메뉴 건너뛰기




Volumn 63, Issue 3, 2012, Pages 1519-1531

Bayesian hierarchical multi-subject multiscale analysis of functional MRI data

Author keywords

Bayesian inference; Image smoothing; Mixture prior; Multiple subjects; Spatiotemporal analysis; Wavelet modeling

Indexed keywords

ANALYTICAL ERROR; ARTICLE; BAYES THEOREM; BRAIN FUNCTION; COMPUTER SIMULATION; CORRELATION COEFFICIENT; EVENT RELATED POTENTIAL; FUNCTIONAL MAGNETIC RESONANCE IMAGING; IMAGE ANALYSIS; INFORMATION PROCESSING; NEUROIMAGING; PRIORITY JOURNAL; PROBABILITY; STATISTICAL DISTRIBUTION; STATISTICAL MODEL; WAVELET ANALYSIS; WORKING MEMORY;

EID: 84866150436     PISSN: 10538119     EISSN: 10959572     Source Type: Journal    
DOI: 10.1016/j.neuroimage.2012.08.041     Document Type: Article
Times cited : (27)

References (56)
  • 4
    • 36148954681 scopus 로고    scopus 로고
    • A Bayesian hierarchical framework for spatial modeling of fMRI data
    • Bowman F.D., Caffo B., Bassett S.S., Kilts C. A Bayesian hierarchical framework for spatial modeling of fMRI data. Neuroimage 2008, 39(1):146-156.
    • (2008) Neuroimage , vol.39 , Issue.1 , pp. 146-156
    • Bowman, F.D.1    Caffo, B.2    Bassett, S.S.3    Kilts, C.4
  • 7
    • 84862803303 scopus 로고    scopus 로고
    • FMRI group analysis combining effect estimates and their variances
    • Chen G., Saad Z.S., Nath A.R., Beauchamp M.S., Cox R.W. FMRI group analysis combining effect estimates and their variances. Neuroimage 2012, 60(1):747-765.
    • (2012) Neuroimage , vol.60 , Issue.1 , pp. 747-765
    • Chen, G.1    Saad, Z.S.2    Nath, A.R.3    Beauchamp, M.S.4    Cox, R.W.5
  • 8
    • 0001682758 scopus 로고    scopus 로고
    • Multiple shrinkage and subset selection in wavelets
    • Clyde M., Parmigiani G., Vidakovic B. Multiple shrinkage and subset selection in wavelets. Biometrika 1998, 85(2):391-401.
    • (1998) Biometrika , vol.85 , Issue.2 , pp. 391-401
    • Clyde, M.1    Parmigiani, G.2    Vidakovic, B.3
  • 9
    • 63349104207 scopus 로고    scopus 로고
    • Bayesian wavelet-based analysis of functional magnetic resonance time series
    • Costafreda S.G., Barker G.J., Brammer M.J. Bayesian wavelet-based analysis of functional magnetic resonance time series. Magn. Reson. Imaging 2009, 27(4):460-469.
    • (2009) Magn. Reson. Imaging , vol.27 , Issue.4 , pp. 460-469
    • Costafreda, S.G.1    Barker, G.J.2    Brammer, M.J.3
  • 10
    • 0030175198 scopus 로고    scopus 로고
    • AFNI: software for analysis and visualization of functional magnetic resonance neuroimages
    • Cox R.W. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res. 1996, 29(3):162-173.
    • (1996) Comput. Biomed. Res. , vol.29 , Issue.3 , pp. 162-173
    • Cox, R.W.1
  • 11
    • 0036328554 scopus 로고    scopus 로고
    • Wavelet-generalized least squares: a new BLU estimator of linear regression models with 1/f errors
    • Fadili M.J., Bullmore E.T. Wavelet-generalized least squares: a new BLU estimator of linear regression models with 1/f errors. Neuroimage 2002, 15(1):217-232.
    • (2002) Neuroimage , vol.15 , Issue.1 , pp. 217-232
    • Fadili, M.J.1    Bullmore, E.T.2
  • 12
    • 70350275279 scopus 로고    scopus 로고
    • Multiscale modeling: a Bayesian perspective
    • Springer Verlag
    • Ferreira M., Lee H. Multiscale modeling: a Bayesian perspective. Springer Series in Statistics 2007, Springer Verlag.
