메뉴 건너뛰기




Volumn 95, Issue , 2014, Pages 162-175

A spatio-temporal nonparametric Bayesian variable selection model of fMRI data for clustering correlated time courses

Author keywords

Bayesian nonparametric; Dirichlet process prior; Discrete wavelet transform; FMRI; Long memory errors; Markov random field prior

Indexed keywords

ACCURACY; ALGORITHM; ARTICLE; BAYES THEOREM; BRAIN REGION; BRAIN SIZE; DATA ANALYSIS; FUNCTIONAL MAGNETIC RESONANCE IMAGING; MATHEMATICAL MODEL; MONTE CARLO METHOD; PRIORITY JOURNAL; PROBABILITY; REGRESSION ANALYSIS; SIGNAL NOISE RATIO; SIMULATION; SPATIOTEMPORAL ANALYSIS; STATISTICAL DISTRIBUTION; STIMULUS RESPONSE; WAVELET ANALYSIS; BIOLOGICAL MODEL; BRAIN MAPPING; CLUSTER ANALYSIS; HUMAN; IMAGE PROCESSING; NUCLEAR MAGNETIC RESONANCE IMAGING; PROCEDURES;

EID: 84899692109     PISSN: 10538119     EISSN: 10959572     Source Type: Journal    
DOI: 10.1016/j.neuroimage.2014.03.024     Document Type: Article
Times cited : (50)

References (71)
  • 1
    • 0030831697 scopus 로고    scopus 로고
    • Empirical analyses of BOLD fMRI statistics II
    • Aguirre G., Zarahn E., D'Esposito M. Empirical analyses of BOLD fMRI statistics II. NeuroImage 1997, 5(3):199-212.
    • (1997) NeuroImage , vol.5 , Issue.3 , pp. 199-212
    • Aguirre, G.1    Zarahn, E.2    D'Esposito, M.3
  • 3
  • 4
    • 36148954681 scopus 로고    scopus 로고
    • A Bayesian hierarchical framework for spatial modeling of fMRI data
    • Bowman F., Caffo B., Bassett S., Kilts C. A Bayesian hierarchical framework for spatial modeling of fMRI data. NeuroImage 2008, 39(1):146-156.
    • (2008) NeuroImage , vol.39 , Issue.1 , pp. 146-156
    • Bowman, F.1    Caffo, B.2    Bassett, S.3    Kilts, C.4
  • 6
    • 0030666829 scopus 로고    scopus 로고
    • Modulation of connectivity in visual pathways by attention: Cortical interactions evaluated with structural equation modelling and fMRI
    • Büchel C., Friston K. Modulation of connectivity in visual pathways by attention: Cortical interactions evaluated with structural equation modelling and fMRI. Cereb. Cortex 1997, 7(8):768-778.
    • (1997) Cereb. Cortex , vol.7 , Issue.8 , pp. 768-778
    • Büchel, C.1    Friston, K.2
  • 8
    • 0019507389 scopus 로고
    • Behavioral enhancement of visual responses in monkey cerebral in monkey cerebral cortex. I. modulation in posterior parietal cortex related to selective visual attention
    • Bushnell M., Goldberg M., Robinson D. Behavioral enhancement of visual responses in monkey cerebral in monkey cerebral cortex. I. modulation in posterior parietal cortex related to selective visual attention. J. Neurophysiol. 1981, 46:755-772.
    • (1981) J. Neurophysiol. , vol.46 , pp. 755-772
    • Bushnell, M.1    Goldberg, M.2    Robinson, D.3
  • 9
    • 0031021275 scopus 로고    scopus 로고
    • A model for the coupling between cerebral blood flow and oxygenation metabolism during neural stimulation
    • Buxton R., Frank L. A model for the coupling between cerebral blood flow and oxygenation metabolism during neural stimulation. J. Cereb. Blood Flow Metab. 1997, 17(1):64-72.
