg B. On analytic and algebraic observability of nonlinear delay systems. Automatica 2010, 46(4):682-686. Elsevier Ltd. 10.1016/j.automatica.2010.01.031.
    • (2010) Automatica , pp. 682-686
    • Anguelova, M.1    Wennberg, B.2
  • 6
    • 49849124931 scopus 로고
    • On the choice of sampling rates in parametric identification of time series
    • Astrom K.J. On the choice of sampling rates in parametric identification of time series. Inf. Sci. 1969, 1:273-278.
    • (1969) Inf. Sci. , vol.1 , pp. 273-278
    • Astrom, K.J.1
  • 7
    • 69249205522 scopus 로고    scopus 로고
    • A new computational tool for establishing model parameter identifiability
    • August E., Papachristodoulou A. A new computational tool for establishing model parameter identifiability. J. Comput. Biol. 2009, 16(6):875-885. 10.1089/cmb.2008.0211.
    • (2009) J. Comput. Biol. , vol.16 , Issue.6 , pp. 875-885
    • August, E.1    Papachristodoulou, A.2
  • 8
    • 0000800010 scopus 로고
    • Analytic random processes
    • Belyaev Y.K. Analytic random processes. Theory Probab. Appl. 1959, 4(4):402. 10.1137/1104040.
    • (1959) Theory Probab. Appl. , vol.4 , Issue.4 , pp. 402
    • Belyaev, Y.K.1
  • 9
    • 0013012077 scopus 로고
    • Nonrecursive models as discrete approximations to systems of stochastic differential equations
    • Bergstrom A.R. Nonrecursive models as discrete approximations to systems of stochastic differential equations. Econometrica 1966, 34(1):173-182.
    • (1966) Econometrica , vol.34 , Issue.1 , pp. 173-182
    • Bergstrom, A.R.1
  • 10
    • 80051796861 scopus 로고
    • Continuous time stochastic models and issues of aggregation
    • Elsevier Science Publishers B.V.
    • Bergstrom A.R. Continuous time stochastic models and issues of aggregation. Handbook of Econometries 1984, Volume II. Elsevier Science Publishers B.V.
    • (1984) Handbook of Econometries , vol.2
    • Bergstrom, A.R.1
  • 11
    • 84974313172 scopus 로고
    • Continuous-time models, realized volatilities, and testable distributional implications for daily stock returns
    • Bergstrom A.R. Continuous-time models, realized volatilities, and testable distributional implications for daily stock returns. Econometric Theory 1988, 4(3):365-383. 10.1002/jae.1105.
    • (1988) Econometric Theory , vol.4 , Issue.3 , pp. 365-383
    • Bergstrom, A.R.1
  • 12
    • 76749137651 scopus 로고    scopus 로고
    • Axonal velocity distributions in neural field equations
    • Bojak Ingo, Liley D.T.J. Axonal velocity distributions in neural field equations. PLoS Comput. Biol. 2010, 6(1):1-25. 10.1371/journal.pcbi.1000653.
    • (2010) PLoS Comput. Biol. , vol.6 , Issue.1 , pp. 1-25
    • Bojak, I.1    Liley, D.T.J.2
  • 13
    • 0342561510 scopus 로고    scopus 로고
    • 3D statistical parametric mapping of EEG source spectra by means of variable resolution electromagnetic tomography (VARETA)
    • ECNS, Retrieved September 13, 2010, from
    • Bosch-Bayard J., Valdés-Sosa P., Virues-Alba T., Aubert-Vázquez E., John E.R., Harmony T., et al. 3D statistical parametric mapping of EEG source spectra by means of variable resolution electromagnetic tomography (VARETA). Clinical EEG (Electroencephalography) 2001, 32(2):47-61. ECNS, Retrieved September 13, 2010, from. http://www.ncbi.nlm.nih.gov/pubmed/11360721.
    • (2001) Clinical EEG (Electroencephalography) , pp. 47-61
    • Bosch-Bayard, J.1    Valdés-Sosa, P.2    Virues-Alba, T.3    Aubert-Vázquez, E.4    John, E.R.5    Harmony, T.6
  • 14
    • 79051471039 scopus 로고    scopus 로고
    • Synchronization in a neuronal feedback loop through asymmetric temporal delays
    • Brandt S.F., Pelster A., Wessel R. Synchronization in a neuronal feedback loop through asymmetric temporal delays. Europhys. Lett. 2007, 79(3):38001. 10.1209/0295-5075/79/38001.
    • (2007) Europhys. Lett. , vol.79 , Issue.3 , pp. 38001
    • Brandt, S.F.1    Pelster, A.2    Wessel, R.3
  • 15
    • 25444475865 scopus 로고    scopus 로고
    • Dynamics of a neural system with a multiscale architecture
    • Breakspear Michael, Stam C.J. Dynamics of a neural system with a multiscale architecture. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2005, 360(1457):1051-1074. 10.1098/rstb.2005.1643.
    • (2005) Philos. Trans. R. Soc. Lond. B Biol. Sci. , vol.360 , Issue.1457 , pp. 1051-1074
    • Breakspear, M.1    Stam, C.J.2
  • 16
    • 33747891705 scopus 로고    scopus 로고
    • A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis
    • Breakspear M., Roberts J.A., Terry J.R., Rodrigues S., Mahant N., Robinson P.A. A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. Cereb. Cortex 2006, 16(9):1296-1313. 10.1093/cercor/bhj072.
    • (2006) Cereb. Cortex , vol.16 , Issue.9 , pp. 1296-1313
    • Breakspear, M.1    Roberts, J.A.2    Terry, J.R.3    Rodrigues, S.4    Mahant, N.5    Robinson, P.A.6
  • 17
    • 80051715130 scopus 로고    scopus 로고
    • Wiener-Granger causality: a well established methodology
    • (this issue)
    • Bressler S.L., Seth A.K. Wiener-Granger causality: a well established methodology. Neuroimage 2011, 58:323-329. (this issue).
    • (2011) Neuroimage , vol.58 , pp. 323-329
    • Bressler, S.L.1    Seth, A.K.2
  • 19
    • 73449106793 scopus 로고    scopus 로고
    • Mean square power series solution of random linear differential equations
    • Elsevier Ltd.
    • Calbo G., Cortés J.-C., Jódar L. Mean square power series solution of random linear differential equations. Computers & Mathematics with Applications 2010, 59(1):559-572. Elsevier Ltd. 10.1016/j.camwa.2009.06.007.
    • (2010) Computers & Mathematics with Applications , pp. 559-572
    • Calbo, G.1    Cortés, J.-C.2    Jódar, L.3
  • 21
    • 34548680068 scopus 로고    scopus 로고
    • Numerical simulation of nonlinear dynamical systems driven by commutative noise
    • Carbonell F., Biscay R.J., Jimenez J.C., de la Cruz H. Numerical simulation of nonlinear dynamical systems driven by commutative noise. J. Comput. Phys. 2007, 226(2):1219-1233. 10.1016/j.jcp. 2007.05.024.
    • (2007) J. Comput. Phys. , vol.226 , Issue.2 , pp. 1219-1233
    • Carbonell, F.1    Biscay, R.J.2    Jimenez, J.C.3    de la Cruz, H.4
  • 23
    • 80051787622 scopus 로고    scopus 로고
    • Discrete time representation of continuous time ARMA processes
    • Chambers Marcus J., Thornton M.A. Discrete time representation of continuous time ARMA processes. Por Clasificar 2009, 1-19.
    • (2009) Por Clasificar , pp. 1-19
    • Chambers, M.J.1    Thornton, M.A.2
  • 24
    • 44649093248 scopus 로고    scopus 로고
    • Dynamic causal modelling of induced responses
    • Chen C.C., Kiebel S.J., Friston K.J. Dynamic causal modelling of induced responses. Neuroimage 2008, 41(4):1293-1312. 10.1016/j.neuroimage.2008.03.026.
    • (2008) Neuroimage , vol.41 , Issue.4 , pp. 1293-1312
    • Chen, C.C.1    Kiebel, S.J.2    Friston, K.J.3
  • 25
    • 70349423630 scopus 로고    scopus 로고
    • Parameter identifiability with Kullback-Leibler information divergence criterion
    • Chen B., Hu J., Zhu Y., Sun Z. Parameter identifiability with Kullback-Leibler information divergence criterion. Int. J. Adapt. Control Signal Process. 2009, 23(10):940-960. 10.1002/acs.1078.
