-
1
-
-
84878848636
-
Advanced biofuel production by the yeast Saccharomyces cerevisiae
-
Buijs NA, Siewers V, Nielsen J. 2013. Advanced biofuel production by the yeast Saccharomyces cerevisiae. Curr Opin Chem Biol 17: 480-8.
-
(2013)
Curr Opin Chem Biol
, vol.17
, pp. 480-488
-
-
Buijs, N.A.1
Siewers, V.2
Nielsen, J.3
-
2
-
-
84872450790
-
Engineering a cyanobacterium as the catalyst for the photosynthetic conversion of CO2 to 1,2-propanediol
-
Li H, Liao JC. 2013. Engineering a cyanobacterium as the catalyst for the photosynthetic conversion of CO2 to 1, 2-propanediol. Microb Cell Fact 12: 4.
-
(2013)
Microb Cell Fact
, vol.12
, pp. 4
-
-
Li, H.1
Liao, J.C.2
-
3
-
-
84886947479
-
Synthetic non-oxidative glycolysis enables complete carbon conservation
-
Bogorad IW, Lin T-S, Liao JC. 2013. Synthetic non-oxidative glycolysis enables complete carbon conservation. Nature 502: 693-7.
-
(2013)
Nature
, vol.502
, pp. 693-697
-
-
Bogorad, I.W.1
Lin, T.-S.2
Liao, J.C.3
-
4
-
-
66249108601
-
Understanding the Warburg effect: the metabolic requirements of cell proliferation
-
Vander Heiden MG, Cantley LC, Thompson CB. 2009. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324: 1029-33.
-
(2009)
Science
, vol.324
, pp. 1029-1033
-
-
Vander Heiden, M.G.1
Cantley, L.C.2
Thompson, C.B.3
-
5
-
-
84875890762
-
Targeting cellular metabolism to improve cancer therapeutics
-
Zhao Y, Butler EB, Tan M. 2013. Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis 4: e532.
-
(2013)
Cell Death Dis
, vol.4
, pp. e532
-
-
Zhao, Y.1
Butler, E.B.2
Tan, M.3
-
7
-
-
84870589378
-
Combination of glycolysis inhibition with chemotherapy results in an antitumor immune response
-
Bénéteau M, Zunino B, Jacquin MA, Meynet O, et al. 2012. Combination of glycolysis inhibition with chemotherapy results in an antitumor immune response. Proc Natl Acad Sci USA 109: 20071-6.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 20071-20076
-
-
Bénéteau, M.1
Zunino, B.2
Jacquin, M.A.3
Meynet, O.4
-
8
-
-
84885670616
-
Fueling immunity: insights into metabolism and lymphocyte function
-
Pearce EL, Poffenberger MC, Chang C-H, Jones RG. 2013. Fueling immunity: insights into metabolism and lymphocyte function. Science 342: 1242454.
-
(2013)
Science
, vol.342
, pp. 1242454
-
-
Pearce, E.L.1
Poffenberger, M.C.2
Chang, C.-H.3
Jones, R.G.4
-
9
-
-
84861422324
-
Rethinking glycolysis: on the biochemical logic of metabolic pathways
-
Bar-Even A, Flamholz A, Noor E, Milo R. 2012. Rethinking glycolysis: on the biochemical logic of metabolic pathways. Nat Chem Biol 8: 509-17.
-
(2012)
Nat Chem Biol
, vol.8
, pp. 509-517
-
-
Bar-Even, A.1
Flamholz, A.2
Noor, E.3
Milo, R.4
-
10
-
-
84899564808
-
Non-enzymatic glycolysis and pentose phosphate pathway-like reactions in a plausible Archean ocean
-
Keller MA, Turchyn AV, Ralser M. 2014. Non-enzymatic glycolysis and pentose phosphate pathway-like reactions in a plausible Archean ocean. Mol Syst Biol 10: 725.
-
(2014)
Mol Syst Biol
, vol.10
, pp. 725
-
-
Keller, M.A.1
Turchyn, A.V.2
Ralser, M.3
-
11
-
-
84883049898
-
A model of yeast glycolysis based on a consistent kinetic characterisation of all its enzymes
-
Smallbone K, Messiha HL, Carroll KM, Winder CL, et al. 2013. A model of yeast glycolysis based on a consistent kinetic characterisation of all its enzymes. FEBS Lett 587: 2832-41.