    • (2007) Springer Series in Statistics
    • Ferreira, M.1    Lee, H.2
  • 13
    • 80054718862 scopus 로고    scopus 로고
    • Dynamic multiscale spatio-temporal models for Gaussian areal data
    • Ferreira M.A.R., Holan S.H., Bertolde A.I. Dynamic multiscale spatio-temporal models for Gaussian areal data. J. R. Stat. Soc. B 2011, 73:663-688.
    • (2011) J. R. Stat. Soc. B , vol.73 , pp. 663-688
    • Ferreira, M.A.R.1    Holan, S.H.2    Bertolde, A.I.3
  • 14
    • 33947179549 scopus 로고    scopus 로고
    • Bayesian fMRI data analysis with sparse spatial basis function priors
    • Flandin G., Penny W.D. Bayesian fMRI data analysis with sparse spatial basis function priors. Neuroimage 2007, 34(3):1108-1125.
    • (2007) Neuroimage , vol.34 , Issue.3 , pp. 1108-1125
    • Flandin, G.1    Penny, W.D.2
  • 16
    • 2242458721 scopus 로고    scopus 로고
    • A Bayesian time-course model for functional magnetic resonance imaging data
    • Genovese C.R. A Bayesian time-course model for functional magnetic resonance imaging data. J. Am. Stat. Assoc. 2000, 95(451):691-703.
    • (2000) J. Am. Stat. Assoc. , vol.95 , Issue.451 , pp. 691-703
    • Genovese, C.R.1
  • 17
    • 0035013277 scopus 로고    scopus 로고
    • Bayesian spatiotemporal inference in functional magnetic resonance imaging
    • Gössl C., Auer D.P., Fahrmeir L. Bayesian spatiotemporal inference in functional magnetic resonance imaging. Biometrics 2001, 57(2):554-562.
    • (2001) Biometrics , vol.57 , Issue.2 , pp. 554-562
    • Gössl, C.1    Auer, D.P.2    Fahrmeir, L.3
  • 18
    • 61449261776 scopus 로고    scopus 로고
    • Combined spatial and non-spatial prior for inference on MRI time-series
    • Groves A.R., Chappell M.A., Woolrich M.W. Combined spatial and non-spatial prior for inference on MRI time-series. Neuroimage 2009, 45(3):795-809.
    • (2009) Neuroimage , vol.45 , Issue.3 , pp. 795-809
    • Groves, A.R.1    Chappell, M.A.2    Woolrich, M.W.3
  • 19
    • 77549088909 scopus 로고    scopus 로고
    • A Bayesian spatiotemporal model for very large data sets
    • Harrison L.M., Green G.G.R. A Bayesian spatiotemporal model for very large data sets. Neuroimage 2010, 50(3):1126-1141.
    • (2010) Neuroimage , vol.50 , Issue.3 , pp. 1126-1141
    • Harrison, L.M.1    Green, G.G.R.2
  • 20
    • 44149098492 scopus 로고    scopus 로고
    • Diffusion-based spatial priors for functional magnetic resonance images
    • Harrison L.M., Penny W., Daunizeau J., Friston K.J. Diffusion-based spatial priors for functional magnetic resonance images. Neuroimage 2008, 41(2):408-423.
    • (2008) Neuroimage , vol.41 , Issue.2 , pp. 408-423
    • Harrison, L.M.1    Penny, W.2    Daunizeau, J.3    Friston, K.J.4
  • 21
    • 0003684449 scopus 로고    scopus 로고
    • The elements of statistical learning: data mining, inference, and prediction
    • Springer
    • Hastie T., Tibshirani R., Friedman J. The elements of statistical learning: data mining, inference, and prediction. Springer Series in Statistics 2009, Springer.
    • (2009) Springer Series in Statistics
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.3
  • 22
    • 5644272621 scopus 로고    scopus 로고
    • Spatiotemporal wavelet analysis for functional MRI
    • Long C., Brown E.N., Manoach D., Solo V. Spatiotemporal wavelet analysis for functional MRI. Neuroimage 2004, 23(2):500-516.
