메뉴 건너뛰기




Volumn 1, Issue , 2014, Pages 61-85

Brain imaging analysis

Author keywords

Activation; Connectivity; DTI; FMRI; Neuroimaging; Prediction

Indexed keywords


EID: 84906861454     PISSN: 23268298     EISSN: 2326831X     Source Type: Journal    
DOI: 10.1146/annurev-statistics-022513-115611     Document Type: Article
Times cited : (51)

References (95)
  • 3
    • 0033989016 scopus 로고    scopus 로고
    • Comparison of two exploratory data analysis methods for fMRI: Fuzzy clustering versus principal component analysis
    • Baumgartner R, Ryner L, Richter W, Summers R, Jarmasz M, Somorjai R. 2000. Comparison of two exploratory data analysis methods for fMRI: fuzzy clustering versus principal component analysis. Magn. Reson. Imaging 18(1):89-94
    • (2000) Magn. Reson. Imaging , vol.18 , Issue.1 , pp. 89-94
    • Baumgartner, R.1    Ryner, L.2    Richter, W.3    Summers, R.4    Jarmasz, M.5    Somorjai, R.6
  • 5
    • 1342324773 scopus 로고    scopus 로고
    • Probabilistic independent component analysis for functional magnetic resonance imaging
    • Beckmann CF, Smith SM. 2004. Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans. Med. Imaging 23(2):137-52
    • (2004) IEEE Trans. Med. Imaging , vol.23 , Issue.2 , pp. 137-152
    • Beckmann, C.F.1    Smith, S.M.2
  • 6
    • 14244251502 scopus 로고    scopus 로고
    • Tensorial extensions of independent component analysis for multisubject fMRI analysis
    • Beckmann CF, Smith SM. 2005. Tensorial extensions of independent component analysis for multisubject fMRI analysis. NeuroImage 25(1):294-311
    • (2005) NeuroImage , vol.25 , Issue.1 , pp. 294-311
    • Beckmann, C.F.1    Smith, S.M.2
  • 7
    • 33751096767 scopus 로고    scopus 로고
    • Probabilistic diffusion tractography with multiple fibre orientations:What can we gain?
    • Behrens TE, Berg HJ, Jbabdi S, Rushworth MF, Woolrich MW. 2007. Probabilistic diffusion tractography with multiple fibre orientations:What can we gain? NeuroImage 34(1):144-55
    • (2007) NeuroImage , vol.34 , Issue.1 , pp. 144-155
    • Behrens, T.E.1    Berg, H.J.2    Jbabdi, S.3    Rushworth, M.F.4    Woolrich, M.W.5
  • 9
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57(1):289-300
    • (1995) J. R. Stat. Soc. B , vol.57 , Issue.1 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 10
    • 26644437226 scopus 로고    scopus 로고
    • Spatio-temporal modeling of localized brain activity
    • Bowman FD. 2005. Spatio-temporal modeling of localized brain activity. Biostatistics 6(4):558-75
    • (2005) Biostatistics , vol.6 , Issue.4 , pp. 558-575
    • Bowman, F.D.1
  • 11
    • 34250780421 scopus 로고    scopus 로고
    • Spatiotemporal models for region of interest analyses of functional neuroimaging data
    • Bowman FD. 2007. Spatiotemporal models for region of interest analyses of functional neuroimaging data. J. Am. Stat. Assoc. 102(478):442-53
    • (2007) J. Am. Stat. Assoc. , vol.102 , Issue.478 , pp. 442-453
    • Bowman, F.D.1
  • 12
    • 36148954681 scopus 로고    scopus 로고
    • A Bayesian hierarchical framework for spatial modeling of fMRI data
    • Bowman FD, Caffo B, Bassett SS, Kilts C. 2008. A Bayesian hierarchical framework for spatial modeling of fMRI data. NeuroImage 39(1):146-56
    • (2008) NeuroImage , vol.39 , Issue.1 , pp. 146-156
    • Bowman, F.D.1    Caffo, B.2    Bassett, S.S.3    Kilts, C.4
  • 13
    • 4344605036 scopus 로고    scopus 로고
    • Identifying spatial relationships in neural processing using a multiple classification approach
    • Bowman FD, Patel R. 2004. Identifying spatial relationships in neural processing using a multiple classification approach. NeuroImage 23(1):260-68
    • (2004) NeuroImage , vol.23 , Issue.1 , pp. 260-268
    • Bowman, F.D.1    Patel, R.2
  • 14
    • 4344583045 scopus 로고    scopus 로고
    • Methods for detecting functional classifications in neuroimaging data