-
(2013)
FEBS Lett
, vol.587
, pp. 2832-2841
-
-
Smallbone, K.1
Messiha, H.L.2
Carroll, K.M.3
Winder, C.L.4
-
12
-
-
79952284127
-
Hallmarks of cancer: the next generation
-
Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: the next generation. Cell 144: 646-74.
-
(2011)
Cell
, vol.144
, pp. 646-674
-
-
Hanahan, D.1
Weinberg, R.A.2
-
13
-
-
84897627707
-
Lost in transition: start-up of glycolysis yields subpopulations of nongrowing cells
-
Van Heerden JH, Wortel MT, Bruggeman FJ, Heijnen JJ, et al. 2014. Lost in transition: start-up of glycolysis yields subpopulations of nongrowing cells. Science 343: 1245114.
-
(2014)
Science
, vol.343
, pp. 1245114
-
-
Van Heerden, J.H.1
Wortel, M.T.2
Bruggeman, F.J.3
Heijnen, J.J.4
-
14
-
-
44849104320
-
The early steps of glucose signalling in yeast
-
Gancedo JM. 2008. The early steps of glucose signalling in yeast. FEMS Microbiol Rev 32: 673-704.
-
(2008)
FEMS Microbiol Rev
, vol.32
, pp. 673-704
-
-
Gancedo, J.M.1
-
15
-
-
0022815674
-
Effects of null mutations in the hexokinase genes of Saccharomyces cerevisiae on catabolite repression
-
Ma H, Botstein D. 1986. Effects of null mutations in the hexokinase genes of Saccharomyces cerevisiae on catabolite repression. Mol Cell Biol 6: 4046-52.
-
(1986)
Mol Cell Biol
, vol.6
, pp. 4046-4052
-
-
Ma, H.1
Botstein, D.2
-
16
-
-
84877296949
-
Systematic identification of allosteric protein-metabolite interactions that control enzyme activity in vivo
-
Link H, Kochanowski K, Sauer U. 2013. Systematic identification of allosteric protein-metabolite interactions that control enzyme activity in vivo. Nat Biotechnol 31: 357-61.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 357-361
-
-
Link, H.1
Kochanowski, K.2
Sauer, U.3
-
17
-
-
77956501842
-
Central carbon metabolism as a minimal biochemical walk between precursors for biomass and energy
-
Noor E, Eden E, Milo R, Alon U. 2010. Central carbon metabolism as a minimal biochemical walk between precursors for biomass and energy. Mol Cell 39: 809-20.
-
(2010)
Mol Cell
, vol.39
, pp. 809-820
-
-
Noor, E.1
Eden, E.2
Milo, R.3
Alon, U.4
-
18
-
-
84884659937
-
Steady-state metabolite concentrations reflect a balance between maximizing enzyme efficiency and minimizing total metabolite load
-
Tepper N, Noor E, Amador-Noguez D, Haraldsdóttir HS, et al. 2013. Steady-state metabolite concentrations reflect a balance between maximizing enzyme efficiency and minimizing total metabolite load. PLoS One 8: e75370.
-
(2013)
PLoS One
, vol.8
, pp. e75370
-
-
Tepper, N.1
Noor, E.2
Amador-Noguez, D.3
Haraldsdóttir, H.S.4
-
20
-
-
0034733820
-
Regulating the cellular economy of supply and demand
-
Hofmeyr JS, Cornish-Bowden A. 2000. Regulating the cellular economy of supply and demand. FEBS Lett 476: 47-51.
-
(2000)
FEBS Lett
, vol.476
, pp. 47-51
-
-
Hofmeyr, J.S.1
Cornish-Bowden, A.2
-
22
-
-
84859471521
-
Regulatory architecture determines optimal regulation of gene expression in metabolic pathways
-
Chubukov V, Zuleta IA, Li H. 2012. Regulatory architecture determines optimal regulation of gene expression in metabolic pathways. Proc Natl Acad Sci USA 109: 5127-32.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 5127-5132
-
-
Chubukov, V.1
Zuleta, I.A.2
Li, H.3
-
23
-
-
80053090675
-
Supply-demand analysis a framework for exploring the regulatory design of metabolism
-
Hofmeyr J-HS, Rohwer JM. 2011. Supply-demand analysis a framework for exploring the regulatory design of metabolism. Methods Enzymol 500: 533-54.