    • (2004) Neuroimage , vol.23 , Issue.2 , pp. 500-516
    • Long, C.1    Brown, E.N.2    Manoach, D.3    Solo, V.4
  • 23
    • 42249101233 scopus 로고    scopus 로고
    • Analysis of fMRI data with drift: modified general linear model and Bayesian estimator
    • Luo H., Puthusserypady S. Analysis of fMRI data with drift: modified general linear model and Bayesian estimator. IEEE Trans. Biomed. Eng. 2008, 55(5):1504-1511.
    • (2008) IEEE Trans. Biomed. Eng. , vol.55 , Issue.5 , pp. 1504-1511
    • Luo, H.1    Puthusserypady, S.2
  • 24
    • 44649099442 scopus 로고    scopus 로고
    • A fully Bayesian approach to the parcel-based detection-estimation of brain activity in fMRI
    • Makni S., Idier J., Vincent T., Thirion B., Dehaene-Lambertz G., Ciuciu P. A fully Bayesian approach to the parcel-based detection-estimation of brain activity in fMRI. Neuroimage 2008, 41(3):941-969.
    • (2008) Neuroimage , vol.41 , Issue.3 , pp. 941-969
    • Makni, S.1    Idier, J.2    Vincent, T.3    Thirion, B.4    Dehaene-Lambertz, G.5    Ciuciu, P.6
  • 25
    • 0038660249 scopus 로고    scopus 로고
    • Wavelet-based estimation of a semiparametric generalized linear model of fMRI time-series
    • Meyer F.G. Wavelet-based estimation of a semiparametric generalized linear model of fMRI time-series. IEEE Trans. Med. Imaging 2003, 22(3):315-322.
    • (2003) IEEE Trans. Med. Imaging , vol.22 , Issue.3 , pp. 315-322
    • Meyer, F.G.1
  • 26
    • 80054689503 scopus 로고    scopus 로고
    • Automated analysis of quantitative image data using isomorphic functional mixed models, with application to proteomic data
    • Morris J.S., Baladandayuthapani V., Herrick R.C., Sanna P., Gutstein H. Automated analysis of quantitative image data using isomorphic functional mixed models, with application to proteomic data. Ann. Appl. Stat. 2011, 5:894-923.
    • (2011) Ann. Appl. Stat. , vol.5 , pp. 894-923
    • Morris, J.S.1    Baladandayuthapani, V.2    Herrick, R.C.3    Sanna, P.4    Gutstein, H.5
  • 30
    • 0042671302 scopus 로고    scopus 로고
    • Variational Bayesian inference for fMRI time series
    • Penny W., Kiebel S., Friston K. Variational Bayesian inference for fMRI time series. Neuroimage 2003, 19(3):727-741.
    • (2003) Neuroimage , vol.19 , Issue.3 , pp. 727-741
    • Penny, W.1    Kiebel, S.2    Friston, K.3
  • 31
    • 16244387927 scopus 로고    scopus 로고
    • Bayesian fMRI time series analysis with spatial priors
    • Penny W.D., Trujillo-Barreto N.J., Friston K.J. Bayesian fMRI time series analysis with spatial priors. Neuroimage 2005, 24(2):350-362.
    • (2005) Neuroimage , vol.24 , Issue.2 , pp. 350-362
    • Penny, W.D.1    Trujillo-Barreto, N.J.2    Friston, K.J.3
  • 32
    • 60749110521 scopus 로고    scopus 로고
    • Fmri: a package for analyzing fmri data
    • Polzehl J., Tabelow K. fmri: a package for analyzing fmri data. RNews 2007, 7(2):13-17.
    • (2007) RNews , vol.7 , Issue.2 , pp. 13-17
    • Polzehl, J.1    Tabelow, K.2
  • 33
    • 33644944874 scopus 로고    scopus 로고
    • Delay-period activity in the prefrontal cortex: one function is sensory gating
    • Postle B.R. Delay-period activity in the prefrontal cortex: one function is sensory gating. J. Cogn. Neurosci. 2005, 17(11):1679-1690.
    • (2005) J. Cogn. Neurosci. , vol.17 , Issue.11 , pp. 1679-1690
    • Postle, B.R.1
  • 35
    • 70349971910 scopus 로고    scopus 로고
    • Bayesian spatiotemporal model of fMRI data
    • Quirós A., Diez R.M., Gamerman D. Bayesian spatiotemporal model of fMRI data. Neuroimage 2010, 49(1):442-456.