    • Bowman FD, Patel R, Lu C. 2004. Methods for detecting functional classifications in neuroimaging data. Hum. Brain Mapp. 23(2):109-19
    • (2004) Hum. Brain Mapp. , vol.23 , Issue.2 , pp. 109-119
    • Bowman, F.D.1    Patel, R.2    Lu, C.3
  • 15
    • 84863533525 scopus 로고    scopus 로고
    • Determining functional connectivity using fMRI data with diffusion-based anatomical weighting
    • Bowman FD, Zhang L, Derado G, Chen S. 2012. Determining functional connectivity using fMRI data with diffusion-based anatomical weighting. NeuroImage 62(3):1769-79
    • (2012) NeuroImage , vol.62 , Issue.3 , pp. 1769-1779
    • Bowman, F.D.1    Zhang, L.2    Derado, G.3    Chen, S.4
  • 16
    • 0030063642 scopus 로고    scopus 로고
    • Statistical methods of estimation and inference for functional MR image analysis
    • Bullmore E, BrammerM,Williams SC, Rabe-Hesketh S, JanotN, et al. 1996. Statistical methods of estimation and inference for functional MR image analysis. Magn. Reson. Med. 35(2):261-77
    • (1996) Magn. Reson. Med. , vol.35 , Issue.2 , pp. 261-277
    • Bullmore, E.1    Brammer, M.2    Williams, S.C.3    Rabe-Hesketh, S.4    Janot, N.5
  • 18
    • 7044229944 scopus 로고    scopus 로고
    • Wavelets and functional magnetic resonance imaging of the human brain
    • BullmoreE, Fadili J, Maxim V, Sendur L, Whitcher B, et al. 2004. Wavelets and functional magnetic resonance imaging of the human brain. NeuroImage 23(Suppl. 1):S234-49
    • (2004) NeuroImage , vol.23 , Issue.SUPPL. 1
    • Bullmore, E.1    Fadili, J.2    Maxim, V.3    Sendur, L.4    Whitcher, B.5
  • 19
    • 0035140147 scopus 로고    scopus 로고
    • Colored noise and computational inference in neurophysiological (fMRI) time series analysis: Resampling methods in time and wavelet domains
    • Bullmore E, Long C, Suckling J, Fadili J, Calvert G, et al. 2001. Colored noise and computational inference in neurophysiological (fMRI) time series analysis: resampling methods in time and wavelet domains. Hum. Brain Mapp. 12(2):61-78
    • (2001) Hum. Brain Mapp. , vol.12 , Issue.2 , pp. 61-78
    • Bullmore, E.1    Long, C.2    Suckling, J.3    Fadili, J.4    Calvert, G.5
  • 20
    • 79952704626 scopus 로고    scopus 로고
    • Penalized least squares regression methods and applications to neuroimaging
    • Bunea F, She Y, Ombao H, Gongvatana A, Devlin K, Cohen R. 2011. Penalized least squares regression methods and applications to neuroimaging. NeuroImage 55(4):1519-27
    • (2011) NeuroImage , vol.55 , Issue.4 , pp. 1519-1527
    • Bunea, F.1    She, Y.2    Ombao, H.3    Gongvatana, A.4    Devlin, K.5    Cohen, R.6
  • 21
    • 0034753663 scopus 로고    scopus 로고
    • A method for making group inferences from functional MRI data using independent component analysis
    • Calhoun VD, Adali T, Pearlson GD, Pekar JJ. 2001. A method for making group inferences from functional MRI data using independent component analysis. Hum. Brain Mapp. 14(3):140-51
    • (2001) Hum. Brain Mapp. , vol.14 , Issue.3 , pp. 140-151
    • Calhoun, V.D.1    Adali, T.2    Pearlson, G.D.3    Pekar, J.J.4
  • 22
    • 84867379844 scopus 로고    scopus 로고
    • Classification of structural MRI images in Alzheimer's disease from the perspective of ill-posed problems
    • Casanova R, Hsu FC, Espeland MA, Weiner M, Aisen P, et al. 2012. Classification of structural MRI images in Alzheimer's disease from the perspective of ill-posed problems. PLoS ONE 7(10):e44877
    • (2012) PLoS ONE , vol.7 , Issue.10
    • Casanova, R.1    Hsu, F.C.2    Espeland, M.A.3    Weiner, M.4    Aisen, P.5
  • 23
    • 84860389090 scopus 로고    scopus 로고
    • Functional connectivity and coactivation of the nucleus accumbens: A combined functional connectivity and structure-based metaanalysis