    • (1997) J. Cereb. Blood Flow Metab. , vol.17 , Issue.1 , pp. 64-72
    • Buxton, R.1    Frank, L.2
  • 10
    • 15044338692 scopus 로고    scopus 로고
    • Asymptotic decorrelation of between-scale wavelet coefficients
    • Craigmile P.F., Percival D.B. Asymptotic decorrelation of between-scale wavelet coefficients. IEEE Trans. Inform. Theory 2005, 51(3):1039-1048.
    • (2005) IEEE Trans. Inform. Theory , vol.51 , Issue.3 , pp. 1039-1048
    • Craigmile, P.F.1    Percival, D.B.2
  • 12
    • 84950937290 scopus 로고
    • Bayesian density estimation and inference using mixtures
    • Escobar M., West M. Bayesian density estimation and inference using mixtures. J. Am. Stat. Assoc. 1995, 90(430):577-588.
    • (1995) J. Am. Stat. Assoc. , vol.90 , Issue.430 , pp. 577-588
    • Escobar, M.1    West, M.2
  • 13
    • 0036328554 scopus 로고    scopus 로고
    • Wavelet-generalised least squares: a new BLU estimator of linear regression models with 1/f errors
    • Fadili M., Bullmore E. Wavelet-generalised least squares: a new BLU estimator of linear regression models with 1/f errors. NeuroImage 2002, 15:217-232.
    • (2002) NeuroImage , vol.15 , pp. 217-232
    • Fadili, M.1    Bullmore, E.2
  • 14
    • 0001120413 scopus 로고
    • A Bayesian analysis of some nonparametric problems
    • Ferguson T. A Bayesian analysis of some nonparametric problems. Ann. Stat. 1973, 1(2):209-230.
    • (1973) Ann. Stat. , vol.1 , Issue.2 , pp. 209-230
    • Ferguson, T.1
  • 15
    • 33947179549 scopus 로고    scopus 로고
    • Bayesian fMRI data analysis with sparse spatial basis function priors
    • Flandin G., Penny W. Bayesian fMRI data analysis with sparse spatial basis function priors. NeuroImage 2007, 34(3):1108-1125.
    • (2007) NeuroImage , vol.34 , Issue.3 , pp. 1108-1125
    • Flandin, G.1    Penny, W.2
  • 16
    • 81355137473 scopus 로고    scopus 로고
    • Functional and effective connectivity: a review
    • Friston K. Functional and effective connectivity: a review. Brain Connect. 2011, 1(1):13-36.
    • (2011) Brain Connect. , vol.1 , Issue.1 , pp. 13-36
    • Friston, K.1
  • 17
    • 12244278584 scopus 로고
    • Analysis of functional MRI time-series
    • Friston K., Jezzard P., Turner R. Analysis of functional MRI time-series. Hum. Brain Mapp. 1994, 1(2):153-171.
    • (1994) Hum. Brain Mapp. , vol.1 , Issue.2 , pp. 153-171
    • Friston, K.1    Jezzard, P.2    Turner, R.3
  • 18
    • 0042671121 scopus 로고    scopus 로고
    • Posterior probability maps and SPMs
    • Friston K., Penny W. Posterior probability maps and SPMs. NeuroImage 2003, 19(3):1240-1249.
    • (2003) NeuroImage , vol.19 , Issue.3 , pp. 1240-1249
    • Friston, K.1    Penny, W.2
  • 19
    • 0028190347 scopus 로고
    • Functional and effective connectivity in neuroimaging: a synthesis
    • Friston K.J. Functional and effective connectivity in neuroimaging: a synthesis. Hum. Brain Mapp. 1994, 2:56-78.
    • (1994) Hum. Brain Mapp. , vol.2 , pp. 56-78
    • Friston, K.J.1
  • 20
    • 84893179575 scopus 로고
    • Variable selection via Gibbs sampling
    • George E., McCulloch R. Variable selection via Gibbs sampling. J. Am. Stat. Assoc. 1993, 88(423):881-889.