    • (2010) Neuroimage , vol.49 , Issue.1 , pp. 442-456
    • Quirós, A.1    Diez, R.M.2    Gamerman, D.3
  • 36
    • 77954386091 scopus 로고    scopus 로고
    • Bayesian spatiotemporal model of fMRI data using transfer functions
    • Quirós A., Diez R.M., Wilson S.P. Bayesian spatiotemporal model of fMRI data using transfer functions. Neuroimage 2010, 52(3):995-1004.
    • (2010) Neuroimage , vol.52 , Issue.3 , pp. 995-1004
    • Quirós, A.1    Diez, R.M.2    Wilson, S.P.3
  • 37
    • 79951480123 scopus 로고    scopus 로고
    • R Development Core Team, R Foundation for Statistical Computing, Vienna, Austria
    • R Development Core Team R: A Language and Environment for Statistical Computing 2010, R Foundation for Statistical Computing, Vienna, Austria.
    • (2010) R: A Language and Environment for Statistical Computing
  • 38
    • 34547839743 scopus 로고    scopus 로고
    • Learning effective brain connectivity with dynamic Bayesian networks
    • Rajapakse J.C., Zhou J. Learning effective brain connectivity with dynamic Bayesian networks. Neuroimage 2007, 37(3):749-760.
    • (2007) Neuroimage , vol.37 , Issue.3 , pp. 749-760
    • Rajapakse, J.C.1    Zhou, J.2
  • 40
    • 27644530249 scopus 로고    scopus 로고
    • Multiple hypothesis mapping of functional MRI data in orthogonal and complex wavelet domains
    • Sendur L., Maxim V., Whitcher B., Bullmore E. Multiple hypothesis mapping of functional MRI data in orthogonal and complex wavelet domains. IEEE Trans. Signal Process. 2005, 53(9):3413-3426.
    • (2005) IEEE Trans. Signal Process. , vol.53 , Issue.9 , pp. 3413-3426
    • Sendur, L.1    Maxim, V.2    Whitcher, B.3    Bullmore, E.4
  • 41
    • 34249029761 scopus 로고    scopus 로고
    • Spatial Bayesian variable selection with application to functional magnetic resonance imaging
    • Smith M., Fahrmeir L. Spatial Bayesian variable selection with application to functional magnetic resonance imaging. J. Am. Stat. Assoc. 2007, 102(478):417-431.
    • (2007) J. Am. Stat. Assoc. , vol.102 , Issue.478 , pp. 417-431
    • Smith, M.1    Fahrmeir, L.2
  • 42
    • 0142011000 scopus 로고    scopus 로고
    • Assessing brain activity through spatial Bayesian variable selection
    • Smith M., Pütz B., Auer D., Fahrmeir L. Assessing brain activity through spatial Bayesian variable selection. Neuroimage 2003, 20(2):802-815.
    • (2003) Neuroimage , vol.20 , Issue.2 , pp. 802-815
    • Smith, M.1    Pütz, B.2    Auer, D.3    Fahrmeir, L.4
  • 43
    • 57649159199 scopus 로고    scopus 로고
    • Fixed and random effect analysis of multi-subject fMRI data using wavelet transform
    • Soleymani M., Hossein-Zadeh G., Soltanian-Zadeh H. Fixed and random effect analysis of multi-subject fMRI data using wavelet transform. J. Neurosci. Methods 2009, 176(2):237-245.
    • (2009) J. Neurosci. Methods , vol.176 , Issue.2 , pp. 237-245
    • Soleymani, M.1    Hossein-Zadeh, G.2    Soltanian-Zadeh, H.3
  • 45
    • 33748638251 scopus 로고    scopus 로고
    • Multi-resolution Bayesian regression in PET dynamic studies using wavelets
    • Turkheimer F.E., Aston J.A., Asselin M.C., Hinz R. Multi-resolution Bayesian regression in PET dynamic studies using wavelets. Neuroimage 2006, 32(1):111-121.