    • Cauda F, CaVanna AE, D'agata F, Sacco K, Duca S, Geminiani GC. 2011. Functional connectivity and coactivation of the nucleus accumbens: A combined functional connectivity and structure-based metaanalysis. J. Cogn. Neurosci. 23(10):2864-77
    • (2011) J. Cogn. Neurosci. , vol.23 , Issue.10 , pp. 2864-2877
    • Cauda, F.1    CaVanna, A.E.2    D'agata, F.3    Sacco, K.4    Duca, S.5    Geminiani, G.C.6
  • 24
    • 82055164254 scopus 로고    scopus 로고
    • A novel support vector classifier for longitudinal high-dimensional data and its application to neuroimaging data
    • Chen S, Bowman FD. 2011. A novel support vector classifier for longitudinal high-dimensional data and its application to neuroimaging data. Stat. Anal. Data Min. 4(6):604-11
    • (2011) Stat. Anal. Data Min. , vol.4 , Issue.6 , pp. 604-611
    • Chen, S.1    Bowman, F.D.2
  • 27
    • 0041737619 scopus 로고    scopus 로고
    • Functional magnetic resonance imaging (fMRI) "brain reading": Detecting and classifying distributed patterns of fMRI activity in human visual cortex
    • Cox DD, Savoy RL. 2003. Functional magnetic resonance imaging (fMRI) "brain reading": detecting and classifying distributed patterns of fMRI activity in human visual cortex. NeuroImage 19(2 Pt. 1):261-70
    • (2003) NeuroImage , vol.19 , Issue.2 PART 1 , pp. 261-270
    • Cox, D.D.1    Savoy, R.L.2
  • 28
    • 77956861781 scopus 로고    scopus 로고
    • Modeling the spatial and temporal dependence in fMRI data
    • Derado G, Bowman FD, Kilts CD. 2010. Modeling the spatial and temporal dependence in fMRI data. Biometrics 66(3):949-57
    • (2010) Biometrics , vol.66 , Issue.3 , pp. 949-957
    • Derado, G.1    Bowman, F.D.2    Kilts, C.D.3
  • 29
    • 84881422357 scopus 로고    scopus 로고
    • Predicting brain activity using a Bayesian spatial model
    • Derado G, Bowman FD, Zhang L. 2012. Predicting brain activity using a Bayesian spatial model. Stat.Methods Med. Res. 22:382-97
    • (2012) Stat.Methods Med. Res. , vol.22 , pp. 382-397
    • Derado, G.1    Bowman, F.D.2    Zhang, L.3
  • 30
    • 84871948952 scopus 로고    scopus 로고
    • Predicting treatment response in social anxiety disorDer from functional magnetic resonance imaging
    • Doehrmann O, Ghosh SS, Polli FE, Reynolds GO, Horn F, et al. 2013. Predicting treatment response in social anxiety disorDer from functional magnetic resonance imaging. JAMA Psychiatry 70(1):87-97
    • (2013) JAMA Psychiatry , vol.70 , Issue.1 , pp. 87-97
    • Doehrmann, O.1    Ghosh, S.S.2    Polli, F.E.3    Reynolds, G.O.4    Horn, F.5
  • 31
  • 32
    • 69249093024 scopus 로고    scopus 로고
    • Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: A random-effects approach based on empirical estimates of spatial uncertainty
    • Eickhoff SB, Laird AR, Grefkes C,Wang LE, Zilles K, Fox PT. 2009. Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: A random-effects approach based on empirical estimates of spatial uncertainty. Hum. Brain Mapp. 30(9):2907-26
    • (2009) Hum. Brain Mapp. , vol.30 , Issue.9 , pp. 2907-2926
    • Eickhoff, S.B.1    Laird, A.R.2    Grefkes, C.3    Wang, L.E.4    Zilles, K.5    Fox, P.T.6
  • 33
    • 84879102276 scopus 로고    scopus 로고
    • Likelihood-based population independent component analysis
    • Eloyan A, Crainiceanu CM, Caffo BS. 2013. Likelihood-based population independent component analysis. Biostatistics 14(3):514-27
    • (2013) Biostatistics , vol.14 , Issue.3 , pp. 514-527
    • Eloyan, A.1    Crainiceanu, C.M.2    Caffo, B.S.3
  • 34
    • 0033855255 scopus 로고    scopus 로고
    • A multistep unsupervised fuzzy clustering analysis of fMRI time series
    • Fadili MJ, Ruan S, Bloyet D, Mazoyer B. 2000. A multistep unsupervised fuzzy clustering analysis of fMRI time series. Hum. Brain Mapp. 10(4):160-78
    • (2000) Hum. Brain Mapp. , vol.10 , Issue.4 , pp. 160-178
    • Fadili, M.J.1    Ruan, S.2    Bloyet, D.3    Mazoyer, B.4
  • 35
    • 0035296809 scopus 로고    scopus 로고