    • (2009) Int. J. Adapt. Control Signal Process. , vol.23 , Issue.10 , pp. 940-960
    • Chen, B.1    Hu, J.2    Zhu, Y.3    Sun, Z.4
  • 27
    • 66849097832 scopus 로고    scopus 로고
    • A general dynamical statistical model with causal interpretation
    • Commenges D., Gégout-Petit A. A general dynamical statistical model with causal interpretation. J. R. Stat. Soc. B Stat. Methodol. 2009, 71(3):719-736. 10.1111/j.1467-9868.2009.00703.x.
    • (2009) J. R. Stat. Soc. B Stat. Methodol. , vol.71 , Issue.3 , pp. 719-736
    • Commenges, D.1    Gégout-Petit, A.2
  • 28
    • 0030532763 scopus 로고    scopus 로고
    • Noncausality in continuous time models
    • Comte F., Renault E. Noncausality in continuous time models. Econometric Theory 1996, 12:215-256.
    • (1996) Econometric Theory , vol.12 , pp. 215-256
    • Comte, F.1    Renault, E.2
  • 29
    • 77954386847 scopus 로고    scopus 로고
    • Large-scale neural dynamics: simple and complex
    • Coombes S. Large-scale neural dynamics: simple and complex. Neuroimage 2010, 52(3):731-739. 10.1016/j.neuroimage.2010.01.045.
    • (2010) Neuroimage , vol.52 , Issue.3 , pp. 731-739
    • Coombes, S.1
  • 30
    • 35949003696 scopus 로고    scopus 로고
    • Modeling electrocortical activity through improved local approximations of integral neural field equations
    • Coombes S., Venkov N., Shiau L., Bojak I., Liley D., Laing C. Modeling electrocortical activity through improved local approximations of integral neural field equations. Phys. Rev. E 2007, 76(5):1-8. 10.1103/PhysRevE.76.051901.
    • (2007) Phys. Rev. E , vol.76 , Issue.5 , pp. 1-8
    • Coombes, S.1    Venkov, N.2    Shiau, L.3    Bojak, I.4    Liley, D.5    Laing, C.6
  • 31
    • 10244229834 scopus 로고    scopus 로고
    • Causality: a statistical view
    • Cox D.R., Wermuth N. Causality: a statistical view. Int. Stat. Rev. 2004, 72:285-305.
    • (2004) Int. Stat. Rev. , vol.72 , pp. 285-305
    • Cox, D.R.1    Wermuth, N.2
  • 32
    • 80051748187 scopus 로고    scopus 로고
    • Dynamic causal modelling: a critical review of the biophysical and statistical foundations
    • (this issue)
    • Daunizeau J., David O., Stephan K.E. Dynamic causal modelling: a critical review of the biophysical and statistical foundations. Neuroimage 2011, 58:312-322. (this issue).
    • (2011) Neuroimage , vol.58 , pp. 312-322
    • Daunizeau, J.1    David, O.2    Stephan, K.E.3
  • 33
    • 70349243080 scopus 로고    scopus 로고
    • Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models
    • Daunizeau J., Friston K.J., Kiebel S.J. Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models. Physica D 2009, 238(21):2089-2118. 10.1016/j.physd.2009.08.002.
    • (2009) Physica D , vol.238 , Issue.21 , pp. 2089-2118
    • Daunizeau, J.1    Friston, K.J.2    Kiebel, S.J.3
  • 34
    • 67449088995 scopus 로고    scopus 로고
    • Dynamic causal modelling of distributed electromagnetic responses
    • Elsevier Inc.
    • Daunizeau Jean, Kiebel Stefan J., Friston Karl J. Dynamic causal modelling of distributed electromagnetic responses. NeuroImage 2009, 47(2):590-601. Elsevier Inc. 10.1016/j.neuroimage.2009.04.062.
    • (2009) NeuroImage , pp. 590-601
    • Daunizeau, J.1    Kiebel, S.J.2    Friston, K.J.3
  • 35
    • 33745183321 scopus 로고    scopus 로고
    • Mechanisms of evoked and induced responses in MEG/EEG
    • David O., Kilner J.M., Friston K.J. Mechanisms of evoked and induced responses in MEG/EEG. NeuroImage 2006, 31(4):1580-1591. 10.1016/j.neuroimage.2006.02.034.
    • (2006) NeuroImage , vol.31 , Issue.4 , pp. 1580-1591
    • David, O.1    Kilner, J.M.2    Friston, K.J.3
  • 36
    • 80051795338 scopus 로고    scopus 로고
    • FMRI connectivity, meaning and empiricism Comments on: Roebroeck et al. The identification of interacting networks in the brain using fMRI: Model selection, causality and deconvolution
    • (this issue)
    • David Olivier fMRI connectivity, meaning and empiricism Comments on: Roebroeck et al. The identification of interacting networks in the brain using fMRI: Model selection, causality and deconvolution. Neuroimage 2011, 58:306-309. (this issue).
    • (2011) Neuroimage , vol.58 , pp. 306-309
    • David, O.1
  • 37
    • 84883819822 scopus 로고    scopus 로고
    • Identifying neural drivers with functional MRI: an electrophysiological validation
    • David Olivier, Guillemain I., Saillet S., Reyt S., Deransart C., Segebarth C., et al. Identifying neural drivers with functional MRI: an electrophysiological validation. PLoS Biol. 2008, 6(12):2683-2697. 10.1371/journal.pbio.0060315.
    • (2008) PLoS Biol. , vol.6 , Issue.12 , pp. 2683-2697
    • David, O.1    Guillemain, I.2    Saillet, S.3    Reyt, S.4    Deransart, C.5    Segebarth, C.6
  • 38
    • 50949089019 scopus 로고    scopus 로고
    • The dynamic brain: from spiking neurons to neural masses and cortical fields
    • Deco G., Jirsa V.K., Robinson Peter A., Breakspear Michael, Friston Karl The dynamic brain: from spiking neurons to neural masses and cortical fields. PLoS Comput. Biol. 2008, 4(8):e1000092. 10.1371/journal.pcbi.1000092.
    • (2008) PLoS Comput. Biol. , vol.4 , Issue.8
    • Deco, G.1    Jirsa, V.K.2    Robinson, P.A.3    Breakspear, M.4    Friston, K.5
  • 39
    • 47949097743 scopus 로고    scopus 로고
    • A bootstrap method for identifying and evaluating a structural vector autoregression*
    • Retrieved August 27, 2010, from
    • Demiralp S., Hoover K. A bootstrap method for identifying and evaluating a structural vector autoregression*. Oxford Bulletin of Economics and Statistics 2008, Retrieved August 27, 2010, from. http://www3.interscience.wiley.com/journal/120174048/abstract.
    • (2008) Oxford Bulletin of Economics and Statistics
    • Demiralp, S.1    Hoover, K.2
  • 40
    • 77953457214 scopus 로고    scopus 로고
    • EEG-fMRI fusion of paradigm-free activity using Kalman filtering
    • Deneux T., Faugeras O. EEG-fMRI fusion of paradigm-free activity using Kalman filtering. Neural Comput. 2010, 22(4):906-948. 10.1162/neco.2009.05-08-793.
    • (2010) Neural Comput. , vol.22 , Issue.4 , pp. 906-948
    • Deneux, T.1    Faugeras, O.2
  • 41
    • 77954383549 scopus 로고    scopus 로고
    • Effect of hemodynamic variability on Granger causality analysis of fMRI
    • Elsevier Inc.
    • Deshpande G., Sathian K., Hu X. Effect of hemodynamic variability on Granger causality analysis of fMRI. NeuroImage 2009, 52(3):884-896. Elsevier Inc. 10.1016/j.neuroimage.2009.11.060.
    • (2009) NeuroImage , pp. 884-896
    • Deshpande, G.1    Sathian, K.2    Hu, X.3
  • 42
    • 44149095492 scopus 로고    scopus 로고
    • Analyzing information flow in brain networks with nonparametric Granger causality
    • Dhamala M., Rangarajan G., Ding M. Analyzing information flow in brain networks with nonparametric Granger causality. Neuroimage 2008, 41(2):354-362. 10.1016/j.neuroimage.2008.02.020.
