메뉴 건너뛰기




Volumn 37, Issue 1, 2015, Pages 34-45

Multi-tasking of biosynthetic and energetic functions of glycolysis explained by supply and demand logic

Author keywords

Design principles; Energy metabolism; Glycolysis; Regulation; Supply and demand; Systems biology

Indexed keywords

6 PHOSPHOFRUCTOKINASE; ADENOSINE TRIPHOSPHATE; FRUCTOSE 2,6 BISPHOSPHATE;

EID: 84919430359     PISSN: 02659247     EISSN: 15211878     Source Type: Journal    
DOI: 10.1002/bies.201400108     Document Type: Article
Times cited : (26)

References (86)
  • 1
    • 84878848636 scopus 로고    scopus 로고
    • Advanced biofuel production by the yeast Saccharomyces cerevisiae
    • Buijs NA, Siewers V, Nielsen J. 2013. Advanced biofuel production by the yeast Saccharomyces cerevisiae. Curr Opin Chem Biol 17: 480-8.
    • (2013) Curr Opin Chem Biol , vol.17 , pp. 480-488
    • Buijs, N.A.1    Siewers, V.2    Nielsen, J.3
  • 2
    • 84872450790 scopus 로고    scopus 로고
    • Engineering a cyanobacterium as the catalyst for the photosynthetic conversion of CO2 to 1,2-propanediol
    • Li H, Liao JC. 2013. Engineering a cyanobacterium as the catalyst for the photosynthetic conversion of CO2 to 1, 2-propanediol. Microb Cell Fact 12: 4.
    • (2013) Microb Cell Fact , vol.12 , pp. 4
    • Li, H.1    Liao, J.C.2
  • 3
    • 84886947479 scopus 로고    scopus 로고
    • Synthetic non-oxidative glycolysis enables complete carbon conservation
    • Bogorad IW, Lin T-S, Liao JC. 2013. Synthetic non-oxidative glycolysis enables complete carbon conservation. Nature 502: 693-7.
    • (2013) Nature , vol.502 , pp. 693-697
    • Bogorad, I.W.1    Lin, T.-S.2    Liao, J.C.3
  • 4
    • 66249108601 scopus 로고    scopus 로고
    • Understanding the Warburg effect: the metabolic requirements of cell proliferation
    • Vander Heiden MG, Cantley LC, Thompson CB. 2009. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324: 1029-33.
    • (2009) Science , vol.324 , pp. 1029-1033
    • Vander Heiden, M.G.1    Cantley, L.C.2    Thompson, C.B.3
  • 5
    • 84875890762 scopus 로고    scopus 로고
    • Targeting cellular metabolism to improve cancer therapeutics
    • Zhao Y, Butler EB, Tan M. 2013. Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis 4: e532.
    • (2013) Cell Death Dis , vol.4 , pp. e532
    • Zhao, Y.1    Butler, E.B.2    Tan, M.3
  • 7
    • 84870589378 scopus 로고    scopus 로고
    • Combination of glycolysis inhibition with chemotherapy results in an antitumor immune response
    • Bénéteau M, Zunino B, Jacquin MA, Meynet O, et al. 2012. Combination of glycolysis inhibition with chemotherapy results in an antitumor immune response. Proc Natl Acad Sci USA 109: 20071-6.
    • (2012) Proc Natl Acad Sci USA , vol.109 , pp. 20071-20076
    • Bénéteau, M.1    Zunino, B.2    Jacquin, M.A.3    Meynet, O.4
  • 8
    • 84885670616 scopus 로고    scopus 로고
    • Fueling immunity: insights into metabolism and lymphocyte function
    • Pearce EL, Poffenberger MC, Chang C-H, Jones RG. 2013. Fueling immunity: insights into metabolism and lymphocyte function. Science 342: 1242454.
    • (2013) Science , vol.342 , pp. 1242454
    • Pearce, E.L.1    Poffenberger, M.C.2    Chang, C.-H.3    Jones, R.G.4
  • 9
    • 84861422324 scopus 로고    scopus 로고
    • Rethinking glycolysis: on the biochemical logic of metabolic pathways
    • Bar-Even A, Flamholz A, Noor E, Milo R. 2012. Rethinking glycolysis: on the biochemical logic of metabolic pathways. Nat Chem Biol 8: 509-17.
    • (2012) Nat Chem Biol , vol.8 , pp. 509-517
    • Bar-Even, A.1    Flamholz, A.2    Noor, E.3    Milo, R.4
  • 10
    • 84899564808 scopus 로고    scopus 로고
    • Non-enzymatic glycolysis and pentose phosphate pathway-like reactions in a plausible Archean ocean
    • Keller MA, Turchyn AV, Ralser M. 2014. Non-enzymatic glycolysis and pentose phosphate pathway-like reactions in a plausible Archean ocean. Mol Syst Biol 10: 725.
    • (2014) Mol Syst Biol , vol.10 , pp. 725
    • Keller, M.A.1    Turchyn, A.V.2    Ralser, M.3
  • 11
    • 84883049898 scopus 로고    scopus 로고
    • A model of yeast glycolysis based on a consistent kinetic characterisation of all its enzymes
    • Smallbone K, Messiha HL, Carroll KM, Winder CL, et al. 2013. A model of yeast glycolysis based on a consistent kinetic characterisation of all its enzymes. FEBS Lett 587: 2832-41.
