메뉴 건너뛰기




Volumn 4191 LNCS - II, Issue , 2006, Pages 217-224

A nonparametric Bayesian approach to detecting spatial activation patterns in fMRI data

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; BRAIN; DATA REDUCTION; FEATURE EXTRACTION; MAGNETIC RESONANCE IMAGING; MATHEMATICAL MODELS;

EID: 79551688170     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11866763_27     Document Type: Conference Paper
Times cited : (13)

References (7)
  • 1
    • 33744815299 scopus 로고    scopus 로고
    • A stochastic geometry model for fMRI data
    • Department of Theoretical Statistics, University of Aarhus
    • Hartvig, N. (1999) A stochastic geometry model for fMRI data. Research Report 410, Department of Theoretical Statistics, University of Aarhus.
    • (1999) Research Report , vol.410
    • Hartvig, N.1
  • 2
    • 0037603646 scopus 로고    scopus 로고
    • Mixtures of general linear models for functional neuroimaging
    • Penny, W. & Friston, K. (2003) Mixtures of general linear models for functional neuroimaging. IEEE Transactions on Medical Imaging, 22(4):504-514.
    • (2003) IEEE Transactions on Medical Imaging , vol.22 , Issue.4 , pp. 504-514
    • Penny, W.1    Friston, K.2
  • 4
    • 0001120413 scopus 로고
    • A Bayesian analysis of some nonparametric problems
    • Furguson, T. (1973). A Bayesian analysis of some nonparametric problems. Annals of Statistics, 1(2):209-230.
    • (1973) Annals of Statistics , vol.1 , Issue.2 , pp. 209-230
    • Furguson, T.1
  • 5
    • 79955803023 scopus 로고    scopus 로고
    • The infinite Gaussian mixture model
    • S.A. Solla, T.K. Leen and K.-R. Muller (eds.), Cambridge, MA: MIT Press
    • Rasmussen, C.E. (2000) The infinite Gaussian mixture model. In S.A. Solla, T.K. Leen and K.-R. Muller (eds.), Advances in Neural Information Processing Systems 12, pp. 554-560. Cambridge, MA: MIT Press.
    • (2000) Advances in Neural Information Processing Systems , vol.12 , pp. 554-560
    • Rasmussen, C.E.1
  • 6
    • 0007300808 scopus 로고    scopus 로고
    • Markov chain sampling methods for Dirichlet process mixture models
    • Department of Statistics, University of Toronto
    • Neal, R.M. (1998) Markov chain sampling methods for Dirichlet process mixture models. Technical Report 4915, Department of Statistics, University of Toronto.
    • (1998) Technical Report , vol.4915
    • Neal, R.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.