-
(2011)
Methods Enzymol
, vol.500
, pp. 533-554
-
-
Hofmeyr, J.-H.1
Rohwer, J.M.2
-
24
-
-
77949447610
-
Transcriptional regulation of respiration in yeast metabolizing differently repressive carbon substrates
-
Fendt S-M, Sauer U. 2010. Transcriptional regulation of respiration in yeast metabolizing differently repressive carbon substrates. BMC Syst Biol 4: 12.
-
(2010)
BMC Syst Biol
, vol.4
, pp. 12
-
-
Fendt, S.-M.1
Sauer, U.2
-
25
-
-
35648972123
-
The fluxes through glycolytic enzymes in Saccharomyces cerevisiae are predominantly regulated at posttranscriptional levels
-
Daran-Lapujade P, Rossell S, van Gulik WM, Luttik MAH, et al. 2007. The fluxes through glycolytic enzymes in Saccharomyces cerevisiae are predominantly regulated at posttranscriptional levels. Proc Natl Acad Sci USA 104: 15753-8.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 15753-15758
-
-
Daran-Lapujade, P.1
Rossell, S.2
van Gulik, W.M.3
Luttik, M.A.H.4
-
26
-
-
1542350073
-
Role of transcriptional regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae. A chemostat culture study
-
Daran-Lapujade P, Jansen MLA, Daran J-M, van Gulik W, et al. 2004. Role of transcriptional regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae. A chemostat culture study. J Biol Chem 279: 9125-38.
-
(2004)
J Biol Chem
, vol.279
, pp. 9125-9138
-
-
Daran-Lapujade, P.1
Jansen, M.L.A.2
Daran, J.-M.3
van Gulik, W.4
-
27
-
-
0038487266
-
Transcriptional, translational and metabolic regulation of glycolysis in Lactococcus lactis subsp. cremoris MG 1363 grown in continuous acidic cultures
-
Even S, Lindley ND, Cocaign-Bousquet M. 2003. Transcriptional, translational and metabolic regulation of glycolysis in Lactococcus lactis subsp. cremoris MG 1363 grown in continuous acidic cultures. Microbiology 149: 1935-44.
-
(2003)
Microbiology
, vol.149
, pp. 1935-1944
-
-
Even, S.1
Lindley, N.D.2
Cocaign-Bousquet, M.3
-
28
-
-
84889643157
-
Transcriptional regulation is insufficient to explain substrate-induced flux changes in Bacillus subtilis
-
Chubukov V, Uhr M, Le Chat L, Kleijn RJ, et al. 2013. Transcriptional regulation is insufficient to explain substrate-induced flux changes in Bacillus subtilis. Mol Syst Biol 9: 709.
-
(2013)
Mol Syst Biol
, vol.9
, pp. 709
-
-
Chubukov, V.1
Uhr, M.2
Le Chat, L.3
Kleijn, R.J.4
-
29
-
-
40749099894
-
Pyruvate kinase M2 is a phosphotyrosine-binding protein
-
Christofk HR, Vander Heiden MG, Wu N, Asara JM, et al. 2008. Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452: 181-6.
-
(2008)
Nature
, vol.452
, pp. 181-186
-
-
Christofk, H.R.1
Vander Heiden, M.G.2
Wu, N.3
Asara, J.M.4
-
30
-
-
84908208471
-
Heterogeneity of glycolysis in cancers and therapeutic opportunities
-
in press
-
Warmoes MO, Locasale JW. 2014. Heterogeneity of glycolysis in cancers and therapeutic opportunities. Biochem Pharmocol, in press, doi: 10.1016/j.bcp.2014.07.019
-
(2014)
Biochem Pharmocol
-
-
Warmoes, M.O.1
Locasale, J.W.2
-
31
-
-
84876058530
-
M2 pyruvate kinase provides a mechanism for nutrient sensing and regulation of cell proliferation
-
Morgan HP, O'Reilly FJ, Wear MA, O'Neill JR, et al. 2013. M2 pyruvate kinase provides a mechanism for nutrient sensing and regulation of cell proliferation. Proc Natl Acad Sci USA 110: 5881-6.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 5881-5886
-
-
Morgan, H.P.1
O'Reilly, F.J.2
Wear, M.A.3
O'Neill, J.R.4
-
32
-
-
40749163248
-
The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth
-
Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, et al. 2008. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452: 230-3.