    • (2008) Neuroimage , vol.41 , Issue.2 , pp. 354-362
    • Dhamala, M.1    Rangarajan, G.2    Ding, M.3
  • 43
    • 25444446654 scopus 로고    scopus 로고
    • A graphical approach for evaluating effective connectivity in neural systems
    • Eichler M. A graphical approach for evaluating effective connectivity in neural systems. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2005, 360(1457):953-967. 10.1098/rstb.2005.1641.
    • (2005) Philos. Trans. R. Soc. Lond. B Biol. Sci. , vol.360 , Issue.1457 , pp. 953-967
    • Eichler, M.1
  • 44
    • 77950462635 scopus 로고    scopus 로고
    • On Granger causality and the effect of interventions in time series
    • Eichler M., Didelez V. On Granger causality and the effect of interventions in time series. Lifetime data analysis 2010, 16(1):3-32. 10.1007/s10985-009-9143-3.
    • (2010) Lifetime data analysis , vol.16 , Issue.1 , pp. 3-32
    • Eichler, M.1    Didelez, V.2
  • 45
    • 77958032223 scopus 로고    scopus 로고
    • A constructive mean-field analysis of multi-population neural networks with random synaptic weights and stochastic inputs
    • (February)
    • Faugeras O., Touboul J., Cessac B. A constructive mean-field analysis of multi-population neural networks with random synaptic weights and stochastic inputs. Front. Comput. Neurosci. 2009, 3:1. (February). 10.3389/neuro.10.001.2009.
    • (2009) Front. Comput. Neurosci. , vol.3 , pp. 1
    • Faugeras, O.1    Touboul, J.2    Cessac, B.3
  • 46
    • 0346093792 scopus 로고    scopus 로고
    • Some technical issues in defning causality
    • Florens J.-P. Some technical issues in defning causality. J. Econometrics 2003, 112:127-128.
    • (2003) J. Econometrics , vol.112 , pp. 127-128
    • Florens, J.-P.1
  • 47
    • 0030369935 scopus 로고    scopus 로고
    • Noncausality in continuous time
    • Retrieved from
    • Florens J.-P., Fougere D. Noncausality in continuous time. Econometrica 1996, 64(5):1195-1212. Retrieved from. http://www.jstor.org/stable/2171962.
    • (1996) Econometrica , vol.64 , Issue.5 , pp. 1195-1212
    • Florens, J.-P.1    Fougere, D.2
  • 48
    • 0001119572 scopus 로고
    • A note on noncausality
    • Retrieved from
    • Florens J.-P., Mouchart M. A note on noncausality. Econometrica 1982, 50(3):583-591. Retrieved from. http://www.jstor.org/stable/1912602.
    • (1982) Econometrica , vol.50 , Issue.3 , pp. 583-591
    • Florens, J.-P.1    Mouchart, M.2
  • 49
    • 0001764963 scopus 로고
    • A linear theory for noncausality
    • Florens A.J., Mouchart M. A linear theory for noncausality. Econometrica 1985, 53(1):157-176.
    • (1985) Econometrica , vol.53 , Issue.1 , pp. 157-176
    • Florens, A.J.1    Mouchart, M.2
  • 50
    • 0032716221 scopus 로고    scopus 로고
    • Testing non-linearity and directedness of interactions between neural groups in the macaque inferotemporal cortex
    • Freiwald W., Valdes-Sosa P.A., Bosch-Bayard Jorge, Biscay-Lirio R., Jimenez Juan Carlos, Rodríguez L.M., et al. Testing non-linearity and directedness of interactions between neural groups in the macaque inferotemporal cortex. J. Neurosci. Methods 1999, 94(1):105-119. 10.1016/S0165-0270(99)00129-6.
    • (1999) J. Neurosci. Methods , vol.94 , Issue.1 , pp. 105-119
    • Freiwald, W.1    Valdes-Sosa, P.A.2    Bosch-Bayard, J.3    Biscay-Lirio, R.4    Jimenez, J.C.5    Rodríguez, L.M.6
  • 51
    • 44449177451 scopus 로고    scopus 로고
    • Variational filtering
    • Friston K.J. Variational filtering. Neuroimage 2008, 41:747-766.
    • (2008) Neuroimage , vol.41 , pp. 747-766
    • Friston, K.J.1
  • 52
    • 57149113922 scopus 로고    scopus 로고
    • Hierarchical models in the brain
    • Friston Karl J. Hierarchical models in the brain. PLoS Comput. Biol. 2008, 4(11):e1000211. 10.1371/journal.pcbi.1000211.
    • (2008) PLoS Comput. Biol. , vol.4 , Issue.11
    • Friston, K.J.1
  • 53
    • 61349120207 scopus 로고    scopus 로고
    • Causal modelling and brain connectivity in functional magnetic resonance imaging
    • Friston Karl Causal modelling and brain connectivity in functional magnetic resonance imaging. PLoS Biol. 2009, 7(2):e33. 10.1371/journal.pbio.1000033.
    • (2009) PLoS Biol. , vol.7 , Issue.2
    • Friston, K.1
  • 54
    • 80051779591 scopus 로고    scopus 로고
    • Dynamic causal modeling and Granger causality comments on: the identification of interacting networks in the brain using fMRI: model selection, causality and deconvolution
    • (this issue)
    • Friston Karl Dynamic causal modeling and Granger causality comments on: the identification of interacting networks in the brain using fMRI: model selection, causality and deconvolution. Neuroimage 2011, 58:303-305. (this issue).
    • (2011) Neuroimage , vol.58 , pp. 303-305
    • Friston, K.1
  • 55
    • 44449115519 scopus 로고    scopus 로고
    • DEM: a variational treatment of dynamic systems
    • Friston K.J., Daunizeau J. DEM: a variational treatment of dynamic systems. Neuroimage 2008, 41:849-885. 10.1016/j.neuroimage.2008.02.054.
    • (2008) Neuroimage , vol.41 , pp. 849-885
    • Friston, K.J.1    Daunizeau, J.2
  • 56
  • 57
    • 0033778839 scopus 로고    scopus 로고
    • Nonlinear responses in fMRI: the Balloon model, Volterra kernels, and other hemodynamics
    • Friston K.J., Mechelli A., Turner R., Price C.J. Nonlinear responses in fMRI: the Balloon model, Volterra kernels, and other hemodynamics. Neuroimage 2000, 12(4):466-477. 10.1006/nimg.2000.0630.
    • (2000) Neuroimage , vol.12 , Issue.4 , pp. 466-477
    • Friston, K.J.1    Mechelli, A.2    Turner, R.3    Price, C.J.4
  • 58
    • 33846705838 scopus 로고    scopus 로고
    • Causality and causal models: a conceptual
    • (June 2004)
    • Frosini B.V. Causality and causal models: a conceptual. Int. Stat. Rev. 2006, 305-334. (June 2004).
    • (2006) Int. Stat. Rev. , pp. 305-334
    • Frosini, B.V.1
  • 59
    • 5644287341 scopus 로고    scopus 로고
    • A solution to the dynamical inverse problem of EEG generation using spatiotemporal Kalman filtering
    • Galka A., Yamashita O., Ozaki Tohru, Biscay Rolando, Valdés-Sosa Pedro A solution to the dynamical inverse problem of EEG generation using spatiotemporal Kalman filtering. Neuroimage 2004, 23(2):435-453. 10.1016/j.neuroimage.2004.02.022.
    • (2004) Neuroimage , vol.23 , Issue.2 , pp. 435-453
    • Galka, A.1    Yamashita, O.2    Ozaki, T.3    Biscay, R.4    Valdés-Sosa, P.5
  • 60
    • 45449086452 scopus 로고    scopus 로고
    • A data-driven model of the generation of human EEG based on a spatially distributed stochastic wave equation
    • Galka A., Ozaki Tohru, Muhle H., Stephani U., Siniatchkin M. A data-driven model of the generation of human EEG based on a spatially distributed stochastic wave equation. Cogn. Neurodynamics 2008, 2(2):101-113. 10.1007/s11571-008-9049-x.