    • (1993) J. Am. Stat. Assoc. , vol.88 , Issue.423 , pp. 881-889
    • George, E.1    McCulloch, R.2
  • 21
    • 0031526204 scopus 로고    scopus 로고
    • Approaches for Bayesian variable selection
    • George E., McCulloch R. Approaches for Bayesian variable selection. Stat. Sin. 1997, 7(2):339-373.
    • (1997) Stat. Sin. , vol.7 , Issue.2 , pp. 339-373
    • George, E.1    McCulloch, R.2
  • 22
    • 0032776471 scopus 로고    scopus 로고
    • Deconvolution of impulse response in event-related BOLD fMRI
    • Glover G.H. Deconvolution of impulse response in event-related BOLD fMRI. NeuroImage 1999, 9:416-429.
    • (1999) NeuroImage , vol.9 , pp. 416-429
    • Glover, G.H.1
  • 23
    • 0035013277 scopus 로고    scopus 로고
    • Bayesian spatio-temporal inference in functional magnetic resonance imaging
    • Gössl C., Auer D., Fahrmeir L. Bayesian spatio-temporal inference in functional magnetic resonance imaging. Biometrics 2001, 57(2):554-562.
    • (2001) Biometrics , vol.57 , Issue.2 , pp. 554-562
    • Gössl, C.1    Auer, D.2    Fahrmeir, L.3
  • 25
    • 77549088909 scopus 로고    scopus 로고
    • A Bayesian spatiotemporal model for very large data sets
    • Harrison L., Green G. A Bayesian spatiotemporal model for very large data sets. NeuroImage 2010, 50(3):1126-1141.
    • (2010) NeuroImage , vol.50 , Issue.3 , pp. 1126-1141
    • Harrison, L.1    Green, G.2
  • 26
    • 84884218772 scopus 로고    scopus 로고
    • Generalized spike-and-slab priors for Bayesian group feature selection using expectation propagation
    • Hernandez-Lobato D., Hernandez-Lobato J.M., Dupont P. Generalized spike-and-slab priors for Bayesian group feature selection using expectation propagation. J. Mach. Learn. Res. 2013, 14:1891-1945.
    • (2013) J. Mach. Learn. Res. , vol.14 , pp. 1891-1945
    • Hernandez-Lobato, D.1    Hernandez-Lobato, J.M.2    Dupont, P.3
  • 28
    • 56349160115 scopus 로고    scopus 로고
    • Multiple-subjects connectivity-based parcellation using hierarchical Dirichlet process mixture models
    • Jbabdi S., Woolrich M., Behrens T. Multiple-subjects connectivity-based parcellation using hierarchical Dirichlet process mixture models. NeuroImage 2009, 44(2):373-384.
    • (2009) NeuroImage , vol.44 , Issue.2 , pp. 373-384
    • Jbabdi, S.1    Woolrich, M.2    Behrens, T.3
  • 29
    • 84875939607 scopus 로고    scopus 로고
    • A wavelet-based Bayesian approach to regression models with long memory errors and its application to fMRI data
    • Jeong J., Vannucci M., Ko K. A wavelet-based Bayesian approach to regression models with long memory errors and its application to fMRI data. Biometrics 2013, 69:184-196.
    • (2013) Biometrics , vol.69 , pp. 184-196
    • Jeong, J.1    Vannucci, M.2    Ko, K.3
  • 30
    • 84899668119 scopus 로고    scopus 로고
    • Classification of brain activation via spatial Bayesian variable selection in fMRI regression
    • Kalus S., Sämann P., Fahrmeir L. Classification of brain activation via spatial Bayesian variable selection in fMRI regression. ADAC 2013, 1-21.