-
(2008)
Nature
, vol.452
, pp. 230-233
-
-
Christofk, H.R.1
Vander Heiden, M.G.2
Harris, M.H.3
Ramanathan, A.4
-
33
-
-
84905097406
-
Pyruvate kinase M2 and cancer: an updated assessment
-
Iqbal MA, Gupta V, Gopinath P, Mazurek S, et al. 2014. Pyruvate kinase M2 and cancer: an updated assessment. FEBS Lett 588: 2685-92.
-
(2014)
FEBS Lett
, vol.588
, pp. 2685-2692
-
-
Iqbal, M.A.1
Gupta, V.2
Gopinath, P.3
Mazurek, S.4
-
34
-
-
80052751477
-
Pyruvate kinase triggers a metabolic feedback loop that controls redox metabolism in respiring cells
-
Grüning N-M, Rinnerthaler M, Bluemlein K, Mülleder M, et al. 2011. Pyruvate kinase triggers a metabolic feedback loop that controls redox metabolism in respiring cells. Cell Metab 14: 415-27.
-
(2011)
Cell Metab
, vol.14
, pp. 415-427
-
-
Grüning, N.-M.1
Rinnerthaler, M.2
Bluemlein, K.3
Mülleder, M.4
-
35
-
-
0030971548
-
Characterization of a glucose-repressed pyruvate kinase (Pyk2p) in Saccharomyces cerevisiae that is catalytically insensitive to fructose-1,6-bisphosphate
-
Boles E, Schulte F, Miosga T, Freidel K, et al. 1997. Characterization of a glucose-repressed pyruvate kinase (Pyk2p) in Saccharomyces cerevisiae that is catalytically insensitive to fructose-1, 6-bisphosphate. J Bacteriol 179: 2987-93.
-
(1997)
J Bacteriol
, vol.179
, pp. 2987-2993
-
-
Boles, E.1
Schulte, F.2
Miosga, T.3
Freidel, K.4
-
36
-
-
0035132047
-
Pyruvate kinase (Pyk1) levels influence both the rate and direction of carbon flux in yeast under fermentative conditions
-
Pearce AK, Crimmins K, Groussac E, Hewlins MJ, et al. 2001. Pyruvate kinase (Pyk1) levels influence both the rate and direction of carbon flux in yeast under fermentative conditions. Microbiology 147: 391-401.
-
(2001)
Microbiology
, vol.147
, pp. 391-401
-
-
Pearce, A.K.1
Crimmins, K.2
Groussac, E.3
Hewlins, M.J.4
-
37
-
-
37549072681
-
Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress
-
Ralser M, Wamelink MM, Kowald A, Gerisch B, et al. 2007. Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress. J Biol 6: 10.
-
(2007)
J Biol
, vol.6
, pp. 10
-
-
Ralser, M.1
Wamelink, M.M.2
Kowald, A.3
Gerisch, B.4
-
38
-
-
84901045058
-
Inhibition of triosephosphate isomerase by phosphoenolpyruvate in the feedback-regulation of glycolysis
-
Grüning NN-M, Du D, Keller MA, Luisi BF, et al. 2014. Inhibition of triosephosphate isomerase by phosphoenolpyruvate in the feedback-regulation of glycolysis. Open Biol 4: 130232.
-
(2014)
Open Biol
, vol.4
, pp. 130232
-
-
Grüning, N.-M.1
Du, D.2
Keller, M.A.3
Luisi, B.F.4
-
39
-
-
84919412893
-
Enzyme characterisation and kinetic modelling of the pentose phosphate pathway in yeast
-
e146v4
-
Messiha HL, Kent E, Malys N, Carroll KM, et al. 2014. Enzyme characterisation and kinetic modelling of the pentose phosphate pathway in yeast. Peer J Prepr 2: e146v4.
-
(2014)
Peer J Prepr
, vol.2
-
-
Messiha, H.L.1
Kent, E.2
Malys, N.3
Carroll, K.M.4
-
40
-
-
0034213671
-
Simultaneous genomic overexpression of seven glycolytic enzymes in the yeast Saccharomyces cerevisiae
-
Hauf J, Zimmermann FK, Müller S. 2000. Simultaneous genomic overexpression of seven glycolytic enzymes in the yeast Saccharomyces cerevisiae. Enzyme Microb Technol 26: 688-98.