    • (2008) Cogn. Neurodynamics , vol.2 , Issue.2 , pp. 101-113
    • Galka, A.1    Ozaki, T.2    Muhle, H.3    Stephani, U.4    Siniatchkin, M.5
  • 61
    • 80051788090 scopus 로고    scopus 로고
    • Identification of continuous time models from sampled data
    • Spinger Verlag, Lodon Limited, H. Garnier, L. Wang (Eds.)
    • Garnier H., Wang L. Identification of continuous time models from sampled data. Engineering 2008, Spinger Verlag, Lodon Limited. H. Garnier, L. Wang (Eds.).
    • (2008) Engineering
    • Garnier, H.1    Wang, L.2
  • 62
    • 73449105078 scopus 로고    scopus 로고
    • A novel extended Granger Causal Model approach demonstrates brain hemispheric differences during face recognition learning
    • Ge T., Kendrick K.M., Feng J. A novel extended Granger Causal Model approach demonstrates brain hemispheric differences during face recognition learning. PLoS Comput. Biol. 2009, 5(11):e1000570. 10.1371/journal.pcbi.1000570.
    • (2009) PLoS Comput. Biol. , vol.5 , Issue.11
    • Ge, T.1    Kendrick, K.M.2    Feng, J.3
  • 63
    • 77950465761 scopus 로고    scopus 로고
    • A general definition of influence between stochastic processes
    • Gégout-Petit A., Commenges D. A general definition of influence between stochastic processes. Lifetime Data Anal. 2010, 16(1):33-44. 10.1007/s10985-009-9131-7.
    • (2010) Lifetime Data Anal. , vol.16 , Issue.1 , pp. 33-44
    • Gégout-Petit, A.1    Commenges, D.2
  • 64
    • 80051787494 scopus 로고    scopus 로고
    • An introduction to wavelets and other filtering methods in finance and economics
    • Academic Press
    • Gencay R., Selcuk F., Whitcher B. An introduction to wavelets and other filtering methods in finance and economics. Statistics 2002, Vol. 12. Academic Press.
    • (2002) Statistics , vol.12
    • Gencay, R.1    Selcuk, F.2    Whitcher, B.3
  • 65
    • 84950949120 scopus 로고
    • Measures of conditional linear dependence and feedback between time series
    • Geweke J. Measures of conditional linear dependence and feedback between time series. J. Am. Stat. Assoc. 1984, 79(388):907-915.
    • (1984) J. Am. Stat. Assoc. , vol.79 , Issue.388 , pp. 907-915
    • Geweke, J.1
  • 66
    • 0023592965 scopus 로고
    • Causality and stochastic dynamical systems
    • Gill J.B., Petrović L. Causality and stochastic dynamical systems. SIAM J. Appl. Math. 1987, 47(6):1361-1366.
    • (1987) SIAM J. Appl. Math. , vol.47 , Issue.6 , pp. 1361-1366
    • Gill, J.B.1    Petrović, L.2
  • 67
    • 0032776471 scopus 로고    scopus 로고
    • Deconvolution of impulse response in event-related BOLD fMRI
    • Retrieved August 21, 2010, from
    • Glover G.H. Deconvolution of impulse response in event-related BOLD fMRI. Neuroimage 1999, 9(4):416-429. Retrieved August 21, 2010, from. http://www.ncbi.nlm.nih.gov/pubmed/10191170.
    • (1999) Neuroimage , vol.9 , Issue.4 , pp. 416-429
    • Glover, G.H.1
  • 68
    • 77249151531 scopus 로고    scopus 로고
    • What Is Right with 'Bayes Net Methods' and What Is Wrong with 'Hunting Causes and Using Them'?
    • Glymour C. What Is Right with 'Bayes Net Methods' and What Is Wrong with 'Hunting Causes and Using Them'?. The British Journal for the Philosophy of Science 2009, 61(1):161-211. 10.1093/bjps/axp039.
    • (2009) The British Journal for the Philosophy of Science , vol.61 , Issue.1 , pp. 161-211
    • Glymour, C.1
  • 70
    • 0001805137 scopus 로고
    • Economic processes involving feedback
    • Granger C.W.J. Economic processes involving feedback. Inf. Control 1963, 48:28-48.
    • (1963) Inf. Control , vol.48 , pp. 28-48
    • Granger, C.W.J.1
  • 71
    • 28144459550 scopus 로고
    • Some recent developments in a concept of causality
    • Granger C.W.J. Some recent developments in a concept of causality. J. Econometrics 1988, 39:199-211.
    • (1988) J. Econometrics , vol.39 , pp. 199-211
    • Granger, C.W.J.1
  • 72
    • 0013261036 scopus 로고
    • The dimensionality of the aliasing problem in models with rational spectral densities
    • Hansen L.P., Sargent T.J. The dimensionality of the aliasing problem in models with rational spectral densities. Econometrica 1983, 51(2):377-387.
    • (1983) Econometrica , vol.51 , Issue.2 , pp. 377-387
    • Hansen, L.P.1    Sargent, T.J.2
  • 73
    • 77950991361 scopus 로고    scopus 로고
    • Extended time-frequency Granger causality for evaluation of functional network connectivity in event-related FMRI data
    • Retrieved August 27, 2010, from
    • Havlicek M., Jan J., Calhoun V.M. Extended time-frequency Granger causality for evaluation of functional network connectivity in event-related FMRI data. Conference of the IEEE 2009, 4440-4443. Retrieved August 27, 2010, from. http://www.ncbi.nlm.nih.gov/pubmed/19963833.
    • (2009) Conference of the IEEE , pp. 4440-4443
    • Havlicek, M.1    Jan, J.2    Calhoun, V.M.3
  • 74
    • 77955306267 scopus 로고    scopus 로고
    • Dynamic Granger causality based on Kalman filter for evaluation of functional network connectivity in fMRI data
    • Elsevier Inc.
    • Havlicek Martin, Jan Jiri, Brazdil M., Calhoun V.D. Dynamic Granger causality based on Kalman filter for evaluation of functional network connectivity in fMRI data. NeuroImage 2010, 53(1:65-77. Elsevier Inc. 10.1016/j.neuroimage.2010.05.063.
    • (2010) NeuroImage , pp. 65-77
    • Havlicek, M.1    Jan, J.2    Brazdil, M.3    Calhoun, V.D.4
  • 77
    • 0029374946 scopus 로고
    • Biological Cybernetics in a mathematical model of coupled cortical columns
    • Jansen B.H., Rit V.G. Biological Cybernetics in a mathematical model of coupled cortical columns. Biol. Cybern. 1995, 366:357-366.
    • (1995) Biol. Cybern. , vol.366 , pp. 357-366
    • Jansen, B.H.1    Rit, V.G.2
  • 78
    • 61849107033 scopus 로고    scopus 로고
    • Pathwise Taylor schemes for random ordinary differential equations
    • Jentzen A., Kloeden P.E. Pathwise Taylor schemes for random ordinary differential equations. BIT Numer. Math. 2009, 49(1):113-140. 10.1007/s10543-009-0211-6.
    • (2009) BIT Numer. Math. , vol.49 , Issue.1 , pp. 113-140
    • Jentzen, A.1    Kloeden, P.E.2
  • 79
    • 78649683713 scopus 로고    scopus 로고
    • Granger causal influence predicts BOLD activity levels in the default mode network
    • Jiao Q., Lu G., Zhang Z., Zhong Y., Wang Z., Guo Y., et al. Granger causal influence predicts BOLD activity levels in the default mode network. Hum. Brain Mapp. 2010, 1-8. 10.1002/hbm.21065.
    • (2010) Hum. Brain Mapp.
    • Jiao, Q.1    Lu, G.2    Zhang, Z.3    Zhong, Y.4    Wang, Z.5    Guo, Y.6
  • 80
    • 0036557911 scopus 로고    scopus 로고
    • Spatiotemporal Forward Solution of the EEG and MEG Using Network Modeling
    • Jirsa V.K., et al. Spatiotemporal Forward Solution of the EEG and MEG Using Network Modeling. IEEE Transactions on Medical Imaging 2002, 21(5):493-504.