    • (2013) ADAC , pp. 1-21
    • Kalus, S.1    Sämann, P.2    Fahrmeir, L.3
  • 31
    • 33744971417 scopus 로고    scopus 로고
    • Bayesian wavelet analysis of autoregressive fractionally integrated moving-average processes
    • Ko K., Vannucci M. Bayesian wavelet analysis of autoregressive fractionally integrated moving-average processes. J. Stat. Plann. Infer. 2006, 136(10):3415-3434.
    • (2006) J. Stat. Plann. Infer. , vol.136 , Issue.10 , pp. 3415-3434
    • Ko, K.1    Vannucci, M.2
  • 32
    • 67651025409 scopus 로고    scopus 로고
    • The statistical analysis of functional MRI data
    • Springer, New York
    • Lazar N.A. The statistical analysis of functional MRI data. Statistics for Biology and Health 2008, Springer, New York.
    • (2008) Statistics for Biology and Health
    • Lazar, N.A.1
  • 33
    • 78649419087 scopus 로고    scopus 로고
    • Bayesian variable selection in structured high-dimensional covariate spaces with applications in genomics
    • Li F., Zhang N. Bayesian variable selection in structured high-dimensional covariate spaces with applications in genomics. J. Am. Stat. Assoc. 2010, 105(491):1202-1214.
    • (2010) J. Am. Stat. Assoc. , vol.105 , Issue.491 , pp. 1202-1214
    • Li, F.1    Zhang, N.2
  • 34
    • 67649342618 scopus 로고    scopus 로고
    • The statistical analysis of fMRI data
    • Lindquist M. The statistical analysis of fMRI data. Stat. Sci. 2008, 23(4):439-464.
    • (2008) Stat. Sci. , vol.23 , Issue.4 , pp. 439-464
    • Lindquist, M.1
  • 35
    • 34547880428 scopus 로고    scopus 로고
    • Validity and power in hemodynamic response modeling: a comparison study and a new approach
    • Lindquist M., Wager T. Validity and power in hemodynamic response modeling: a comparison study and a new approach. Hum. Brain Mapp. 2007, 28(8):764-784.
    • (2007) Hum. Brain Mapp. , vol.28 , Issue.8 , pp. 764-784
    • Lindquist, M.1    Wager, T.2
  • 36
    • 0024700097 scopus 로고
    • A theory for multiresolution signal decomposition: the wavelet representation
    • Mallat S. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11(7):674-693.
    • (1989) IEEE Trans. Pattern Anal. Mach. Intell. , vol.11 , Issue.7 , pp. 674-693
    • Mallat, S.1
  • 37
    • 0038660249 scopus 로고    scopus 로고
    • Wavelet-based estimation of a semiparametric generalized linear model of fMRI time-series
    • Meyer F. Wavelet-based estimation of a semiparametric generalized linear model of fMRI time-series. IEEE Trans. Med. Imaging 2003, 22(3):315-322.
    • (2003) IEEE Trans. Med. Imaging , vol.22 , Issue.3 , pp. 315-322
    • Meyer, F.1
  • 38
    • 0019850192 scopus 로고
    • The influence of attentive fixation upon the excitability of the light-sensitive neurons of the posterior parietal cortex
    • Mountcastle V., Anderson R., Motter B. The influence of attentive fixation upon the excitability of the light-sensitive neurons of the posterior parietal cortex. J. Neurosci. 1981, 1(11):1218-1225.
    • (1981) J. Neurosci. , vol.1 , Issue.11 , pp. 1218-1225
    • Mountcastle, V.1    Anderson, R.2    Motter, B.3
  • 39
    • 41349110333 scopus 로고    scopus 로고
    • FDR and Bayesian multiple comparisons rules
    • Oxford University Press, Oxford, UK, J. Bernardo, M. Bayarri, J. Berger, A. Dawid, D. Heckerman, A. Smith, M. West (Eds.)
    • Müller P., Parmigiani G., Rice K. FDR and Bayesian multiple comparisons rules. Bayesian Statistics 2007, 8. Oxford University Press, Oxford, UK. J. Bernardo, M. Bayarri, J. Berger, A. Dawid, D. Heckerman, A. Smith, M. West (Eds.).