    • (2013) FEBS Lett , vol.587 , pp. 2832-2841
    • Smallbone, K.1    Messiha, H.L.2    Carroll, K.M.3    Winder, C.L.4
  • 12
    • 79952284127 scopus 로고    scopus 로고
    • Hallmarks of cancer: the next generation
    • Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: the next generation. Cell 144: 646-74.
    • (2011) Cell , vol.144 , pp. 646-674
    • Hanahan, D.1    Weinberg, R.A.2
  • 13
    • 84897627707 scopus 로고    scopus 로고
    • Lost in transition: start-up of glycolysis yields subpopulations of nongrowing cells
    • Van Heerden JH, Wortel MT, Bruggeman FJ, Heijnen JJ, et al. 2014. Lost in transition: start-up of glycolysis yields subpopulations of nongrowing cells. Science 343: 1245114.
    • (2014) Science , vol.343 , pp. 1245114
    • Van Heerden, J.H.1    Wortel, M.T.2    Bruggeman, F.J.3    Heijnen, J.J.4
  • 14
    • 44849104320 scopus 로고    scopus 로고
    • The early steps of glucose signalling in yeast
    • Gancedo JM. 2008. The early steps of glucose signalling in yeast. FEMS Microbiol Rev 32: 673-704.
    • (2008) FEMS Microbiol Rev , vol.32 , pp. 673-704
    • Gancedo, J.M.1
  • 15
    • 0022815674 scopus 로고
    • Effects of null mutations in the hexokinase genes of Saccharomyces cerevisiae on catabolite repression
    • Ma H, Botstein D. 1986. Effects of null mutations in the hexokinase genes of Saccharomyces cerevisiae on catabolite repression. Mol Cell Biol 6: 4046-52.
    • (1986) Mol Cell Biol , vol.6 , pp. 4046-4052
    • Ma, H.1    Botstein, D.2
  • 16
    • 84877296949 scopus 로고    scopus 로고
    • Systematic identification of allosteric protein-metabolite interactions that control enzyme activity in vivo
    • Link H, Kochanowski K, Sauer U. 2013. Systematic identification of allosteric protein-metabolite interactions that control enzyme activity in vivo. Nat Biotechnol 31: 357-61.
    • (2013) Nat Biotechnol , vol.31 , pp. 357-361
    • Link, H.1    Kochanowski, K.2    Sauer, U.3
  • 17
    • 77956501842 scopus 로고    scopus 로고
    • Central carbon metabolism as a minimal biochemical walk between precursors for biomass and energy
    • Noor E, Eden E, Milo R, Alon U. 2010. Central carbon metabolism as a minimal biochemical walk between precursors for biomass and energy. Mol Cell 39: 809-20.
    • (2010) Mol Cell , vol.39 , pp. 809-820
    • Noor, E.1    Eden, E.2    Milo, R.3    Alon, U.4
  • 18
    • 84884659937 scopus 로고    scopus 로고
    • Steady-state metabolite concentrations reflect a balance between maximizing enzyme efficiency and minimizing total metabolite load
    • Tepper N, Noor E, Amador-Noguez D, Haraldsdóttir HS, et al. 2013. Steady-state metabolite concentrations reflect a balance between maximizing enzyme efficiency and minimizing total metabolite load. PLoS One 8: e75370.
    • (2013) PLoS One , vol.8 , pp. e75370
    • Tepper, N.1    Noor, E.2    Amador-Noguez, D.3    Haraldsdóttir, H.S.4
  • 20
    • 0034733820 scopus 로고    scopus 로고
    • Regulating the cellular economy of supply and demand
    • Hofmeyr JS, Cornish-Bowden A. 2000. Regulating the cellular economy of supply and demand. FEBS Lett 476: 47-51.
    • (2000) FEBS Lett , vol.476 , pp. 47-51
    • Hofmeyr, J.S.1    Cornish-Bowden, A.2
  • 22
    • 84859471521 scopus 로고    scopus 로고
    • Regulatory architecture determines optimal regulation of gene expression in metabolic pathways
    • Chubukov V, Zuleta IA, Li H. 2012. Regulatory architecture determines optimal regulation of gene expression in metabolic pathways. Proc Natl Acad Sci USA 109: 5127-32.
    • (2012) Proc Natl Acad Sci USA , vol.109 , pp. 5127-5132
    • Chubukov, V.1    Zuleta, I.A.2    Li, H.3
  • 23
    • 80053090675 scopus 로고    scopus 로고
    • Supply-demand analysis a framework for exploring the regulatory design of metabolism
    • Hofmeyr J-HS, Rohwer JM. 2011. Supply-demand analysis a framework for exploring the regulatory design of metabolism. Methods Enzymol 500: 533-54.
    • (2011) Methods Enzymol , vol.500 , pp. 533-554
    • Hofmeyr, J.-H.1    Rohwer, J.M.2
  • 24
    • 77949447610 scopus 로고    scopus 로고
    • Transcriptional regulation of respiration in yeast metabolizing differently repressive carbon substrates
    • Fendt S-M, Sauer U. 2010. Transcriptional regulation of respiration in yeast metabolizing differently repressive carbon substrates. BMC Syst Biol 4: 12.