    • On the number of clusters and the fuzziness index for unsupervised FCA application to BOLD fMRI time series
    • Fadili MJ, Ruan S, Bloyet D, Mazoyer B. 2001. On the number of clusters and the fuzziness index for unsupervised FCA application to BOLD fMRI time series. Med. Image Anal. 5(1):55-67
    • (2001) Med. Image Anal. , vol.5 , Issue.1 , pp. 55-67
    • Fadili, M.J.1    Ruan, S.2    Bloyet, D.3    Mazoyer, B.4
  • 36
    • 0033025843 scopus 로고    scopus 로고
    • A hierarchical clustering method for analyzing functional MR images
    • Filzmoser P, Baumgartner R, Moser E. 1999. A hierarchical clustering method for analyzing functional MR images. Magn. Reson. Imaging 17(6):817-26
    • (1999) Magn. Reson. Imaging , vol.17 , Issue.6 , pp. 817-826
    • Filzmoser, P.1    Baumgartner, R.2    Moser, E.3
  • 37
    • 61349120207 scopus 로고    scopus 로고
    • Causal modelling and brain connectivity in functional magnetic resonance imaging
    • Friston K. 2009. Causal modelling and brain connectivity in functional magnetic resonance imaging. PLoS Biol. 7(2):e33
    • (2009) PLoS Biol. , vol.7 , Issue.2
    • Friston, K.1
  • 38
    • 0036334947 scopus 로고    scopus 로고
    • Bayesian estimation of dynamical systems: An application to fMRI
    • Friston KJ. 2002. Bayesian estimation of dynamical systems: An application to fMRI. NeuroImage 16(2):513-30
    • (2002) NeuroImage , vol.16 , Issue.2 , pp. 513-530
    • Friston, K.J.1
  • 42
    • 0036334830 scopus 로고    scopus 로고
    • Thresholding of statistical maps in functional neuroimaging using the false discovery rate
    • Genovese CR, Lazar NA,Nichols T. 2002. Thresholding of statistical maps in functional neuroimaging using the false discovery rate. NeuroImage 15(4):870-78
    • (2002) NeuroImage , vol.15 , Issue.4 , pp. 870-878
    • Genovese, C.R.1    Lazar, N.A.2    Nichols, T.3
  • 45
    • 0000351727 scopus 로고
    • Investigating causal relations by econometric models and cross-spectral methods
    • Granger C. 1969. Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37:424-38
    • (1969) Econometrica , vol.37 , pp. 424-438
    • Granger, C.1
  • 46
    • 83655163974 scopus 로고    scopus 로고
    • A general probabilistic model for group independent component analysis and its estimation methods
    • Guo Y. 2011. A general probabilistic model for group independent component analysis and its estimation methods. Biometrics 67(4):1532-42
    • (2011) Biometrics , vol.67 , Issue.4 , pp. 1532-1542
    • Guo, Y.1
  • 47
    • 51449118420 scopus 로고    scopus 로고
    • Predicting the brain response to treatment using a Bayesian hierarchical model with application to a study of schizophrenia
    • Guo Y, Bowman FD, Kilts C. 2008. Predicting the brain response to treatment using a Bayesian hierarchical model with application to a study of schizophrenia. Hum. Brain Mapp. 29(9):1092-109
    • (2008) Hum. Brain Mapp. , vol.29 , Issue.9 , pp. 1092-1109
    • Guo, Y.1    Bowman, F.D.2    Kilts, C.3
  • 48
    • 48749090271 scopus 로고    scopus 로고
    • A unified framework for group independent component analysis for multi-subject fMRI data
    • Guo Y, Pagnoni G. 2008. A unified framework for group independent component analysis for multi-subject fMRI data. NeuroImage 42(3):1078-93
    • (2008) NeuroImage , vol.42 , Issue.3 , pp. 1078-1093
    • Guo, Y.1    Pagnoni, G.2
  • 50
    • 84866172357 scopus 로고    scopus 로고
    • The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost
    • Herculano-Houzel S. 2012. The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. Proc. Natl. Acad. Sci. USA 109(Suppl. 1):10661-68
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , Issue.SUPPL. 1 , pp. 10661-10668
    • Herculano-Houzel, S.1
  • 51
    • 84864393538 scopus 로고    scopus 로고
    • Spatio-spectral mixed effects model for functional magnetic resonance imaging data