    • (2007) Bayesian Statistics , vol.8
    • Müller, P.1    Parmigiani, G.2    Rice, K.3
  • 40
    • 10844254626 scopus 로고    scopus 로고
    • Optimal sample size for multiple testing: the case of gene expression microarrays
    • Müller P., Parmigiani G., Robert C., Rousseau J. Optimal sample size for multiple testing: the case of gene expression microarrays. J. Am. Stat. Assoc. 2004, 99(468):990-1001.
    • (2004) J. Am. Stat. Assoc. , vol.99 , Issue.468 , pp. 990-1001
    • Müller, P.1    Parmigiani, G.2    Robert, C.3    Rousseau, J.4
  • 41
    • 77950032550 scopus 로고    scopus 로고
    • Markov chain sampling methods for Dirichlet process mixture models
    • Neal R. Markov chain sampling methods for Dirichlet process mixture models. J. Comput. Graph. Stat. 2000, 9(2):249-265.
    • (2000) J. Comput. Graph. Stat. , vol.9 , Issue.2 , pp. 249-265
    • Neal, R.1
  • 42
    • 0042671302 scopus 로고    scopus 로고
    • Variational Bayesian inference for fMRI time series
    • Penny W., Kiebel S., Friston K. Variational Bayesian inference for fMRI time series. NeuroImage 2003, 19(3):727-741.
    • (2003) NeuroImage , vol.19 , Issue.3 , pp. 727-741
    • Penny, W.1    Kiebel, S.2    Friston, K.3
  • 43
    • 16244387927 scopus 로고    scopus 로고
    • Bayesian fMRI time series analysis with spatial priors
    • Penny W., Trujillo-Barreto N., Friston K. Bayesian fMRI time series analysis with spatial priors. NeuroImage 2005, 24(2):350-362.
    • (2005) NeuroImage , vol.24 , Issue.2 , pp. 350-362
    • Penny, W.1    Trujillo-Barreto, N.2    Friston, K.3
  • 45
    • 0005193926 scopus 로고    scopus 로고
    • Exact sampling with coupled Markov chains and applications to statistical mechanics
    • Propp J.G., Wilson D.B. Exact sampling with coupled Markov chains and applications to statistical mechanics. Random Struct. Algoritm. 1996, 9(1):223-252.
    • (1996) Random Struct. Algoritm. , vol.9 , Issue.1 , pp. 223-252
    • Propp, J.G.1    Wilson, D.B.2
  • 46
    • 70349971910 scopus 로고    scopus 로고
    • Bayesian spatiotemporal model of fMRI data
    • Quirós A., Diez R., Gamerman D. Bayesian spatiotemporal model of fMRI data. NeuroImage 2010, 49(1):442-456.
    • (2010) NeuroImage , vol.49 , Issue.1 , pp. 442-456
    • Quirós, A.1    Diez, R.2    Gamerman, D.3
  • 47
    • 84972518066 scopus 로고
    • One long run with diagnostics: implementation strategies for Markov chain Monte Carlo
    • Raftery A., Lewis S. One long run with diagnostics: implementation strategies for Markov chain Monte Carlo. Stat. Sci. 1992, 7(4):493-497.
    • (1992) Stat. Sci. , vol.7 , Issue.4 , pp. 493-497
    • Raftery, A.1    Lewis, S.2
  • 48
    • 79551684968 scopus 로고    scopus 로고
    • Robust extrapolation scheme for fast estimation of 3D Ising field partition functions: application to within-subject fMRI data analysis
    • Risser L., Vincent T., Ciuciu P., Idier J. Robust extrapolation scheme for fast estimation of 3D Ising field partition functions: application to within-subject fMRI data analysis. Med. Image Comput. Comput. Assist. Interv. 2009, 12(Pt 1):975-983.