    • (2010) BMC Syst Biol , vol.4 , pp. 12
    • Fendt, S.-M.1    Sauer, U.2
  • 25
    • 35648972123 scopus 로고    scopus 로고
    • The fluxes through glycolytic enzymes in Saccharomyces cerevisiae are predominantly regulated at posttranscriptional levels
    • Daran-Lapujade P, Rossell S, van Gulik WM, Luttik MAH, et al. 2007. The fluxes through glycolytic enzymes in Saccharomyces cerevisiae are predominantly regulated at posttranscriptional levels. Proc Natl Acad Sci USA 104: 15753-8.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 15753-15758
    • Daran-Lapujade, P.1    Rossell, S.2    van Gulik, W.M.3    Luttik, M.A.H.4
  • 26
    • 1542350073 scopus 로고    scopus 로고
    • Role of transcriptional regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae. A chemostat culture study
    • Daran-Lapujade P, Jansen MLA, Daran J-M, van Gulik W, et al. 2004. Role of transcriptional regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae. A chemostat culture study. J Biol Chem 279: 9125-38.
    • (2004) J Biol Chem , vol.279 , pp. 9125-9138
    • Daran-Lapujade, P.1    Jansen, M.L.A.2    Daran, J.-M.3    van Gulik, W.4
  • 27
    • 0038487266 scopus 로고    scopus 로고
    • Transcriptional, translational and metabolic regulation of glycolysis in Lactococcus lactis subsp. cremoris MG 1363 grown in continuous acidic cultures
    • Even S, Lindley ND, Cocaign-Bousquet M. 2003. Transcriptional, translational and metabolic regulation of glycolysis in Lactococcus lactis subsp. cremoris MG 1363 grown in continuous acidic cultures. Microbiology 149: 1935-44.
    • (2003) Microbiology , vol.149 , pp. 1935-1944
    • Even, S.1    Lindley, N.D.2    Cocaign-Bousquet, M.3
  • 28
    • 84889643157 scopus 로고    scopus 로고
    • Transcriptional regulation is insufficient to explain substrate-induced flux changes in Bacillus subtilis
    • Chubukov V, Uhr M, Le Chat L, Kleijn RJ, et al. 2013. Transcriptional regulation is insufficient to explain substrate-induced flux changes in Bacillus subtilis. Mol Syst Biol 9: 709.
    • (2013) Mol Syst Biol , vol.9 , pp. 709
    • Chubukov, V.1    Uhr, M.2    Le Chat, L.3    Kleijn, R.J.4
  • 29
    • 40749099894 scopus 로고    scopus 로고
    • Pyruvate kinase M2 is a phosphotyrosine-binding protein
    • Christofk HR, Vander Heiden MG, Wu N, Asara JM, et al. 2008. Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452: 181-6.
    • (2008) Nature , vol.452 , pp. 181-186
    • Christofk, H.R.1    Vander Heiden, M.G.2    Wu, N.3    Asara, J.M.4
  • 30
    • 84908208471 scopus 로고    scopus 로고
    • Heterogeneity of glycolysis in cancers and therapeutic opportunities
    • in press
    • Warmoes MO, Locasale JW. 2014. Heterogeneity of glycolysis in cancers and therapeutic opportunities. Biochem Pharmocol, in press, doi: 10.1016/j.bcp.2014.07.019
    • (2014) Biochem Pharmocol
    • Warmoes, M.O.1    Locasale, J.W.2
  • 31
    • 84876058530 scopus 로고    scopus 로고
    • M2 pyruvate kinase provides a mechanism for nutrient sensing and regulation of cell proliferation
    • Morgan HP, O'Reilly FJ, Wear MA, O'Neill JR, et al. 2013. M2 pyruvate kinase provides a mechanism for nutrient sensing and regulation of cell proliferation. Proc Natl Acad Sci USA 110: 5881-6.
    • (2013) Proc Natl Acad Sci USA , vol.110 , pp. 5881-5886
    • Morgan, H.P.1    O'Reilly, F.J.2    Wear, M.A.3    O'Neill, J.R.4
  • 32
    • 40749163248 scopus 로고    scopus 로고
    • The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth
    • Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, et al. 2008. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452: 230-3.
    • (2008) Nature , vol.452 , pp. 230-233
    • Christofk, H.R.1    Vander Heiden, M.G.2    Harris, M.H.3    Ramanathan, A.4
  • 33
    • 84905097406 scopus 로고    scopus 로고
    • Pyruvate kinase M2 and cancer: an updated assessment
    • Iqbal MA, Gupta V, Gopinath P, Mazurek S, et al. 2014. Pyruvate kinase M2 and cancer: an updated assessment. FEBS Lett 588: 2685-92.
    • (2014) FEBS Lett , vol.588 , pp. 2685-2692
    • Iqbal, M.A.1    Gupta, V.2    Gopinath, P.3    Mazurek, S.4
  • 34
    • 80052751477 scopus 로고    scopus 로고
    • Pyruvate kinase triggers a metabolic feedback loop that controls redox metabolism in respiring cells
    • Grüning N-M, Rinnerthaler M, Bluemlein K, Mülleder M, et al. 2011. Pyruvate kinase triggers a metabolic feedback loop that controls redox metabolism in respiring cells. Cell Metab 14: 415-27.