    • Kang H, Ombao H, Linkletter C, Long N, Badre D. 2012. Spatio-spectral mixed effects model for functional magnetic resonance imaging data. J. Am. Stat. Assoc. 107(498):568-77
    • (2012) J. Am. Stat. Assoc. , vol.107 , Issue.498 , pp. 568-577
    • Kang, H.1    Ombao, H.2    Linkletter, C.3    Long, N.4    Badre, D.5
  • 52
    • 79954452670 scopus 로고    scopus 로고
    • Meta analysis of functional neuroimaging data via Bayesian spatial point processes
    • Kang J, Johnson TD, Nichols TE, Wager TD. 2011. Meta analysis of functional neuroimaging data via Bayesian spatial point processes. J. Am. Stat. Assoc. 106(493):124-34
    • (2011) J. Am. Stat. Assoc. , vol.106 , Issue.493 , pp. 124-134
    • Kang, J.1    Johnson, T.D.2    Nichols, T.E.3    Wager, T.D.4
  • 53
    • 0036429478 scopus 로고    scopus 로고
    • A spatio-temporal regression model for the analysis of functional MRI data
    • Katanoda K, Matsuda Y, SugishitaM. 2002. A spatio-temporal regression model for the analysis of functional MRI data. NeuroImage 17(3):1415-28
    • (2002) NeuroImage , vol.17 , Issue.3 , pp. 1415-1428
    • Katanoda, K.1    Matsuda, Y.2    Sugishita, M.3
  • 54
    • 19344370474 scopus 로고    scopus 로고
    • Support vector machines for temporal classification of block design fMRI data
    • LaConte S, Strother S, Cherkassky V, AnDerson J, Hu X. 2005. Support vector machines for temporal classification of block design fMRI data. NeuroImage 26(2):317-29
    • (2005) NeuroImage , vol.26 , Issue.2 , pp. 317-329
    • LaConte, S.1    Strother, S.2    Cherkassky, V.3    AnDerson, J.4    Hu, X.5
  • 55
    • 71849092693 scopus 로고    scopus 로고
    • Quantitative prediction of subjective pain intensity from whole-brain fMRI data using Gaussian processes
    • Marquand A, Howard M, BrammerM, Chu C, Coen S, Mourão-Miranda J. 2010. Quantitative prediction of subjective pain intensity from whole-brain fMRI data using Gaussian processes. euroImage 49(3):2178-89
    • (2010) EuroImage , vol.49 , Issue.3 , pp. 2178-2189
    • Marquand, A.1    Howard, M.2    BrammerM Chu, C.3    Coen, S.4    Mourão-Miranda, J.5
  • 56
    • 0031861367 scopus 로고    scopus 로고
    • Analysis of fMRI data by blind separation into independent spatial components
    • McKeown MJ, Makeig S, Brown GG, Jung TP, KinDermann SS, et al. 1998. Analysis of fMRI data by blind separation into independent spatial components. Hum. Brain Mapp. 6(3):160-88
    • (1998) Hum. Brain Mapp. , vol.6 , Issue.3 , pp. 160-188
    • McKeown, M.J.1    Makeig, S.2    Brown, G.G.3    Jung, T.P.4    KinDermann, S.S.5
  • 57
    • 80052647600 scopus 로고    scopus 로고
    • Multiclass sparse Bayesian regression for fMRI-based prediction
    • Michel V, Eger E, Keribin C, Thirion B. 2011a. Multiclass sparse Bayesian regression for fMRI-based prediction. Int. J. Biomed. Imaging 2011:350838
    • (2011) Int. J. Biomed. Imaging , vol.2011 , pp. 350838
    • Michel, V.1    Eger, E.2    Keribin, C.3    Thirion, B.4
  • 59
    • 28244492778 scopus 로고    scopus 로고
    • Classifying brain states and determining the discriminating activation patterns: Support VectorMachine on functionalMRI data
    • Mourão-Miranda J, Bokde ALW, Born C,HampelH, StetterM. 2005. Classifying brain states and determining the discriminating activation patterns: Support VectorMachine on functionalMRI data. NeuroImage 28(4):980-95
    • (2005) NeuroImage , vol.28 , Issue.4 , pp. 980-995
    • Mourão-Miranda, J.1    Bokde, A.L.W.2    Born, C.3    Hampel, H.4    Stetter, M.5
  • 60
    • 34047092170 scopus 로고    scopus 로고
    • Mitigating the effects of measurement noise on Granger causality
    • Nalatore H, DingM, Rangarajan G. 2007. Mitigating the effects of measurement noise on Granger causality. Phys. Rev. E 75(3 Pt. 1):031123
    • (2007) Phys. Rev. E , vol.75 , Issue.3 PART 1 , pp. 031123