    • (2006) Neuroimage , vol.32 , Issue.1 , pp. 111-121
    • Turkheimer, F.E.1    Aston, J.A.2    Asselin, M.C.3    Hinz, R.4
  • 46
    • 13844309282 scopus 로고    scopus 로고
    • Integrated wavelet processing and spatial statistical testing of fMRI data
    • Van De Ville D., Blu T., Unser M. Integrated wavelet processing and spatial statistical testing of fMRI data. Neuroimage 2004, 23(4):1472-1485.
    • (2004) Neuroimage , vol.23 , Issue.4 , pp. 1472-1485
    • Van De Ville, D.1    Blu, T.2    Unser, M.3
  • 47
    • 33645236685 scopus 로고    scopus 로고
    • Surfing the brain - An overview of wavelet-based techniques for fMRI data analysis
    • Van De Ville D., Blu T., Unser M. Surfing the brain - An overview of wavelet-based techniques for fMRI data analysis. IEEE Eng. Med. Biol. Mag. 2006, 25(2):65-78.
    • (2006) IEEE Eng. Med. Biol. Mag. , vol.25 , Issue.2 , pp. 65-78
    • Van De Ville, D.1    Blu, T.2    Unser, M.3
  • 49
    • 0033478457 scopus 로고    scopus 로고
    • Covariance structure of wavelet coefficients: theory and models in a Bayesian perspective
    • Vannucci M., Corradi F. Covariance structure of wavelet coefficients: theory and models in a Bayesian perspective. J. R. Stat. Soc. B Methodol. 1999, 61:971-986.
    • (1999) J. R. Stat. Soc. B Methodol. , vol.61 , pp. 971-986
    • Vannucci, M.1    Corradi, F.2
  • 51
    • 77950391073 scopus 로고    scopus 로고
    • Spatially adaptive mixture modeling for analysis of fMRI time series
    • Vincent T., Risser L., Ciuciu P. Spatially adaptive mixture modeling for analysis of fMRI time series. IEEE Trans. Med. Imaging 2010, 29(4):1059-1074.
    • (2010) IEEE Trans. Med. Imaging , vol.29 , Issue.4 , pp. 1059-1074
    • Vincent, T.1    Risser, L.2    Ciuciu, P.3
  • 52
    • 1642357547 scopus 로고    scopus 로고
    • Denoising functional MR images: a comparison of wavelet denoising and Gaussian smoothing
    • Wink A.M., Roerdink J.B.T.M. Denoising functional MR images: a comparison of wavelet denoising and Gaussian smoothing. IEEE Trans. Med. Imaging 2004, 23(3):374-387.
    • (2004) IEEE Trans. Med. Imaging , vol.23 , Issue.3 , pp. 374-387
    • Wink, A.M.1    Roerdink, J.B.T.M.2
  • 53
    • 77950114038 scopus 로고    scopus 로고
    • Trends on wavelet-based functional MRI for activation detection
    • Wongsawat Y. Trends on wavelet-based functional MRI for activation detection. IFMBE Proceedings 2009, vol. 25:1242-1245.
    • (2009) IFMBE Proceedings , vol.25 , pp. 1242-1245
    • Wongsawat, Y.1
  • 55
    • 11844293467 scopus 로고    scopus 로고
    • Mixture models with adaptive spatial regularization for segmentation with an application to FMRI data
    • Woolrich M.W., Behrens T.E.J., Beckmann C.F., Smith S.M. Mixture models with adaptive spatial regularization for segmentation with an application to FMRI data. IEEE Trans. Med. Imaging 2005, 24(1):1-11.
    • (2005) IEEE Trans. Med. Imaging , vol.24 , Issue.1 , pp. 1-11
    • Woolrich, M.W.1    Behrens, T.E.J.2    Beckmann, C.F.3    Smith, S.M.4
  • 56
    • 0033989015 scopus 로고    scopus 로고
    • Complex denoising of MR data via wavelet analysis: application for functional MRI
    • Zaroubi S., Goelman G. Complex denoising of MR data via wavelet analysis: application for functional MRI. Magn. Reson. Imaging 2000, 18(1):59-68.
    • (2000) Magn. Reson. Imaging , vol.18 , Issue.1 , pp. 59-68
    • Zaroubi, S.1    Goelman, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.