    • (2011) Cell Metab , vol.14 , pp. 415-427
    • Grüning, N.-M.1    Rinnerthaler, M.2    Bluemlein, K.3    Mülleder, M.4
  • 35
    • 0030971548 scopus 로고    scopus 로고
    • Characterization of a glucose-repressed pyruvate kinase (Pyk2p) in Saccharomyces cerevisiae that is catalytically insensitive to fructose-1,6-bisphosphate
    • Boles E, Schulte F, Miosga T, Freidel K, et al. 1997. Characterization of a glucose-repressed pyruvate kinase (Pyk2p) in Saccharomyces cerevisiae that is catalytically insensitive to fructose-1, 6-bisphosphate. J Bacteriol 179: 2987-93.
    • (1997) J Bacteriol , vol.179 , pp. 2987-2993
    • Boles, E.1    Schulte, F.2    Miosga, T.3    Freidel, K.4
  • 36
    • 0035132047 scopus 로고    scopus 로고
    • Pyruvate kinase (Pyk1) levels influence both the rate and direction of carbon flux in yeast under fermentative conditions
    • Pearce AK, Crimmins K, Groussac E, Hewlins MJ, et al. 2001. Pyruvate kinase (Pyk1) levels influence both the rate and direction of carbon flux in yeast under fermentative conditions. Microbiology 147: 391-401.
    • (2001) Microbiology , vol.147 , pp. 391-401
    • Pearce, A.K.1    Crimmins, K.2    Groussac, E.3    Hewlins, M.J.4
  • 37
    • 37549072681 scopus 로고    scopus 로고
    • Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress
    • Ralser M, Wamelink MM, Kowald A, Gerisch B, et al. 2007. Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress. J Biol 6: 10.
    • (2007) J Biol , vol.6 , pp. 10
    • Ralser, M.1    Wamelink, M.M.2    Kowald, A.3    Gerisch, B.4
  • 38
    • 84901045058 scopus 로고    scopus 로고
    • Inhibition of triosephosphate isomerase by phosphoenolpyruvate in the feedback-regulation of glycolysis
    • Grüning NN-M, Du D, Keller MA, Luisi BF, et al. 2014. Inhibition of triosephosphate isomerase by phosphoenolpyruvate in the feedback-regulation of glycolysis. Open Biol 4: 130232.
    • (2014) Open Biol , vol.4 , pp. 130232
    • Grüning, N.-M.1    Du, D.2    Keller, M.A.3    Luisi, B.F.4
  • 39
    • 84919412893 scopus 로고    scopus 로고
    • Enzyme characterisation and kinetic modelling of the pentose phosphate pathway in yeast
    • e146v4
    • Messiha HL, Kent E, Malys N, Carroll KM, et al. 2014. Enzyme characterisation and kinetic modelling of the pentose phosphate pathway in yeast. Peer J Prepr 2: e146v4.
    • (2014) Peer J Prepr , vol.2
    • Messiha, H.L.1    Kent, E.2    Malys, N.3    Carroll, K.M.4
  • 40
    • 0034213671 scopus 로고    scopus 로고
    • Simultaneous genomic overexpression of seven glycolytic enzymes in the yeast Saccharomyces cerevisiae
    • Hauf J, Zimmermann FK, Müller S. 2000. Simultaneous genomic overexpression of seven glycolytic enzymes in the yeast Saccharomyces cerevisiae. Enzyme Microb Technol 26: 688-98.
    • (2000) Enzyme Microb Technol , vol.26 , pp. 688-698
    • Hauf, J.1    Zimmermann, F.K.2    Müller, S.3
  • 41
    • 0036038886 scopus 로고    scopus 로고
    • Schemes of flux control in a model of Saccharomyces cerevisiae glycolysis
    • Pritchard L, Kell DB. 2002. Schemes of flux control in a model of Saccharomyces cerevisiae glycolysis. Eur J Biochem 269: 3894-904.
    • (2002) Eur J Biochem , vol.269 , pp. 3894-3904
    • Pritchard, L.1    Kell, D.B.2
  • 42
    • 0033857139 scopus 로고    scopus 로고
    • Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry
    • Teusink B, Passarge J, Reijenga CA, Esgalhado E, et al. 2000. Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur J Biochem 267: 5313-29.
    • (2000) Eur J Biochem , vol.267 , pp. 5313-5329
    • Teusink, B.1    Passarge, J.2    Reijenga, C.A.3    Esgalhado, E.4
  • 43
    • 0031909833 scopus 로고    scopus 로고
    • Intracellular glucose concentration in derepressed yeast cells consuming glucose is high enough to reduce the glucose transport rate by 50%
    • Teusink B, Diderich JA, Westerhoff HV, van Dam K, et al. 1998. Intracellular glucose concentration in derepressed yeast cells consuming glucose is high enough to reduce the glucose transport rate by 50%. J Bacteriol 180: 556-62.
    • (1998) J Bacteriol , vol.180 , pp. 556-562
    • Teusink, B.1    Diderich, J.A.2    Westerhoff, H.V.3    van Dam, K.4
  • 44
    • 0033371639 scopus 로고    scopus 로고
    • Strategies to determine the extent of control exerted by glucose transport on glycolytic flux in the yeast Saccharomyces bayanus
    • Diderich JA, Teusink B, Valkier J, Anjos J, et al. 1999. Strategies to determine the extent of control exerted by glucose transport on glycolytic flux in the yeast Saccharomyces bayanus. Microbiology 145: 3447-54.