    • Nalatore, H.1    Ding, M.2    Rangarajan, G.3
  • 61
    • 84906849108 scopus 로고    scopus 로고
    • Natl. Inst. Health (NIH)
    • Natl. Inst. Health (NIH). 2009. The Human Connectome Project. http://www.neuroscienceblueprint.nih.gov/connectome
    • (2009) The Human Connectome Project
  • 62
    • 0242721216 scopus 로고    scopus 로고
    • Controlling the familywise error rate in functional neuroimaging: A comparative review
    • Nichols T,Hayasaka S. 2003. Controlling the familywise error rate in functional neuroimaging: A comparative review. Stat. Methods Med. Res. 12(5):419-46
    • (2003) Stat. Methods Med. Res. , vol.12 , Issue.5 , pp. 419-446
    • Nichols, T.1    Hayasaka, S.2
  • 63
    • 0036136472 scopus 로고    scopus 로고
    • Nonparametric permutation tests for functional neuroimaging: A primer with examples
    • Nichols TE, Holmes AP. 2002. Nonparametric permutation tests for functional neuroimaging: A primer with examples. Hum. Brain Mapp. 15(1):1-25
    • (2002) Hum. Brain Mapp. , vol.15 , Issue.1 , pp. 1-25
    • Nichols, T.E.1    Holmes, A.P.2
  • 64
    • 45249091476 scopus 로고    scopus 로고
    • Robustly estimating the flow direction of information in complex physical systems
    • Nolte G, Ziehe A, Nikulin VV, Schl ögl A, Krämer N, et al. 2008. Robustly estimating the flow direction of information in complex physical systems. Phys. Rev. Lett. 100:234101
    • (2008) Phys. Rev. Lett. , vol.100 , pp. 234101
    • Nolte, G.1    Ziehe, A.2    Nikulin, V.V.3    Schlögl, A.4    Krämer, N.5
  • 66
    • 52349120092 scopus 로고    scopus 로고
    • Thinking about not thinking": Neural correlates of conceptual processing during Zen meditation
    • PagnoniG, Cekic M, Guo Y. 2008. "Thinking about not thinking": neural correlates of conceptual processing during Zen meditation. PLoS ONE 3(9):e3083
    • (2008) PLoS ONE , vol.3 , Issue.9
    • Pagnoni, G.1    Cekic, M.2    Guo, Y.3
  • 67
    • 33645218351 scopus 로고    scopus 로고
    • A Bayesian approach to determining connectivity of the human brain
    • Patel RS, Bowman FD, Rilling JK. 2006. A Bayesian approach to determining connectivity of the human brain. Hum. Brain Mapp. 27(3):267-76
    • (2006) Hum. Brain Mapp. , vol.27 , Issue.3 , pp. 267-276
    • Patel, R.S.1    Bowman, F.D.2    Rilling, J.K.3
  • 68
    • 16244387927 scopus 로고    scopus 로고
    • Bayesian fMRI time series analysis with spatial priors
    • Penny WD, Trujillo-Barreto NJ, Friston KJ. 2005. Bayesian fMRI time series analysis with spatial priors. NeuroImage 24(2):350-62
    • (2005) NeuroImage , vol.24 , Issue.2 , pp. 350-362
    • Penny, W.D.1    Trujillo-Barreto, N.J.2    Friston, K.J.3
  • 69
    • 0034813965 scopus 로고    scopus 로고
    • Locally regularized spatiotemporal modeling and model comparison for functional MRI
    • Purdon PL, Solo V,Weisskoff RM, Brown EN. 2001. Locally regularized spatiotemporal modeling and model comparison for functional MRI. NeuroImage 14(4):912-23
    • (2001) NeuroImage , vol.14 , Issue.4 , pp. 912-923
    • Purdon, P.L.1    Solo, V.2    Weisskoff, R.M.3    Brown, E.N.4
  • 70
    • 84866919169 scopus 로고    scopus 로고
    • Paradoxical results of adaptive false discovery rate procedures in neuroimaging studies
    • Reiss PT, Schwartzman A, Lu F, Huang L, Proal E. 2012. Paradoxical results of adaptive false discovery rate procedures in neuroimaging studies. NeuroImage 63(4):1833-40
    • (2012) NeuroImage , vol.63 , Issue.4 , pp. 1833-1840
    • Reiss, P.T.1    Schwartzman, A.2    Lu, F.3    Huang, L.4    Proal, E.5
  • 71
    • 76249083510 scopus 로고    scopus 로고
    • Metaanalytic connectivity modeling: Delineating the functional connectivity of the human amygdala
    • Robinson JL, Laird AR, Glahn DC, Lovallo WR, Fox PT. 2010a. Metaanalytic connectivity modeling: delineating the functional connectivity of the human amygdala. Hum. Brain Mapp. 31(2):173-84