    • (2009) Med. Image Comput. Comput. Assist. Interv. , vol.12 , Issue.PART 1 , pp. 975-983
    • Risser, L.1    Vincent, T.2    Ciuciu, P.3    Idier, J.4
  • 50
    • 84870044891 scopus 로고    scopus 로고
    • Variational Bayesian learning of sparse representations and its application in functional neuroimaging. Machine learning and interpretation in neuroimaging
    • Roussos E., Roberts S., Daubechies I. Variational Bayesian learning of sparse representations and its application in functional neuroimaging. Machine learning and interpretation in neuroimaging. Lect. Notes Comput. Sci 2012, 7263:218-225.
    • (2012) Lect. Notes Comput. Sci , vol.7263 , pp. 218-225
    • Roussos, E.1    Roberts, S.2    Daubechies, I.3
  • 51
    • 84866150436 scopus 로고    scopus 로고
    • Bayesian hierarchical multi-subject multiscale analysis of functional MRI data
    • Sanyal N., Ferreira M. Bayesian hierarchical multi-subject multiscale analysis of functional MRI data. NeuroImage 2012, 63(3):1519-1531.
    • (2012) NeuroImage , vol.63 , Issue.3 , pp. 1519-1531
    • Sanyal, N.1    Ferreira, M.2
  • 52
    • 82955228156 scopus 로고    scopus 로고
    • Variable selection for nonparametric Gaussian process priors: models and computational strategies
    • Savitsky T., Vannucci M., Sha N. Variable selection for nonparametric Gaussian process priors: models and computational strategies. Stat. Sci. 2011, 26(1):130-149.
    • (2011) Stat. Sci. , vol.26 , Issue.1 , pp. 130-149
    • Savitsky, T.1    Vannucci, M.2    Sha, N.3
  • 55
    • 34249029761 scopus 로고    scopus 로고
    • Spatial Bayesian variable selection with application to functional magnetic resonance imaging
    • Smith M., Fahrmeir L. Spatial Bayesian variable selection with application to functional magnetic resonance imaging. J. Am. Stat. Assoc. 2007, 102(478):417-431.
    • (2007) J. Am. Stat. Assoc. , vol.102 , Issue.478 , pp. 417-431
    • Smith, M.1    Fahrmeir, L.2
  • 56
    • 0034354410 scopus 로고    scopus 로고
    • Dealing with label switching in mixture models
    • Stephens M. Dealing with label switching in mixture models. J. R. Stat. Soc. Ser. B (Stat Methodol.) 2000, 62(4):795-809.
    • (2000) J. R. Stat. Soc. Ser. B (Stat Methodol.) , vol.62 , Issue.4 , pp. 795-809
    • Stephens, M.1
  • 57
    • 80053590625 scopus 로고    scopus 로고
    • Incorporating biological information into linear models: a Bayesian approach to the selection of pathways and genes
    • Stingo F., Chen Y., Tadesse M., Vannucci M. Incorporating biological information into linear models: a Bayesian approach to the selection of pathways and genes. Ann. Appl. Stat. 2011, 5(3):1978-2002.
    • (2011) Ann. Appl. Stat. , vol.5 , Issue.3 , pp. 1978-2002
    • Stingo, F.1    Chen, Y.2    Tadesse, M.3    Vannucci, M.4
  • 58
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles-a knowledge reuse framework for combining multiple partitions
    • Strehl A., Ghosh J. Cluster ensembles-a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 2002, 3:583-617.
    • (2002) J. Mach. Learn. Res. , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 59
    • 84858382394 scopus 로고    scopus 로고
    • Bayesian wavelet-based curve classification via discriminant analysis with Markov random tree priors
    • Stingo F., Vannucci M., Downey G. Bayesian wavelet-based curve classification via discriminant analysis with Markov random tree priors. Stat. Sin. 2012, 22(2):465-488.