    • (1999) Microbiology , vol.145 , pp. 3447-3454
    • Diderich, J.A.1    Teusink, B.2    Valkier, J.3    Anjos, J.4
  • 45
    • 0035142984 scopus 로고    scopus 로고
    • Control of glycolytic dynamics by hexose transport in Saccharomyces cerevisiae
    • Reijenga KA, Snoep JL, Diderich JA, van Verseveld HW, et al. 2001. Control of glycolytic dynamics by hexose transport in Saccharomyces cerevisiae. Biophys J 80: 626-34.
    • (2001) Biophys J , vol.80 , pp. 626-634
    • Reijenga, K.A.1    Snoep, J.L.2    Diderich, J.A.3    van Verseveld, H.W.4
  • 46
    • 4644219864 scopus 로고    scopus 로고
    • Role of hexose transport in control of glycolytic flux in Saccharomyces cerevisiae
    • Elbing K, Larsson C, Bill RM, Albers E, et al. 2004. Role of hexose transport in control of glycolytic flux in Saccharomyces cerevisiae. Appl Environ Microbiol 70: 5323-30.
    • (2004) Appl Environ Microbiol , vol.70 , pp. 5323-5330
    • Elbing, K.1    Larsson, C.2    Bill, R.M.3    Albers, E.4
  • 47
    • 72449171935 scopus 로고    scopus 로고
    • Growth landscape formed by perception and import of glucose in yeast
    • Youk H, van Oudenaarden A. 2009. Growth landscape formed by perception and import of glucose in yeast. Nature 462: 875-9.
    • (2009) Nature , vol.462 , pp. 875-879
    • Youk, H.1    van Oudenaarden, A.2
  • 48
    • 0030722640 scopus 로고    scopus 로고
    • Glycolytic flux is conditionally correlated with ATP concentration in Saccharomyces cerevisiae: a chemostat study under carbon- or nitrogen-limiting conditions
    • Larsson C, Nilsson A, Blomberg A, Gustafsson L. 1997. Glycolytic flux is conditionally correlated with ATP concentration in Saccharomyces cerevisiae: a chemostat study under carbon- or nitrogen-limiting conditions. J Bacteriol 179: 7243-50.
    • (1997) J Bacteriol , vol.179 , pp. 7243-7250
    • Larsson, C.1    Nilsson, A.2    Blomberg, A.3    Gustafsson, L.4
  • 49
    • 0036037629 scopus 로고    scopus 로고
    • The extent to which ATP demand controls the glycolytic flux depends strongly on the organism and conditions for growth
    • Koebmann BJ, Westerhoff HV, Snoep JL, Solem C, et al. 2002. The extent to which ATP demand controls the glycolytic flux depends strongly on the organism and conditions for growth. Mol Biol Rep 29: 41-5.
    • (2002) Mol Biol Rep , vol.29 , pp. 41-45
    • Koebmann, B.J.1    Westerhoff, H.V.2    Snoep, J.L.3    Solem, C.4
  • 50
    • 0036302723 scopus 로고    scopus 로고
    • The glycolytic flux in Escherichia coli is controlled by the demand for ATP
    • Koebmann B, Westerhoff H. 2002. The glycolytic flux in Escherichia coli is controlled by the demand for ATP. J Bacteriol 184: 3909-16.
    • (2002) J Bacteriol , vol.184 , pp. 3909-3916
    • Koebmann, B.1    Westerhoff, H.2
  • 51
    • 84883052726 scopus 로고    scopus 로고
    • A new regulatory principle for in vivo biochemistry: pleiotropic low affinity regulation by the adenine nucleotides--illustrated for the glycolytic enzymes of Saccharomyces cerevisiae
    • Mensonides FIC, Bakker BM, Cremazy F, Messiha HL, et al. 2013. A new regulatory principle for in vivo biochemistry: pleiotropic low affinity regulation by the adenine nucleotides--illustrated for the glycolytic enzymes of Saccharomyces cerevisiae. FEBS Lett 587: 2860-7.
    • (2013) FEBS Lett , vol.587 , pp. 2860-2867
    • Mensonides, F.I.C.1    Bakker, B.M.2    Cremazy, F.3    Messiha, H.L.4
  • 52
    • 0343457972 scopus 로고    scopus 로고
    • The importance of ATP as a regulator of glycolytic flux in Saccharomyces cerevisiae
    • Larsson C, Påhlman I, Gustafsson L. 2000. The importance of ATP as a regulator of glycolytic flux in Saccharomyces cerevisiae. Yeast 16: 797-809.
    • (2000) Yeast , vol.16 , pp. 797-809
    • Larsson, C.1    Påhlman, I.2    Gustafsson, L.3
  • 53
    • 0038778727 scopus 로고    scopus 로고
    • Mutant studies of phosphofructo-2-kinases do not reveal an essential role of fructose-2,6-bisphosphate in the regulation of carbon fluxes in yeast cells
    • Müller S, Zimmermann FK, Boles E. 1997. Mutant studies of phosphofructo-2-kinases do not reveal an essential role of fructose-2, 6-bisphosphate in the regulation of carbon fluxes in yeast cells. Microbiology 143: 3055-61.
