메뉴 건너뛰기




Volumn 22, Issue 4, 2013, Pages 364-381

A Bayesian non-parametric Potts model with application to pre-surgical FMRI data

Author keywords

decision theory; Dirichlet process; FMRI; hidden Markov random field; non parametric Bayes; Potts model

Indexed keywords

ADULT; ALGORITHM; BAYES THEOREM; CANCER SURGERY; CASE REPORT; CONFERENCE PAPER; DECISION THEORY; ELECTROENCEPHALOGRAM; FEMALE; FUNCTIONAL MAGNETIC RESONANCE IMAGING; FUNCTIONAL NEUROIMAGING; HUMAN; IMAGE ANALYSIS; IMAGE PROCESSING; MONTE CARLO METHOD; NONPARAMETRIC TEST; OLIGODENDROGLIOMA; POTTS MODEL; PREOPERATIVE EVALUATION; PROBABILITY; SIMULATION; STATISTICAL ANALYSIS; STATISTICAL MODEL; STATISTICAL PARAMETERS;

EID: 84881450950     PISSN: 09622802     EISSN: 14770334     Source Type: Journal    
DOI: 10.1177/0962280212448970     Document Type: Conference Paper
Times cited : (21)

References (38)
  • 2
    • 56349146802 scopus 로고    scopus 로고
    • Formulation of current density weighted indices for correspondence between functional MRI and electrocortical stimulation maps
    • Yeo DTB, Meyer CR, Parent MJ, et al. Formulation of current density weighted indices for correspondence between functional MRI and electrocortical stimulation maps. J Clin Neurophysiol. 2008 ; 119: 2887-2897
    • (2008) J Clin Neurophysiol , vol.119 , pp. 2887-2897
    • Yeo, D.T.B.1    Meyer, C.R.2    Parent, M.J.3
  • 3
    • 0035004650 scopus 로고    scopus 로고
    • Fluid-attenuated inversion recovery magnetic resonance imaging detects cortical and juxtacortical multiple sclerosis lesions
    • Bakshi R, Ariyaratana S, Benedict RH, et al. Fluid-attenuated inversion recovery magnetic resonance imaging detects cortical and juxtacortical multiple sclerosis lesions. Arch Neurol. 2001 ; 58 (5). 742-748 (Pubitemid 32423046)
    • (2001) Archives of Neurology , vol.58 , Issue.5 , pp. 742-748
    • Bakshi, R.1    Ariyaratana, S.2    Benedict, R.H.B.3    Jacobs, L.4
  • 5
    • 7044260964 scopus 로고    scopus 로고
    • Advances in functional and structural MR image analysis and implementation as FSL
    • Smith SM, Jenkinson M, Woolrich CF, et al. Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage. 2004 ; 23 (S1). 208-219
    • (2004) NeuroImage , vol.23 , Issue.S1 , pp. 208-219
    • Smith, S.M.1    Jenkinson, M.2    Woolrich, C.F.3
  • 7
    • 0029931242 scopus 로고    scopus 로고
    • A unified statistical approach for determining significant voxels in images of cerebral activation
    • Worsley KJ, Marrett S, Neelin P, et al. A unified statistical approach for determining significant voxels in images of cerebral activation. Hum Brain Mapp. 1996 ; 4: 48-73
    • (1996) Hum Brain Mapp , vol.4 , pp. 48-73
    • Worsley, K.J.1    Marrett, S.2    Neelin, P.3
  • 9
    • 0242721216 scopus 로고    scopus 로고
    • Controlling the familywise error rate in functional neuroimaging: A comparative review
    • DOI 10.1191/0962280203sm341ra
    • Nichols TE, Hayasaka S. Controlling the familywise error rate in functional neuroimaging: a comparative review. Stat Meth Med Res. 2003 ; 12 (5). 419-446 (Pubitemid 37368969)
    • (2003) Statistical Methods in Medical Research , vol.12 , Issue.5 , pp. 419-446
    • Nichols, T.1    Hayasaka, S.2
  • 10
    • 84926736518 scopus 로고
    • Some generalized order-disorder transformations
    • Potts RB. Some generalized order-disorder transformations. Proc Camb Philos Soc. 1952 ; 48: 106-109
    • (1952) Proc Camb Philos Soc , vol.48 , pp. 106-109
    • Potts, R.B.1
  • 11
    • 33947716431 scopus 로고
    • Beitrag zur theorie des ferromagnetismus
    • Ising E. Beitrag zur theorie des ferromagnetismus. Z Angew Phys. 1925 ; 31 (1). 253-258
    • (1925) Z Angew Phys , vol.31 , Issue.1 , pp. 253-258
    • Ising, E.1
  • 14
    • 0032398552 scopus 로고    scopus 로고