    • (2002) IEEE Transactions on Medical Imaging , vol.21 , Issue.5 , pp. 493-504
    • Jirsa, V.K.1
  • 82
    • 33847751862 scopus 로고    scopus 로고
    • Quantification of unidirectional nonlinear associations between multidimensional signals
    • Kalitzin S.N., Parra J., Velis D.N., Lopes da Silva F.H. Quantification of unidirectional nonlinear associations between multidimensional signals. IEEE Trans. Biomed. Eng. 2007, 54(3):454-461. 10.1109/TBME.2006.888828.
    • (2007) IEEE Trans. Biomed. Eng. , vol.54 , Issue.3 , pp. 454-461
    • Kalitzin, S.N.1    Parra, J.2    Velis, D.N.3    Lopes da Silva, F.H.4
  • 83
    • 33746900780 scopus 로고    scopus 로고
    • An overview of important practical aspects of continuous-time ARMA system identification
    • Larsson E.K., Mossberg M., Soderstrom T. An overview of important practical aspects of continuous-time ARMA system identification. Circuits Syst. Signal Process. 2006, 25(1):17-46. 10.1007/s00034-004-0423-6.
    • (2006) Circuits Syst. Signal Process. , vol.25 , Issue.1 , pp. 17-46
    • Larsson, E.K.1    Mossberg, M.2    Soderstrom, T.3
  • 85
    • 0028375708 scopus 로고
    • On global identifiability for arbitrary model parametrizations
    • Ljung L., Glad T. On global identifiability for arbitrary model parametrizations. Automatica 1994, 30(2):265-276.
    • (1994) Automatica , vol.30 , Issue.2 , pp. 265-276
    • Ljung, L.1    Glad, T.2
  • 86
    • 31144445868 scopus 로고    scopus 로고
    • Non-Markovian stochastic processes: colored noise
    • Łuczka J. Non-Markovian stochastic processes: colored noise. Chaos (Woodbury, N.Y.) 2005, 15(2):26107. 10.1063/1.1860471.
    • (2005) Chaos (Woodbury, N.Y.) , vol.15 , Issue.2 , pp. 26107
    • Łuczka, J.1
  • 90
    • 51749122228 scopus 로고    scopus 로고
    • Dynamical modeling and multi-experiment fitting with PottersWheel
    • Maiwald Thomas, Timmer Jens Dynamical modeling and multi-experiment fitting with PottersWheel. Bioinformatics (Oxford, England) 2008, 24(18):2037-2043. 10.1093/bioinformatics/btn350.
    • (2008) Bioinformatics (Oxford, England) , vol.24 , Issue.18 , pp. 2037-2043
    • Maiwald, T.1    Timmer, J.2
  • 91
    • 77956079564 scopus 로고    scopus 로고
    • Nonlinear connectivity by Granger causality
    • (this issue)
    • Marinazzo D., Liao W., Chen H., Stramaglia S. Nonlinear connectivity by Granger causality. Neuroimage 2011, 58:330-338. (this issue).
    • (2011) Neuroimage , vol.58 , pp. 330-338
    • Marinazzo, D.1    Liao, W.2    Chen, H.3    Stramaglia, S.4
  • 92
    • 57649178570 scopus 로고    scopus 로고
    • Population dynamics under the Laplace assumption
    • Elsevier Inc.
    • Marreiros A.C., Kiebel Stefan J., Daunizeau Jean, Harrison L.M., Friston Karl J. Population dynamics under the Laplace assumption. NeuroImage 2009, 44(3):701-714. Elsevier Inc. 10.1016/j.neuroimage.2008.10.008.
    • (2009) NeuroImage , pp. 701-714
    • Marreiros, A.C.1    Kiebel, S.J.2    Daunizeau, J.3    Harrison, L.M.4    Friston, K.J.5
  • 93
    • 0037407297 scopus 로고    scopus 로고
    • Robust Bayesian estimation of the hemodynamic response function in event-related BOLD fMRI using basic physiological information
    • Marrelec G., Benali H., Ciuciu P., Pélégrini-Issac M., Poline J.-B. Robust Bayesian estimation of the hemodynamic response function in event-related BOLD fMRI using basic physiological information. Hum. Brain Mapp. 2003, 19(1):1-17. 10.1002/hbm.10100.
    • (2003) Hum. Brain Mapp. , vol.19 , Issue.1 , pp. 1-17
    • Marrelec, G.1    Benali, H.2    Ciuciu, P.3    Pélégrini-Issac, M.4    Poline, J.-B.5
  • 95
    • 45849102361 scopus 로고    scopus 로고
    • Understanding brain connectivity from EEG data by identifying systems composed of interacting sources
    • Marzetti L., Del Gratta C., Nolte G. Understanding brain connectivity from EEG data by identifying systems composed of interacting sources. Neuroimage 2008, 42(1):87-98. 10.1016/j.neuroimage.2008.04.250.
    • (2008) Neuroimage , vol.42 , Issue.1 , pp. 87-98
    • Marzetti, L.1    Del Gratta, C.2    Nolte, G.3
  • 96
    • 0142188253 scopus 로고    scopus 로고
    • The problem of aliasing in identifying finite parameter continuous time stochastic models
    • Mccrorie J.Roderick The problem of aliasing in identifying finite parameter continuous time stochastic models. Acta Applicandae Mathematicae 2003, 79:9-16.
    • (2003) Acta Applicandae Mathematicae , vol.79 , pp. 9-16
    • Mccrorie, J.R.1
  • 97
    • 33845267448 scopus 로고    scopus 로고
    • Granger causality and the sampling of economic
    • Mccrorie J.R., Chambers M.J. Granger causality and the sampling of economic. J. Econometrics 2006, 132:311-326.
    • (2006) J. Econometrics , vol.132 , pp. 311-326
    • Mccrorie, J.R.1    Chambers, M.J.2
  • 98
    • 79952939683 scopus 로고    scopus 로고
    • Oxford University Press, USA, Retrieved July 8, 2010, from
    • Medvegyev P. Stochastic Integration Theory 2007, Oxford University Press, USA, Retrieved July 8, 2010, from. http://books.google.com/books?hl=en&lr=&id=pZGKC_PVvBsC&oi=fnd&pg=PR13&dq=Stochastic+Integration+Theory&ots=lOgSzUXwsK&sig=j29s0LLApDxAueHhDp5qNyiIc0Q.
    • (2007) Stochastic Integration Theory
    • Medvegyev, P.1
  • 99
    • 33745303106 scopus 로고    scopus 로고
    • A review of exponential integrators for first order semi-linear problems
    • Trondheim, Norway. Retrieved August 29, 2010, from
    • Minchev B., Wright W. A review of exponential integrators for first order semi-linear problems. Preprint Numerics 2005, Trondheim, Norway. Retrieved August 29, 2010, from. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:A+review+of+exponential+integrators+for+first+order+semi-linear+problems#0.
    • (2005) Preprint Numerics
    • Minchev, B.1    Wright, W.2
  • 100
    • 33847719826 scopus 로고    scopus 로고
    • Graphical models for the identification of causal structures in multivariate time series models
    • Atlantis Press, Paris, France
    • Moneta A., Spirtes Peter Graphical models for the identification of causal structures in multivariate time series models. Proceedings of the 9th Joint Conference on Information Sciences (JCIS) 2006, 1:1-4. Atlantis Press, Paris, France. 10.2991/jcis.2006.171.
    • (2006) Proceedings of the 9th Joint Conference on Information Sciences (JCIS) , vol.1 , pp. 1-4
    • Moneta, A.1    Spirtes, P.2
  • 101
    • 45849084246 scopus 로고    scopus 로고
    • Bayesian estimation of synaptic physiology from the spectral responses of neural masses
    • Moran R.J., Stephan K.E., Kiebel S.J., Rombach N., O'Connor W.T., Murphy K.J., et al. Bayesian estimation of synaptic physiology from the spectral responses of neural masses. Neuroimage 2008, 42(1):272-284. 10.1016/j.neuroimage.2008.01.025.