    • (2012) Stat. Sin. , vol.22 , Issue.2 , pp. 465-488
    • Stingo, F.1    Vannucci, M.2    Downey, G.3
  • 60
    • 20444465712 scopus 로고    scopus 로고
    • Bayesian variable selection in clustering high-dimensional data
    • Tadesse M., Sha N., Vannucci M. Bayesian variable selection in clustering high-dimensional data. J. Am. Stat. Assoc. 2005, 100(470):602-617.
    • (2005) J. Am. Stat. Assoc. , vol.100 , Issue.470 , pp. 602-617
    • Tadesse, M.1    Sha, N.2    Vannucci, M.3
  • 61
    • 0026679673 scopus 로고
    • Correlation structure of the discrete wavelet coefficients of fractional Brownian motion
    • Tewfik A., Kim M. Correlation structure of the discrete wavelet coefficients of fractional Brownian motion. IEEE Trans. Inf. Theory 1992, 38(2):904-909.
    • (1992) IEEE Trans. Inf. Theory , vol.38 , Issue.2 , pp. 904-909
    • Tewfik, A.1    Kim, M.2
  • 63
    • 0029741090 scopus 로고    scopus 로고
    • Attentional modulation of visual motion processing in cortical areas MT and MST
    • Treue S., Maunsell J. Attentional modulation of visual motion processing in cortical areas MT and MST. Nature 1996, 382:539-541.
    • (1996) Nature , vol.382 , pp. 539-541
    • Treue, S.1    Maunsell, J.2
  • 65
    • 75249099795 scopus 로고    scopus 로고
    • Efficient Bayesian multivariate fMRI analysis using a sparsifying spatio-temporal prior
    • van Gerven M.A.J., Cseke B., Heskes T. Efficient Bayesian multivariate fMRI analysis using a sparsifying spatio-temporal prior. NeuroImage 2010, 50(1):150-161.
    • (2010) NeuroImage , vol.50 , Issue.1 , pp. 150-161
    • van Gerven, M.A.J.1    Cseke, B.2    Heskes, T.3
  • 66
    • 0033478457 scopus 로고    scopus 로고
    • Covariance structure of wavelet coefficients: theory and models in a Bayesian perspective
    • Vannucci M., Corradi F. Covariance structure of wavelet coefficients: theory and models in a Bayesian perspective. J. R. Stat. Soc. Ser. B (Stat Methodol.) 1999, 61(4):971-986.
    • (1999) J. R. Stat. Soc. Ser. B (Stat Methodol.) , vol.61 , Issue.4 , pp. 971-986
    • Vannucci, M.1    Corradi, F.2
  • 67
    • 77950391073 scopus 로고    scopus 로고
    • Spatially adaptive mixture modeling for analysis of fMRI time series
    • Vincent T., Risser L., Ciuciu P. Spatially adaptive mixture modeling for analysis of fMRI time series. IEEE Trans. Med. Imaging 2010, 29(4):1059-1074.
    • (2010) IEEE Trans. Med. Imaging , vol.29 , Issue.4 , pp. 1059-1074
    • Vincent, T.1    Risser, L.2    Ciuciu, P.3
  • 69
    • 0026829738 scopus 로고
    • Estimation of fractal signals from noisy measurements using wavelets
    • Wornell G., Oppenheim A. Estimation of fractal signals from noisy measurements using wavelets. IEEE Trans. Signal Process. 1992, 40(3):611-623.
    • (1992) IEEE Trans. Signal Process. , vol.40 , Issue.3 , pp. 611-623
    • Wornell, G.1    Oppenheim, A.2
  • 71
    • 0030733807 scopus 로고    scopus 로고
    • Empirical analyses of BOLD fMRI statistics I
    • Zarahn E., Aguirre G., D'Esposito M. Empirical analyses of BOLD fMRI statistics I. NeuroImage 1997, 5(3):179-197.
    • (1997) NeuroImage , vol.5 , Issue.3 , pp. 179-197
    • Zarahn, E.1    Aguirre, G.2    D'Esposito, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.