    • Auxiliary variable methods for Markov chain Monte Carlo with applications
    • Higdon DM. Auxiliary variable methods for Markov chain Monte Carlo with applications. J Am Stat Assoc. 1998 ; 93 (442). 585-595
    • (1998) J Am Stat Assoc , vol.93 , Issue.442 , pp. 585-595
    • Higdon, D.M.1
  • 15
    • 69449101580 scopus 로고    scopus 로고
    • A Bayesian analysis of dual autoradiographic images
    • Johnson TD, Piert M. A Bayesian analysis of dual autoradiographic images. Comput Stat Data Anal. 2009 ; 53: 4570-4583
    • (2009) Comput Stat Data Anal , vol.53 , pp. 4570-4583
    • Johnson, T.D.1    Piert, M.2
  • 16
    • 33847607074 scopus 로고    scopus 로고
    • A Dirichlet process mixture model for brain MRI tissue classification
    • da Silva ARS. A Dirichlet process mixture model for brain MRI tissue classification. Med Image Anal. 2007 ; 2: 169-182
    • (2007) Med Image Anal , vol.2 , pp. 169-182
    • Da Silva, A.R.S.1
  • 17
    • 39749140347 scopus 로고    scopus 로고
    • Nonparametric Bayes image segmentation
    • Orbanz P, Buhmann J. Nonparametric Bayes image segmentation. Int J Comput Vision. 2008 ; 77: 25-45
    • (2008) Int J Comput Vision , vol.77 , pp. 25-45
    • Orbanz, P.1    Buhmann, J.2
  • 19
    • 77953596396 scopus 로고    scopus 로고
    • The infinite hidden Markov random field model
    • Chatzis SP, Tsechpenakis G. The infinite hidden Markov random field model. IEEE Trans Med Imaging. 2010 ; 21 (6). 1004-1014
    • (2010) IEEE Trans Med Imaging , vol.21 , Issue.6 , pp. 1004-1014
    • Chatzis, S.P.1    Tsechpenakis, G.2
  • 20
    • 0001120413 scopus 로고
    • A Bayesian analysis of some nonparametric problems
    • Ferguson TS. A Bayesian analysis of some nonparametric problems. Ann Stat. 1973 ; 1 (2). 209-230
    • (1973) Ann Stat , vol.1 , Issue.2 , pp. 209-230
    • Ferguson, T.S.1
  • 21
    • 0000913755 scopus 로고
    • Spatial interaction and the statistical analysis of lattice systems
    • Besag J. Spatial interaction and the statistical analysis of lattice systems. J R Stat Soc Ser B. 1974 ; 6: 192-236
    • (1974) J R Stat Soc ser B , vol.6 , pp. 192-236
    • Besag, J.1
  • 22
    • 0000708831 scopus 로고
    • Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems
    • Antoniak CE. Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. Ann Stat. 1974 ; 2 (6). 1152-1174
    • (1974) Ann Stat , vol.2 , Issue.6 , pp. 1152-1174
    • Antoniak, C.E.1
  • 23
    • 84950937290 scopus 로고
    • Bayesian density estimation and inference using mixtures
    • Escobar MD, West M. Bayesian density estimation and inference using mixtures. J Am Stat Assoc. 1995 ; 90 (430). 577-588
    • (1995) J Am Stat Assoc , vol.90 , Issue.430 , pp. 577-588
    • Escobar, M.D.1    West, M.2
  • 24
    • 4043092820 scopus 로고    scopus 로고
    • Nonparametric Bayesian data analysis
    • DOI 10.1214/088342304000000017, Bayes Then and Now
    • Müller P, Quintana FA. Nonparametric Bayesian data analysis. Stat Sci. 2004 ; 19 (1). 95-110 (Pubitemid 39056879)
    • (2004) Statistical Science , vol.19 , Issue.1 , pp. 95-110
    • Muller, P.1    Quintana, F.A.2
  • 25
    • 33747349191 scopus 로고
    • Nonuniversal critical dynamics in Monte Carlo simulations
    • Swendsen RH, Wang JS. Nonuniversal critical dynamics in Monte Carlo simulations. Phys Rev Lett. 1987 ; 58: 86-88
    • (1987) Phys Rev Lett , vol.58 , pp. 86-88
    • Swendsen, R.H.1    Wang, J.S.2
  • 26
    • 0000736067 scopus 로고    scopus 로고
    • Simulating Normalizing Constants: From Importance Sampling to Bridge Sampling to Path Sampling
    • Gelman A, Meng X. Simulating normalizing constants: from importance sampling to bridge sampling to path sampling. Stat Sci. 1998 ; 13 (2). 163-185 (Pubitemid 128466008)
    • (1998) Statistical Science , vol.13 , Issue.2 , pp. 163-185
    • Gelman, A.1    Meng, X.-L.2