    • (1997) Microbiology , vol.143 , pp. 3055-3061
    • Müller, S.1    Zimmermann, F.K.2    Boles, E.3
  • 54
    • 79955137362 scopus 로고    scopus 로고
    • An in vivo data-driven framework for classification and quantification of enzyme kinetics and determination of apparent thermodynamic data
    • Canelas AB, Ras C, ten Pierick A, van Gulik WM, et al. 2011. An in vivo data-driven framework for classification and quantification of enzyme kinetics and determination of apparent thermodynamic data. Metab Eng 13: 294-306.
    • (2011) Metab Eng , vol.13 , pp. 294-306
    • Canelas, A.B.1    Ras, C.2    ten Pierick, A.3    van Gulik, W.M.4
  • 55
    • 75149170173 scopus 로고    scopus 로고
    • Silencing of glycolysis in muscle: experimental observation and numerical analysis
    • Schmitz JPJ, van Riel NAW, Nicolay K, Hilbers PAJ, et al. 2010. Silencing of glycolysis in muscle: experimental observation and numerical analysis. Exp Physiol 95: 380-97.
    • (2010) Exp Physiol , vol.95 , pp. 380-397
    • Schmitz, J.P.J.1    van Riel, N.A.W.2    Nicolay, K.3    Hilbers, P.A.J.4
  • 56
    • 0742304300 scopus 로고    scopus 로고
    • The importance of a functional trehalose biosynthetic pathway for the life of yeasts and fungi
    • Gancedo C, Flores C. 2004. The importance of a functional trehalose biosynthetic pathway for the life of yeasts and fungi. FEMS Yeast Res 4: 351-9.
    • (2004) FEMS Yeast Res , vol.4 , pp. 351-359
    • Gancedo, C.1    Flores, C.2
  • 57
    • 49649099805 scopus 로고    scopus 로고
    • Glucokinase and molecular aspects of liver glycogen metabolism
    • Agius L. 2008. Glucokinase and molecular aspects of liver glycogen metabolism. Biochem J 414: 1-18.
    • (2008) Biochem J , vol.414 , pp. 1-18
    • Agius, L.1
  • 58
    • 33748060829 scopus 로고    scopus 로고
    • Roles for fructose-2,6-bisphosphate in the control of fuel metabolism: beyond its allosteric effects on glycolytic and gluconeogenic enzymes
    • Wu C, Khan SA, Peng L-J, Lange AJ. 2006. Roles for fructose-2, 6-bisphosphate in the control of fuel metabolism: beyond its allosteric effects on glycolytic and gluconeogenic enzymes. Adv Enzyme Regul 46: 72-88.
    • (2006) Adv Enzyme Regul , vol.46 , pp. 72-88
    • Wu, C.1    Khan, S.A.2    Peng, L.-J.3    Lange, A.J.4
  • 59
    • 0035160371 scopus 로고    scopus 로고
    • A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations
    • Raamsdonk LM, Teusink B, Broadhurst D, Zhang N, et al. 2001. A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat Biotechnol 19: 45-50.
    • (2001) Nat Biotechnol , vol.19 , pp. 45-50
    • Raamsdonk, L.M.1    Teusink, B.2    Broadhurst, D.3    Zhang, N.4
  • 60
    • 0029991328 scopus 로고    scopus 로고
    • Cloning of a second gene encoding 6-phosphofructo-2-kinase in yeast, and characterization of mutant strains without fructose-2,6-bisphosphate
    • Boles EM, Göhlmann HWH, Zimmermann FK. 1996. Cloning of a second gene encoding 6-phosphofructo-2-kinase in yeast, and characterization of mutant strains without fructose-2, 6-bisphosphate. Mol Microbiol 20: 65-76.
    • (1996) Mol Microbiol , vol.20 , pp. 65-76
    • Boles, E.M.1    Göhlmann, H.W.H.2    Zimmermann, F.K.3
  • 61
    • 0029874904 scopus 로고    scopus 로고
    • The regulatory characteristics of yeast fructose-1,6-bisphosphatase confer only a small selective advantage
    • Navas MA, Gancedo JM. 1996. The regulatory characteristics of yeast fructose-1, 6-bisphosphatase confer only a small selective advantage. J Bacteriol 178: 1809-12.
    • (1996) J Bacteriol , vol.178 , pp. 1809-1812
    • Navas, M.A.1    Gancedo, J.M.2
  • 62
    • 0035850857 scopus 로고    scopus 로고
    • Elements from the cAMP signaling pathway are involved in the control of expression of the yeast gluconeogenic gene FBP1
    • Zaragoza O, Gancedo JM. 2001. Elements from the cAMP signaling pathway are involved in the control of expression of the yeast gluconeogenic gene FBP1. FEBS Lett 506: 262-6.
    • (2001) FEBS Lett , vol.506 , pp. 262-266
    • Zaragoza, O.1    Gancedo, J.M.2
  • 63
    • 84872389908 scopus 로고    scopus 로고
    • Combined in vivo and in silico investigations of activation of glycolysis in contracting skeletal muscle
    • Schmitz JPJ, Groenendaal W, Wessels B, Wiseman RW, et al. 2013. Combined in vivo and in silico investigations of activation of glycolysis in contracting skeletal muscle. Am J Physiol Cell Physiol 304: C180-93.