    • (2010) Hum. Brain Mapp. , vol.31 , Issue.2 , pp. 173-184
    • Robinson, J.L.1    Laird, A.R.2    Glahn, D.C.3    Lovallo, W.R.4    Fox, P.T.5
  • 72
    • 70749158247 scopus 로고    scopus 로고
    • Change point estimation in multi-subject fMRI studies
    • Robinson LF, Wager TD, Lindquist MA. 2010b. Change point estimation in multi-subject fMRI studies. NeuroImage 49(2):1581-92
    • (2010) NeuroImage , vol.49 , Issue.2 , pp. 1581-1592
    • Robinson, L.F.1    Wager, T.D.2    Lindquist, M.A.3
  • 73
    • 14244259417 scopus 로고    scopus 로고
    • Mapping directed influence over the brain usingGranger causality and fMRI
    • RoebroeckA, Formisano E, Goebel R. 2005. Mapping directed influence over the brain usingGranger causality and fMRI. NeuroImage 25(1):230-42
    • (2005) NeuroImage , vol.25 , Issue.1 , pp. 230-242
    • Roebroeck, A.1    Formisano, E.2    Goebel, R.3
  • 74
    • 17844408155 scopus 로고    scopus 로고
    • Modeling both the magnitude and phase of complex-valued fMRI data
    • Rowe DB. 2005. Modeling both the magnitude and phase of complex-valued fMRI data. NeuroImage 25(4):1310-24
    • (2005) NeuroImage , vol.25 , Issue.4 , pp. 1310-1324
    • Rowe, D.B.1
  • 75
    • 84886863727 scopus 로고    scopus 로고
    • Analyzing complex functional brain networks: Fusing statistics and network science to unDerstand the brain
    • Simpson SL, Bowman FD, Laurienti PJ. 2013. Analyzing complex functional brain networks: fusing statistics and network science to unDerstand the brain. Stat. Surv. 7:1-36
    • (2013) Stat. Surv. , vol.7 , pp. 1-36
    • Simpson, S.L.1    Bowman, F.D.2    Laurienti, P.J.3
  • 76
    • 79957476684 scopus 로고    scopus 로고
    • Exponential random graphmodeling for complex brain networks
    • Simpson SL, Hayasaka S, Laurienti PJ. 2011. Exponential random graphmodeling for complex brain networks. PLoS ONE 6(5):e20039
    • (2011) PLoS ONE , vol.6 , Issue.5
    • Simpson, S.L.1    Hayasaka, S.2    Laurienti, P.J.3
  • 79
    • 84906860374 scopus 로고    scopus 로고
    • The dangers of Granger: What they didn't tell you about Granger causality (in fMRI)
    • 17th, June Quebec City
    • Solo V. 2011. The dangers of Granger: what they didn't tell you about Granger causality (in fMRI). Presented at Annu.Meet. Org. Hum. Brain Mapp., 17th, June 26-30, Quebec City. http://www2.warwick.ac.uk/fac/sci/statistics/ staff/academic-research/nichols/presentations/ohbm2011/skeptical/ Solo-GrangerDanger.pdf
    • (2011) Presented at Annu.Meet. Org. Hum. Brain Mapp , pp. 26-30
    • Solo, V.1
  • 80
    • 4344637572 scopus 로고    scopus 로고
    • Exploratory analysis of fMRI data by fuzzy clustering-philosophy, strategy, tactics, and implementation
    • ed. FT Sommer, AWichert, Cambridge, MA MIT Press
    • Somorjai RL, Jarmasz M. 2003. Exploratory analysis of fMRI data by fuzzy clustering-philosophy, strategy, tactics, and implementation. In Exploratory Analysis and Data Modeling in Functional Neuroimaging, ed. FT Sommer, AWichert, pp. 17-42. Cambridge, MA: MIT Press
    • (2003) Exploratory Analysis and Data Modeling in Functional Neuroimaging , pp. 17-42
    • Somorjai, R.L.1    Jarmasz, M.2
  • 81
    • 0345689416 scopus 로고    scopus 로고
    • Cluster analysis of fMRI data using dendrogram sharpening
    • Stanberry L, Nandy R, Cordes D. 2003. Cluster analysis of fMRI data using dendrogram sharpening. Hum. Brain Mapp. 20(4):201-19
    • (2003) Hum. Brain Mapp. , vol.20 , Issue.4 , pp. 201-219
    • Stanberry, L.1    Nandy, R.2    Cordes, D.3
  • 82
    • 33645227944 scopus 로고    scopus 로고
    • Evaluating fMRI preprocessing pipelines
    • Strother SC. 2006. Evaluating fMRI preprocessing pipelines. IEEE Eng. Med. Biol. Mag. 25(2):27-41
    • (2006) IEEE Eng. Med. Biol. Mag. , vol.25 , Issue.2 , pp. 27-41
    • Strother, S.C.1
  • 83
    • 0017147485 scopus 로고