    • (2008) Neuroimage , vol.42 , Issue.1 , pp. 272-284
    • Moran, R.J.1    Stephan, K.E.2    Kiebel, S.J.3    Rombach, N.4    O'Connor, W.T.5    Murphy, K.J.6
  • 103
    • 34047092170 scopus 로고    scopus 로고
    • Mitigating the effects of measurement noise on Granger causality
    • Nalatore H., Ding M., Rangarajan G. Mitigating the effects of measurement noise on Granger causality. Phys. Rev. E 2007, 75(3). 10.1103/PhysRevE.75.031123.
    • (2007) Phys. Rev. E , vol.75 , Issue.3
    • Nalatore, H.1    Ding, M.2    Rangarajan, G.3
  • 104
    • 33646880239 scopus 로고    scopus 로고
    • Identifying interactions in mixed and noisy complex systems
    • Nolte G., Meinecke F., Ziehe A., Müller K.-R. Identifying interactions in mixed and noisy complex systems. Phys. Rev. E 2006, 73(5):1-6. 10.1103/PhysRevE.73.051913.
    • (2006) Phys. Rev. E , vol.73 , Issue.5 , pp. 1-6
    • Nolte, G.1    Meinecke, F.2    Ziehe, A.3    Müller, K.-R.4
  • 105
    • 45249091476 scopus 로고    scopus 로고
    • Robustly estimating the flow direction of information in complex physical systems
    • Nolte G., Ziehe A., Nikulin V., Schlögl A., Krämer N., Brismar T., et al. Robustly estimating the flow direction of information in complex physical systems. Phys. Rev. Lett. 2008, 100(23):1-4. 10.1103/PhysRevLett.100.234101.
    • (2008) Phys. Rev. Lett. , vol.100 , Issue.23 , pp. 1-4
    • Nolte, G.1    Ziehe, A.2    Nikulin, V.3    Schlögl, A.4    Krämer, N.5    Brismar, T.6
  • 106
    • 69549129298 scopus 로고    scopus 로고
    • Minimum Overlap Component Analysis (MOCA) of EEG/MEG data for more than two sources
    • Nolte G., Marzetti L., Valdes Sosa P. Minimum Overlap Component Analysis (MOCA) of EEG/MEG data for more than two sources. J. Neurosci. Methods 2009, 183(1):72-76. 10.1016/j.jneumeth.2009.07.006.
    • (2009) J. Neurosci. Methods , vol.183 , Issue.1 , pp. 72-76
    • Nolte, G.1    Marzetti, L.2    Valdes Sosa, P.3
  • 107
    • 80051782183 scopus 로고
    • Contribution to the discussion of M.S. Bartlett's paper, 'Chance and chaos'
    • Ozaki T. Contribution to the discussion of M.S. Bartlett's paper, 'Chance and chaos'. J. R. Stat. Soc. Ser. A 1990, 153:330-346.
    • (1990) J. R. Stat. Soc. Ser. A , vol.153 , pp. 330-346
    • Ozaki, T.1
  • 108
    • 0002913686 scopus 로고
    • A bridge between nonlinear time series models and nonlinear stochastic dynamical systems: a local linearization approach
    • Ozaki Tohru A bridge between nonlinear time series models and nonlinear stochastic dynamical systems: a local linearization approach. Stat. Sin. 1992, 2:113-135.
    • (1992) Stat. Sin. , vol.2 , pp. 113-135
    • Ozaki, T.1
  • 111
    • 1342347558 scopus 로고    scopus 로고
    • Statistics and causal inference: a review
    • Pearl J. Statistics and causal inference: a review. Test 2003, 12(2):281-345.
    • (2003) Test , vol.12 , Issue.2 , pp. 281-345
    • Pearl, J.1
  • 112
    • 7044235213 scopus 로고    scopus 로고
    • Modelling functional integration: a comparison of structural equation and dynamic causal models
    • Penny W.D., Stephan K.E., Mechelli A., Friston K.J. Modelling functional integration: a comparison of structural equation and dynamic causal models. Neuroimage 2004, 23(Suppl 1):S264-S274. 10.1016/j.neuroimage.2004.07.041.
    • (2004) Neuroimage , vol.23 , Issue.SUPPL. 1
    • Penny, W.D.1    Stephan, K.E.2    Mechelli, A.3    Friston, K.J.4
  • 114
    • 76649098294 scopus 로고    scopus 로고
    • Statistical causality, extremal measures and weak solutions of stochastic differential equations with driving semimartingales
    • Petrović L., Stanojeví D. Statistical causality, extremal measures and weak solutions of stochastic differential equations with driving semimartingales. J. Math. Modell. Algorithms 2010, 9(1):113-128. 10.1007/s10852-009-9121-5.
    • (2010) J. Math. Modell. Algorithms , vol.9 , Issue.1 , pp. 113-128
    • Petrović, L.1    Stanojeví, D.2
  • 115
    • 0001236051 scopus 로고
    • The problem of identification in finite parameter continous time models
    • Phillips P.C.B. The problem of identification in finite parameter continous time models. J. Econometrics 1973, 1:351-362.
    • (1973) J. Econometrics , vol.1 , pp. 351-362
    • Phillips, P.C.B.1
  • 116
    • 0041768434 scopus 로고
    • The estimation of some continuous time models
    • Phillips P.C.B. The estimation of some continuous time models. Econometrica 1974, 42(5):803-823.
    • (1974) Econometrica , vol.42 , Issue.5 , pp. 803-823
    • Phillips, P.C.B.1
  • 117
    • 84855719493 scopus 로고    scopus 로고
    • Oversampling of stochastic processes
    • Retrieved August 27, 2010, from
    • Pollock D. Oversampling of stochastic processes. Working Papers 2010, 2. Retrieved August 27, 2010, from. http://ideas.repec.org/p/wse/wpaper/44.html.
    • (2010) Working Papers , vol.2
    • Pollock, D.1
  • 119
    • 67650760503 scopus 로고    scopus 로고
    • Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood
    • Raue A., Kreutz C., Maiwald T., Bachmann J., Schilling M., Klingmüller U., et al. Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics Oxford England 2009, 25(15):1923-1929. 10.1093/bioinformatics/btp358.
    • (2009) Bioinformatics Oxford England , vol.25 , Issue.15 , pp. 1923-1929
    • Raue, A.1    Kreutz, C.2    Maiwald, T.3    Bachmann, J.4    Schilling, M.5    Klingmüller, U.6
  • 120
    • 0031617191 scopus 로고    scopus 로고
    • Testing for spurios causality in exchange rates
    • Renault Eric, Sekkat K., Szafarz A. Testing for spurios causality in exchange rates. J. Empir. Finance 1998, 5:47-66.
    • (1998) J. Empir. Finance , vol.5 , pp. 47-66
    • Renault, E.1    Sekkat, K.2    Szafarz, A.3
  • 121
    • 34047197601 scopus 로고    scopus 로고
    • Nonlinear local electrovascular coupling. II: from data to neuronal masses
    • Riera J.J., Jimenez J.C., Wan X., Kawashima R., Ozaki T. Nonlinear local electrovascular coupling. II: from data to neuronal masses. Hum. Brain Mapp. 2007, 354(August 2006):335-354. 10.1002/hbm.20278.
    • (2007) Hum. Brain Mapp. , pp. 335-354
    • Riera, J.J.1    Jimenez, J.C.2    Wan, X.3    Kawashima, R.4    Ozaki, T.5
  • 122
    • 34047197601 scopus 로고    scopus 로고
    • Nonlinear local electrovascular coupling. II: from data to neuronal masses
    • Riera J.J., Jimenez J.C., Wan X., Kawashima R., Ozaki T. Nonlinear local electrovascular coupling. II: from data to neuronal masses. Hum. Brain Mapp. 2007, 354 (August 2006):335-354. 10.1002/hbm.20278.
    • (2007) Hum. Brain Mapp. , pp. 335-354
    • Riera, J.J.1    Jimenez, J.C.2    Wan, X.3    Kawashima, R.4    Ozaki, T.5
  • 123
    • 33745264802 scopus 로고    scopus 로고
    • Nonlinear local electrovascular coupling. I: a theoretical model
    • Riera Jorge J., Wan Xiaohong, Jimenez Juan Carlos, Kawashima Ryuta Nonlinear local electrovascular coupling. I: a theoretical model. Hum. Brain Mapp. 2006, 27(11):896-914. 10.1002/hbm.20230.