    • (2013) Am J Physiol Cell Physiol , vol.304 , pp. C180-C193
    • Schmitz, J.P.J.1    Groenendaal, W.2    Wessels, B.3    Wiseman, R.W.4
  • 64
    • 0029915942 scopus 로고    scopus 로고
    • Control of glycolysis in vertebrate skeletal muscle during exercise
    • Krause U, Wegener G. 1996. Control of glycolysis in vertebrate skeletal muscle during exercise. Am J Physiol Regul Integr Comp Physiol 270: R821-9.
    • (1996) Am J Physiol Regul Integr Comp Physiol , vol.270 , pp. R821-R829
    • Krause, U.1    Wegener, G.2
  • 65
    • 33748451150 scopus 로고    scopus 로고
    • Perturbation of glucose flux in the liver by decreasing F26P2 levels causes hepatic insulin resistance and hyperglycemia
    • Wu C, Khan SA, Peng L-J, Li H, et al. 2006. Perturbation of glucose flux in the liver by decreasing F26P2 levels causes hepatic insulin resistance and hyperglycemia. Am J Physiol Endocrinol Metab 291: E536-43.
    • (2006) Am J Physiol Endocrinol Metab , vol.291 , pp. E536-E543
    • Wu, C.1    Khan, S.A.2    Peng, L.-J.3    Li, H.4
  • 68
    • 77949385752 scopus 로고    scopus 로고
    • Bacterial adaptation through distributed sensing of metabolic fluxes
    • Kotte O, Zaugg JB, Heinemann M. 2010. Bacterial adaptation through distributed sensing of metabolic fluxes. Mol Syst Biol 6: 355.
    • (2010) Mol Syst Biol , vol.6 , pp. 355
    • Kotte, O.1    Zaugg, J.B.2    Heinemann, M.3
  • 69
    • 84857051751 scopus 로고    scopus 로고
    • A flux-sensing mechanism could regulate the switch between respiration and fermentation
    • Huberts DHEW, Niebel B, Heinemann M. 2012. A flux-sensing mechanism could regulate the switch between respiration and fermentation. FEMS Yeast Res 12: 118-28.
    • (2012) FEMS Yeast Res , vol.12 , pp. 118-128
    • Huberts, D.H.E.W.1    Niebel, B.2    Heinemann, M.3
  • 70
    • 84919412891 scopus 로고    scopus 로고
    • Quantitative determinants of aerobic glycolysis identify flux through the enzyme GAPDH as a limiting step
    • Shestov AA, Liu X, Ser Z, Cluntun AA, et al. 2014. Quantitative determinants of aerobic glycolysis identify flux through the enzyme GAPDH as a limiting step. elife 3: e03342.
    • (2014) elife , vol.3 , pp. e03342
    • Shestov, A.A.1    Liu, X.2    Ser, Z.3    Cluntun, A.A.4
  • 71
    • 55249118618 scopus 로고    scopus 로고
    • Mitochondrial oxidative phosphorylation is regulated by fructose 1,6-bisphosphate. A possible role in Crabtree effect induction
    • Díaz-Ruiz R, Avéret N, Araiza D, Pinson B, et al. 2008. Mitochondrial oxidative phosphorylation is regulated by fructose 1, 6-bisphosphate. A possible role in Crabtree effect induction? J Biol Chem 283: 26948-55.
    • (2008) J Biol Chem , vol.283 , pp. 26948-26955
    • Díaz-Ruiz, R.1    Avéret, N.2    Araiza, D.3    Pinson, B.4
  • 72
    • 0027444619 scopus 로고
    • In vitro binding of the pleiotropic transcriptional regulatory protein, FruR, to the fru, pps, ace, pts and icd operons of Escherichia coli and Salmonella typhimurium
    • Ramseier TM, Nègre D, Cortay JC, Scarabel M, et al. 1993. In vitro binding of the pleiotropic transcriptional regulatory protein, FruR, to the fru, pps, ace, pts and icd operons of Escherichia coli and Salmonella typhimurium. J Mol Biol 234: 28-44.
    • (1993) J Mol Biol , vol.234 , pp. 28-44
    • Ramseier, T.M.1    Nègre, D.2    Cortay, J.C.3    Scarabel, M.4
  • 73
    • 0029835391 scopus 로고    scopus 로고
    • Cra and the control of carbon flux via metabolic pathways
    • Ramseier TM. 1996. Cra and the control of carbon flux via metabolic pathways. Res Microbiol 147: 489-93.
    • (1996) Res Microbiol , vol.147 , pp. 489-493
    • Ramseier, T.M.1
  • 74
    • 0032508638 scopus 로고    scopus 로고
    • Glucose repression in Saccharomyces cerevisiae is related to the glucose concentration rather than the glucose flux
    • Meijer MM, Boonstra J, Verkleij AJ, Verrips CT. 1998. Glucose repression in Saccharomyces cerevisiae is related to the glucose concentration rather than the glucose flux. J Biol Chem 273: 24102-7.