  • 27
    • 77950032550 scopus 로고    scopus 로고
    • Markov chain sampling methods for Dirichlet process mixture models
    • Neal R. Markov chain sampling methods for Dirichlet process mixture models. J Comput Graph Stat. 2000 ; 9 (2). 249-265
    • (2000) J Comput Graph Stat , vol.9 , Issue.2 , pp. 249-265
    • Neal, R.1
  • 29
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • Hastings WK. Monte Carlo sampling methods using Markov chains and their applications. Biometrika. 1970 ; 57 (1). 97-109
    • (1970) Biometrika , vol.57 , Issue.1 , pp. 97-109
    • Hastings, W.K.1
  • 30
    • 0002617436 scopus 로고
    • Ferguson distributions via Polya urn schemes
    • Blackwell D, MacQueen JB. Ferguson distributions via Polya urn schemes. Ann Stat. 1973 ; 1 (2). 353-355
    • (1973) Ann Stat , vol.1 , Issue.2 , pp. 353-355
    • Blackwell, D.1    MacQueen, J.B.2
  • 31
    • 1842816362 scopus 로고    scopus 로고
    • Gibbs sampling for stick-breaking priors
    • Ishwaran H, James LF. Gibbs sampling for stick-breaking priors. J Am Stat Assoc. 2001 ; 96: 161-173
    • (2001) J Am Stat Assoc , vol.96 , pp. 161-173
    • Ishwaran, H.1    James, L.F.2
  • 32
    • 21844504293 scopus 로고
    • Exchangeable and partially exchangeable random partitions
    • Pitman J. Exchangeable and partially exchangeable random partitions. Probab Theory Relat Fields. 1995 ; 102 (2). 145-158
    • (1995) Probab Theory Relat Fields , vol.102 , Issue.2 , pp. 145-158
    • Pitman, J.1
  • 33
    • 65549131149 scopus 로고    scopus 로고
    • Bayesian analysis of neuroimaging data in FSL
    • Woolrich MW, Jbabdi S, Patenaude P, et al. Bayesian analysis of neuroimaging data in FSL. NeuroImage. 2009 ; 45: 173-186
    • (2009) NeuroImage , vol.45 , pp. 173-186
    • Woolrich, M.W.1    Jbabdi, S.2    Patenaude, P.3
  • 34
    • 1842535161 scopus 로고    scopus 로고
    • Evoked-cerebral blood oxygenation changes in false-negative activations in BOLD contrast functional MRI of patients with brain tumors
    • DOI 10.1016/j.neuroimage.2003.10.042, PII S1053811903007122
    • Fujiwara N, Sakatani K, Katayama Y, et al. Evoked-cerebral blood oxygenation changes in false-negative activations in BOLD contrast functional MRI of patients with brain tumors. NeuroImage. 2004 ; 21 (4). 1464-1471 (Pubitemid 38450723)
    • (2004) NeuroImage , vol.21 , Issue.4 , pp. 1464-1471
    • Fujiwara, N.1    Sakatani, K.2    Katayama, Y.3    Murata, Y.4    Hoshino, T.5    Fukaya, C.6    Yamamoto, T.7
  • 36
    • 11844293467 scopus 로고    scopus 로고
    • Mixture models with adaptive spatial regularization for segmentation with an application to FMRI data
    • DOI 10.1109/TMI.2004.836545
    • Woolrich MW, Behrens TEJ, Beckmann CF, et al. Mixture models with adaptive spatial regularization for segmentation with an application to FMRI data. IEEE Trans Med Imaging. 2005 ; 24 (1). 1-11 (Pubitemid 40088551)
    • (2005) IEEE Transactions on Medical Imaging , vol.24 , Issue.1 , pp. 1-11
    • Woolrich, M.W.1    Behrens, T.E.J.2    Beckmann, C.F.3    Smith, S.M.4
  • 37
    • 0000582521 scopus 로고
    • Statistical analysis of non-lattice data
    • Besag J. Statistical analysis of non-lattice data. The Statistician. 1975 ; 24 (3). 179-195
    • (1975) The Statistician , vol.24 , Issue.3 , pp. 179-195
    • Besag, J.1
  • 38
    • 0036475031 scopus 로고    scopus 로고
    • Double Markov random fields and Bayesian image segmentation
    • DOI 10.1109/78.978390, PII S1053587X02005603
    • Melas DE, Wilson SP. Double Markov random fields and Bayesian image segmentation. IEEE Trans Signal Process. 2002 ; 50: 357-365 (Pubitemid 34291516)
    • (2002) IEEE Transactions on Signal Processing , vol.50 , Issue.2 , pp. 357-365
    • Melas, D.E.1    Wilson, S.P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.