    • (2006) Hum. Brain Mapp. , vol.27 , Issue.11 , pp. 896-914
    • Riera, J.J.1    Wan, X.2    Jimenez, J.C.3    Kawashima, R.4
  • 124
    • 0000361085 scopus 로고
    • Automatic frequency domain inference on semiparametric and nonparametric models
    • Robinson P.M. Automatic frequency domain inference on semiparametric and nonparametric models. Econometrica 1991, 59(5):1329. 10.2307/2938370.
    • (1991) Econometrica , vol.59 , Issue.5 , pp. 1329
    • Robinson, P.M.1
  • 125
    • 37849002348 scopus 로고    scopus 로고
    • Physiologically based calculation of steady-state evoked potentials and cortical wave velocities
    • Robinson P.A., Chen P.-chia, Yang L. Physiologically based calculation of steady-state evoked potentials and cortical wave velocities. Biol. Cybern. 2008, 98(1):1-10. 10.1007/s00422-007-0191-z.
    • (2008) Biol. Cybern. , vol.98 , Issue.1 , pp. 1-10
    • Robinson, P.A.1    Chen, P.-C.2    Yang, L.3
  • 126
    • 14244259417 scopus 로고    scopus 로고
    • Mapping directed influence over the brain using Granger causality and fMRI
    • Retrieved from :
    • Roebroeck A., Formisano E., Goebel R. Mapping directed influence over the brain using Granger causality and fMRI. Neuroimage 2005, 25(1):230-242. Retrieved from :. http://WOS:000227369600021.
    • (2005) Neuroimage , vol.25 , Issue.1 , pp. 230-242
    • Roebroeck, A.1    Formisano, E.2    Goebel, R.3
  • 127
    • 80051783686 scopus 로고    scopus 로고
    • Reply to Friston and David fMRI: model selection, causality and deconvolution
    • (this issue)
    • Roebroeck Alard, Formisano Elia, Goebel Rainer Reply to Friston and David fMRI: model selection, causality and deconvolution. Neuroimage 2011, 58:310-311. (this issue).
    • (2011) Neuroimage , vol.58 , pp. 310-311
    • Roebroeck, A.1    Formisano, E.2    Goebel, R.3
  • 128
    • 80051780742 scopus 로고    scopus 로고
    • The identification of interacting networks in the brain using fMRI: model selection, causality and deconvolution
    • (this issue)
    • Roebroeck Alard, Formisano Elia, Goebel Rainer The identification of interacting networks in the brain using fMRI: model selection, causality and deconvolution. Neuroimage 2011, 58:296-302. (this issue).
    • (2011) Neuroimage , vol.58 , pp. 296-302
    • Roebroeck, A.1    Formisano, E.2    Goebel, R.3
  • 129
    • 77950865238 scopus 로고    scopus 로고
    • Examples of testing global identifiability of biological and biomedical models with the DAISY software
    • Saccomani M.P., Audoly S., Bellu G., D'Angiò L. Examples of testing global identifiability of biological and biomedical models with the DAISY software. Comput. Biol. Med. 2010, 40(4):402-407. 10.1016/j.compbiomed.2010.02.004.
    • (2010) Comput. Biol. Med. , vol.40 , Issue.4 , pp. 402-407
    • Saccomani, M.P.1    Audoly, S.2    Bellu, G.3    D'Angiò, L.4
  • 130
    • 60149112407 scopus 로고    scopus 로고
    • Uncovering sparse brain effective connectivity: a voxel-based approach using penalized regression
    • Retrieved from
    • Sanchez-Bornot J., Martinez-Montes E., Lage-Castellanos Agustin, Vega-Hernandez M., Valdes-Sosa P.A. Uncovering sparse brain effective connectivity: a voxel-based approach using penalized regression. Stat. Sin. 2008, 18:1501-1518. Retrieved from. http://www3.stat.sinica.edu.tw/statistica/password.asp?vol=18&num=4&art=14.
    • (2008) Stat. Sin. , vol.18 , pp. 1501-1518
    • Sanchez-Bornot, J.1    Martinez-Montes, E.2    Lage-Castellanos, A.3    Vega-Hernandez, M.4    Valdes-Sosa, P.A.5
  • 131
    • 0011565963 scopus 로고
    • Some discrete approximations to continuous time stochastic models
    • Sargan J.D. Some discrete approximations to continuous time stochastic models. J. R. Stat. Soc. B 1974, 36(1):74-90.
    • (1974) J. R. Stat. Soc. B , vol.36 , Issue.1 , pp. 74-90
    • Sargan, J.D.1
  • 132
    • 0017358115 scopus 로고
    • Spatial mapping in the primate sensory projection: analytic structure and relevance to perception
    • Schwartz E.L. Spatial mapping in the primate sensory projection: analytic structure and relevance to perception. Biol. Cybern. 1977, 25:181-194.
    • (1977) Biol. Cybern. , vol.25 , pp. 181-194
    • Schwartz, E.L.1
  • 133
    • 0007418002 scopus 로고
    • Composable Markov processes
    • Schweder T. Composable Markov processes. J. Appl. Probab 1970, 7(2):400. 10.2307/3211973.
    • (1970) J. Appl. Probab , vol.7 , Issue.2 , pp. 400
    • Schweder, T.1
  • 135
    • 33644619344 scopus 로고    scopus 로고
    • Delay-differential-algebraic equations in control theory
    • Shampine L.F., Gahinet P. Delay-differential-algebraic equations in control theory. Appl. Numer. Math. 2006, 56:574-588. 10.1016/j.apnum.2005.04.025.
    • (2006) Appl. Numer. Math. , vol.56 , pp. 574-588
    • Shampine, L.F.1    Gahinet, P.2
  • 137
    • 77954383250 scopus 로고    scopus 로고
    • Identification and validation of effective connectivity networks in functional magnetic resonance imaging using switching linear dynamic systems. Manuscript
    • Smith J.F., Pillai A., Chen K., Horwitz B. Identification and validation of effective connectivity networks in functional magnetic resonance imaging using switching linear dynamic systems. Manuscript. Neuroimage 2010, 52(3):1027-1040. 10.1016/j.neuroimage.2009.11.081.
    • (2010) Neuroimage , vol.52 , Issue.3 , pp. 1027-1040
    • Smith, J.F.1    Pillai, A.2    Chen, K.3    Horwitz, B.4
  • 139
    • 0039635416 scopus 로고
    • Topics in advanced time series analysis
    • Springer, Berlin Heidelberg
    • Solo V. Topics in advanced time series analysis. Lectures in Probability and Statistics 1986, Vol. 1215. Springer, Berlin Heidelberg. 10.1007/BFb0075871.
    • (1986) Lectures in Probability and Statistics , vol.1215
    • Solo, V.1
  • 140
    • 62749200449 scopus 로고    scopus 로고
    • On causality I: sampling and noise
    • IEEE, Retrieved June 29, 2010, from
    • Solo V. On causality I: sampling and noise. 46th IEEE Conference on Decision and Control 2007, 3634-3639. IEEE, Retrieved June 29, 2010, from. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:On+Causality+I+:+Sampling+and+Noise#0.
    • (2007) 46th IEEE Conference on Decision and Control , pp. 3634-3639
    • Solo, V.1
  • 144
    • 77949519863 scopus 로고    scopus 로고
    • On the similarity of functional connectivity between neurons estimated across timescales
    • Stevenson I.H., Körding K.P. On the similarity of functional connectivity between neurons estimated across timescales. PLoS One 2010, 5(2):e9206. 10.1371/journal.pone.0009206.
    • (2010) PLoS One , vol.5 , Issue.2
    • Stevenson, I.H.1    Körding, K.P.2
  • 145
    • 36348978698 scopus 로고    scopus 로고
    • Directed cortical information flow during human object recognition: analyzing induced EEG gamma-band responses in brain's source space
    • Supp G.G., Schlögl A., Trujillo-Barreto Nelson, Müller M.M., Gruber T. Directed cortical information flow during human object recognition: analyzing induced EEG gamma-band responses in brain's source space. PLoS One 2007, 2(1):e684. 10.1371/journal.pone.0000684.