    • (1998) J Biol Chem , vol.273 , pp. 24102-24107
    • Meijer, M.M.1    Boonstra, J.2    Verkleij, A.J.3    Verrips, C.T.4
  • 75
    • 84881493970 scopus 로고    scopus 로고
    • Metabolic phenotypes of Saccharomyces cerevisiae mutants with altered trehalose 6-phosphate dynamics
    • Walther T, Mtimet N, Alkim C, Vax A, et al. 2013. Metabolic phenotypes of Saccharomyces cerevisiae mutants with altered trehalose 6-phosphate dynamics. Biochem J 454: 227-37.
    • (2013) Biochem J , vol.454 , pp. 227-237
    • Walther, T.1    Mtimet, N.2    Alkim, C.3    Vax, A.4
  • 76
    • 84881663369 scopus 로고    scopus 로고
    • Coordination of bacterial proteome with metabolism by cyclic AMP signalling
    • You C, Okano H, Hui S, Zhang Z, et al. 2013. Coordination of bacterial proteome with metabolism by cyclic AMP signalling. Nature 500: 301-6.
    • (2013) Nature , vol.500 , pp. 301-306
    • You, C.1    Okano, H.2    Hui, S.3    Zhang, Z.4
  • 77
    • 84872824182 scopus 로고    scopus 로고
    • Pyruvate kinase is a dosage-dependent regulator of cellular amino acid homeostasis
    • Bluemlein K, Glückmann M, Grüning N-M, Feichtinger R, et al. 2012. Pyruvate kinase is a dosage-dependent regulator of cellular amino acid homeostasis. Oncotarget 3: 1356-69.
    • (2012) Oncotarget , vol.3 , pp. 1356-1369
    • Bluemlein, K.1    Glückmann, M.2    Grüning, N.-M.3    Feichtinger, R.4
  • 78
    • 0028825385 scopus 로고
    • Adenovirus-mediated overexpression of liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase in gluconeogenic rat hepatoma cells. Paradoxical effect on Fru-2,6-P2 levels
    • Argaud D, Lange AJ, Becker TC, Okar DA, et al. 1995. Adenovirus-mediated overexpression of liver 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase in gluconeogenic rat hepatoma cells. Paradoxical effect on Fru-2, 6-P2 levels. J Biol Chem 270: 24229-36.
    • (1995) J Biol Chem , vol.270 , pp. 24229-24236
    • Argaud, D.1    Lange, A.J.2    Becker, T.C.3    Okar, D.A.4
  • 79
    • 84905453325 scopus 로고    scopus 로고
    • 6-Phosphofructo-2-kinase (PFKFB3) promotes cell cycle progression and suppresses apoptosis via Cdk1-mediated phosphorylation of p27
    • Yalcin A, Clem BF, Imbert-Fernandez Y, Ozcan SC, et al. 2014. 6-Phosphofructo-2-kinase (PFKFB3) promotes cell cycle progression and suppresses apoptosis via Cdk1-mediated phosphorylation of p27. Cell Death Dis 5: e1337.
    • (2014) Cell Death Dis , vol.5 , pp. e1337
    • Yalcin, A.1    Clem, B.F.2    Imbert-Fernandez, Y.3    Ozcan, S.C.4
  • 80
    • 84870598190 scopus 로고    scopus 로고
    • ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect
    • Yang W, Zheng Y, Xia Y, Ji H, et al. 2012. ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat Cell Biol 14: 1295-304.
    • (2012) Nat Cell Biol , vol.14 , pp. 1295-1304
    • Yang, W.1    Zheng, Y.2    Xia, Y.3    Ji, H.4
  • 81
    • 0029043852 scopus 로고
    • 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase: a metabolic signaling enzyme
    • Pilkis SJ, Claus TH, Kurland IJ, Lange AJ. 1995. 6-Phosphofructo-2-kinase/fructose-2, 6-bisphosphatase: a metabolic signaling enzyme. Annu Rev Biochem 64: 799-835.
    • (1995) Annu Rev Biochem , vol.64 , pp. 799-835
    • Pilkis, S.J.1    Claus, T.H.2    Kurland, I.J.3    Lange, A.J.4
  • 82
    • 0037376655 scopus 로고    scopus 로고
    • Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell
    • Tyson JJ, Chen KC, Novak B. 2003. Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 15: 221-31.
    • (2003) Curr Opin Cell Biol , vol.15 , pp. 221-231
    • Tyson, J.J.1    Chen, K.C.2    Novak, B.3
  • 84
    • 84869430619 scopus 로고    scopus 로고
    • Regulation of yeast central metabolism by enzyme phosphorylation
    • Oliveira AP, Ludwig C, Picotti P, Kogadeeva M, et al. 2012. Regulation of yeast central metabolism by enzyme phosphorylation. Mol Syst Biol 8: 623.
    • (2012) Mol Syst Biol , vol.8 , pp. 623
    • Oliveira, A.P.1    Ludwig, C.2    Picotti, P.3    Kogadeeva, M.4
  • 85
    • 84903748346 scopus 로고    scopus 로고
    • Acetylation control of cancer cell metabolism
    • Lin R, Zhou X, Huang W, Zhao D, et al. 2014. Acetylation control of cancer cell metabolism. Curr Pharm Des 20: 2627-33.
    • (2014) Curr Pharm Des , vol.20 , pp. 2627-2633
    • Lin, R.1    Zhou, X.2    Huang, W.3    Zhao, D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.