    • Effect of temporal aggregation on the dynamic relationship of two time series variables
    • Tiao G, WeiW. 1976. Effect of temporal aggregation on the dynamic relationship of two time series variables. Biometrika 63(3):513-23
    • (1976) Biometrika , vol.63 , Issue.3 , pp. 513-523
    • Tiao, G.1    Wei, W.2
  • 84
    • 0011604203 scopus 로고
    • The effect of temporal aggregation on parameter estimation in distributed lag model
    • Wei WWS. 1978. The effect of temporal aggregation on parameter estimation in distributed lag model. J. Econom. 8(2):237-46
    • (1978) J. Econom. , vol.8 , Issue.2 , pp. 237-246
    • Wei, W.W.S.1
  • 85
    • 0000447571 scopus 로고
    • Systematic sampling and temporal aggregation in time series models
    • Weiss A. 1984. Systematic sampling and temporal aggregation in time series models. J. Econom. 26(3):271-81
    • (1984) J. Econom. , vol.26 , Issue.3 , pp. 271-281
    • Weiss, A.1
  • 86
    • 1842504499 scopus 로고    scopus 로고
    • Constrained linear basis sets for HRF modelling using Variational Bayes
    • Woolrich MW, Behrens TE, Smith SM. 2004a. Constrained linear basis sets for HRF modelling using Variational Bayes. NeuroImage 21(4):1748-61
    • (2004) NeuroImage , vol.21 , Issue.4 , pp. 1748-1761
    • Woolrich, M.W.1    Behrens, T.E.2    Smith, S.M.3
  • 88
    • 0035212159 scopus 로고    scopus 로고
    • Temporal autocorrelation in univariate linearmodeling of FMRI data
    • WoolrichMW,RipleyBD, BradyM, Smith SM. 2001. Temporal autocorrelation in univariate linearmodeling of FMRI data. NeuroImage 14(6):1370-86
    • (2001) NeuroImage , vol.14 , Issue.6 , pp. 1370-1386
    • Woolrich, M.W.1    Ripley, B.D.2    Brady, M.3    Smith, S.M.4
  • 90
    • 0026781154 scopus 로고
    • A three-dimensional statistical analysis for CBF activation studies in human brain
    • Worsley KJ, EVans AC, Marrett S, Neelin P. 1992. A three-dimensional statistical analysis for CBF activation studies in human brain. J. Cereb. Blood Flow Metab. 12(6):900-18
    • (1992) J. Cereb. Blood Flow Metab. , vol.12 , Issue.6 , pp. 900-918
    • Worsley, K.J.1    Evans, A.C.2    Marrett, S.3    Neelin, P.4
  • 91
    • 0029096148 scopus 로고
    • Analysis of fMRI time-series revisited-again
    • Worsley KJ, Friston KJ. 1995. Analysis of fMRI time-series revisited-again. NeuroImage 2(3):173-81
    • (1995) NeuroImage , vol.2 , Issue.3 , pp. 173-181
    • Worsley, K.J.1    Friston, K.J.2
  • 93
    • 70450242686 scopus 로고    scopus 로고
    • Modeling inter-subject variability in fMRI activation location: A Bayesian hierarchical spatial model
    • Xu L, Johnson TD,NicholsTE, NeeDE. 2009. Modeling inter-subject variability in fMRI activation location: A Bayesian hierarchical spatial model. Biometrics 65(4):1041-51
    • (2009) Biometrics , vol.65 , Issue.4 , pp. 1041-1051
    • Xu, L.1    Johnson, T.D.2    Nichols, T.E.3    Nee, D.E.4
  • 94
    • 82455219079 scopus 로고    scopus 로고
    • BSMac: AMATLAB toolbox implementing a Bayesian spatial model for brain activation and connectivity
    • Zhang L, Agravat S, Derado G, Chen S, McIntosh BJ, Bowman FD. 2012. BSMac: AMATLAB toolbox implementing a Bayesian spatial model for brain activation and connectivity. J. Neurosci.Methods 204(1):133-43
    • (2012) J. Neurosci.Methods , vol.204 , Issue.1 , pp. 133-143
    • Zhang, L.1    Agravat, S.2    Derado, G.3    Chen, S.4    McIntosh, B.J.5    Bowman, F.D.6
  • 95
    • 66549116371 scopus 로고    scopus 로고
    • Regression models for identifying noise sources inmagnetic resonance images
    • ZhuH, Li Y, Ibrahim JG, Shi X, An H, et al. 2009. Regression models for identifying noise sources inmagnetic resonance images. J. Am. Stat. Assoc. 104(486):623-37
    • (2009) J. Am. Stat. Assoc. , vol.104 , Issue.486 , pp. 623-637
    • Zhu, H.1    Li, Y.2    Ibrahim, J.G.3    Shi, X.4    An, H.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.