    • (2007) PLoS One , vol.2 , Issue.1
    • Supp, G.G.1    Schlögl, A.2    Trujillo-Barreto, N.3    Müller, M.M.4    Gruber, T.5
  • 146
    • 84966226955 scopus 로고
    • An interpretation of stochastic differential equations as ordinary differential equations which depend on the sample point
    • Retrieved August 21, 2010, from
    • Sussmann H. An interpretation of stochastic differential equations as ordinary differential equations which depend on the sample point. Am. Math. Soc. 1977, 83(2):296-298. Retrieved August 21, 2010, from. http://www.ams.org/journals/bull/1977-83-02/S0002-9904-1977-14312-7/S0002-9904-1977-14312-7.pdf.
    • (1977) Am. Math. Soc. , vol.83 , Issue.2 , pp. 296-298
    • Sussmann, H.1
  • 147
    • 0031523817 scopus 로고    scopus 로고
    • Impulse response functions based on a causal approach to residual orthogonalization in vector autoregressions
    • Swanson N.R., Granger C.W.J. Impulse response functions based on a causal approach to residual orthogonalization in vector autoregressions. J. Am. Stat. Assoc. 1997, 92(437):357. 10.2307/2291481.
    • (1997) J. Am. Stat. Assoc. , vol.92 , Issue.437 , pp. 357
    • Swanson, N.R.1    Granger, C.W.J.2
  • 148
    • 33846204661 scopus 로고    scopus 로고
    • Granger causality and contiguity between stochastic processes
    • Triacca U. Granger causality and contiguity between stochastic processes. Phys. Lett. A 2007, 362:252-255. 10.1016/j.physleta.2006.10.024.
    • (2007) Phys. Lett. A , vol.362 , pp. 252-255
    • Triacca, U.1
  • 149
    • 0033220219 scopus 로고    scopus 로고
    • Nonlinear EEG analysis based on a neural mass model
    • Retrieved from
    • Valdes-Sosa P.A., Jimenez J.C., Riera J., Biscay R., Ozaki T. Nonlinear EEG analysis based on a neural mass model. Biol. Cybern. 1999, 81(5-6):415-424. Retrieved from. http://www.ncbi.nlm.nih.gov/pubmed/10592017.
    • (1999) Biol. Cybern. , vol.81 , Issue.5-6 , pp. 415-424
    • Valdes-Sosa, P.A.1    Jimenez, J.C.2    Riera, J.3    Biscay, R.4    Ozaki, T.5
  • 150
    • 0003199564 scopus 로고    scopus 로고
    • The statistical identification of nonlinear brain dynamics: a progress report
    • Retrieved August 28, 2010, from
    • Valdés-Sosa P.A., Bosch J., Jiménez J., Trujillo N., Biscay R., Morales F., et al. The statistical identification of nonlinear brain dynamics: a progress report. Non linear Dynamic and Brain Funcioning 1999, 1-22. Retrieved August 28, 2010, from. http://www.ism.ac.jp/~ozaki/publications/paper/1999_Valdes_Bosch_nov_sci.pdf.
    • (1999) Non linear Dynamic and Brain Funcioning , pp. 1-22
    • Valdés-Sosa, P.A.1    Bosch, J.2    Jiménez, J.3    Trujillo, N.4    Biscay, R.5    Morales, F.6
  • 151
    • 6344254546 scopus 로고    scopus 로고
    • Spatio-temporal autoregressive models defined over brain manifolds
    • Valdes-Sosa P.A. Spatio-temporal autoregressive models defined over brain manifolds. Neuroinformatics 2004, 2(2):239-250. 10.1385/NI:2:2:239.
    • (2004) Neuroinformatics , vol.2 , Issue.2 , pp. 239-250
    • Valdes-Sosa, P.A.1
  • 153
    • 0029852605 scopus 로고    scopus 로고
    • EEG spike and wave modelled by a stochastic limit cycle
    • Retrieved August 21, 2010, from
    • Valdés-Sosa P.A., Hernández J., Vila P. EEG spike and wave modelled by a stochastic limit cycle. Neuroreport 1996, Retrieved August 21, 2010, from. http://journals.lww.com/neuroreport/Abstract/1996/09020/EEG_spike_and_wave_modelled_by_a_stochastic_limit.37.aspx.
    • (1996) Neuroreport
    • Valdés-Sosa, P.A.1    Hernández, J.2    Vila, P.3
  • 158
    • 13944259001 scopus 로고    scopus 로고
    • Full-band EEG (FbEEG): an emerging standard in electroencephalography
    • Elsevier, Retrieved August 29, 2010, from
    • Vanhatalo S., Voipio J., Kaila K. Full-band EEG (FbEEG): an emerging standard in electroencephalography. Clinical Neurophysiology 2005, 116(1):1-8. Elsevier, Retrieved August 29, 2010, from. http://linkinghub.elsevier.com/retrieve/pii/S1388245704003748.
    • (2005) Clinical Neurophysiology , pp. 1-8
    • Vanhatalo, S.1    Voipio, J.2    Kaila, K.3
  • 160
    • 0009919599 scopus 로고
    • Discussion of papers on probability theory
    • Von Mises R., Doob J.L. Discussion of papers on probability theory. Ann. Math. Stat. 1941, 12(2):215-217.
    • (1941) Ann. Math. Stat. , vol.12 , Issue.2 , pp. 215-217
    • Von Mises, R.1    Doob, J.L.2
  • 161
    • 70349428511 scopus 로고    scopus 로고
    • Settable systems: an extension of Pearl's causal model with optimization, equilibrium, and learning
    • White H., Chalak K. Settable systems: an extension of Pearl's causal model with optimization, equilibrium, and learning. J. Mach. Learn. Res. 2009, 10:1-49.
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 1-49
    • White, H.1    Chalak, K.2
  • 162
    • 77951217938 scopus 로고    scopus 로고
    • Granger causality and dynamic structural systems
    • White H., Lu X. Granger causality and dynamic structural systems. J. Financ. Econometrics 2010, 8(2):193-243. 10.1093/jjfinec/nbq006.
    • (2010) J. Financ. Econometrics , vol.8 , Issue.2 , pp. 193-243
    • White, H.1    Lu, X.2
  • 163
    • 0003328102 scopus 로고
    • The theory of prediction
    • McGraw-Hill, New York, E. BeckenBach (Ed.)
    • Wiener N. The theory of prediction. Modern Mathematics for Engineers 1956, McGraw-Hill, New York. E. BeckenBach (Ed.).
    • (1956) Modern Mathematics for Engineers
    • Wiener, N.1
  • 164
    • 77949658536 scopus 로고    scopus 로고
    • The effects of computational method, data modeling, and TR on effective connectivity results
    • Witt S.T., Meyerand M.E. The effects of computational method, data modeling, and TR on effective connectivity results. Brain Imaging Behav. 2009, 3(2):220-231. 10.1007/s11682-009-9064-5.
    • (2009) Brain Imaging Behav. , vol.3 , Issue.2 , pp. 220-231
    • Witt, S.T.1    Meyerand, M.E.2
  • 165
    • 34547565176 scopus 로고    scopus 로고
    • Akaike causality in state space. Instantaneous causality between visual cortex in fMRI time series
    • Wong K.F.K., Ozaki Tohru Akaike causality in state space. Instantaneous causality between visual cortex in fMRI time series. Biol. Cybern. 2007, 97(2):151-157. 10.1007/s00422-007-0165-1.
    • (2007) Biol. Cybern. , vol.97 , Issue.2 , pp. 151-157
    • Wong, K.F.K.1    Ozaki, T.2
  • 167
    • 0001589778 scopus 로고
    • Correlation and causation
    • Wright S. Correlation and causation. J. Agric. Res. 1921, 20:557-585.
    • (1921) J. Agric. Res. , vol.20 , pp. 557-585
    • Wright, S.1
  • 168
    • 67650927399 scopus 로고    scopus 로고
    • Granger causality vs. dynamic Bayesian network inference: a comparative study
    • Zou C., Denby K.J., Feng J. Granger causality vs. dynamic Bayesian network inference: a comparative study. BMC Bioinformatics 2009, 10:122. 10.1186/1471-2105-10-122.
    • (2009) BMC Bioinformatics , vol.10 , pp. 122
    • Zou, C.1    Denby, K.J.2    Feng, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.