-
(2000)
Enzyme Microb Technol
, vol.26
, pp. 688-698
-
-
Hauf, J.1
Zimmermann, F.K.2
Müller, S.3
-
41
-
-
0036038886
-
Schemes of flux control in a model of Saccharomyces cerevisiae glycolysis
-
Pritchard L, Kell DB. 2002. Schemes of flux control in a model of Saccharomyces cerevisiae glycolysis. Eur J Biochem 269: 3894-904.
-
(2002)
Eur J Biochem
, vol.269
, pp. 3894-3904
-
-
Pritchard, L.1
Kell, D.B.2
-
42
-
-
0033857139
-
Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry
-
Teusink B, Passarge J, Reijenga CA, Esgalhado E, et al. 2000. Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur J Biochem 267: 5313-29.
-
(2000)
Eur J Biochem
, vol.267
, pp. 5313-5329
-
-
Teusink, B.1
Passarge, J.2
Reijenga, C.A.3
Esgalhado, E.4
-
43
-
-
0031909833
-
Intracellular glucose concentration in derepressed yeast cells consuming glucose is high enough to reduce the glucose transport rate by 50%
-
Teusink B, Diderich JA, Westerhoff HV, van Dam K, et al. 1998. Intracellular glucose concentration in derepressed yeast cells consuming glucose is high enough to reduce the glucose transport rate by 50%. J Bacteriol 180: 556-62.
-
(1998)
J Bacteriol
, vol.180
, pp. 556-562
-
-
Teusink, B.1
Diderich, J.A.2
Westerhoff, H.V.3
van Dam, K.4
-
44
-
-
0033371639
-
Strategies to determine the extent of control exerted by glucose transport on glycolytic flux in the yeast Saccharomyces bayanus
-
Diderich JA, Teusink B, Valkier J, Anjos J, et al. 1999. Strategies to determine the extent of control exerted by glucose transport on glycolytic flux in the yeast Saccharomyces bayanus. Microbiology 145: 3447-54.
-
(1999)
Microbiology
, vol.145
, pp. 3447-3454
-
-
Diderich, J.A.1
Teusink, B.2
Valkier, J.3
Anjos, J.4
-
45
-
-
0035142984
-
Control of glycolytic dynamics by hexose transport in Saccharomyces cerevisiae
-
Reijenga KA, Snoep JL, Diderich JA, van Verseveld HW, et al. 2001. Control of glycolytic dynamics by hexose transport in Saccharomyces cerevisiae. Biophys J 80: 626-34.
-
(2001)
Biophys J
, vol.80
, pp. 626-634
-
-
Reijenga, K.A.1
Snoep, J.L.2
Diderich, J.A.3
van Verseveld, H.W.4
-
46
-
-
4644219864
-
Role of hexose transport in control of glycolytic flux in Saccharomyces cerevisiae
-
Elbing K, Larsson C, Bill RM, Albers E, et al. 2004. Role of hexose transport in control of glycolytic flux in Saccharomyces cerevisiae. Appl Environ Microbiol 70: 5323-30.
-
(2004)
Appl Environ Microbiol
, vol.70
, pp. 5323-5330
-
-
Elbing, K.1
Larsson, C.2
Bill, R.M.3
Albers, E.4
-
47
-
-
72449171935
-
Growth landscape formed by perception and import of glucose in yeast
-
Youk H, van Oudenaarden A. 2009. Growth landscape formed by perception and import of glucose in yeast. Nature 462: 875-9.
-
(2009)
Nature
, vol.462
, pp. 875-879
-
-
Youk, H.1
van Oudenaarden, A.2
-
48
-
-
0030722640
-
Glycolytic flux is conditionally correlated with ATP concentration in Saccharomyces cerevisiae: a chemostat study under carbon- or nitrogen-limiting conditions
-
Larsson C, Nilsson A, Blomberg A, Gustafsson L. 1997. Glycolytic flux is conditionally correlated with ATP concentration in Saccharomyces cerevisiae: a chemostat study under carbon- or nitrogen-limiting conditions. J Bacteriol 179: 7243-50.
-
(1997)
J Bacteriol
, vol.179
, pp. 7243-7250
-
-
Larsson, C.1
Nilsson, A.2
Blomberg, A.3
Gustafsson, L.4
-
49
-
-
0036037629
-
The extent to which ATP demand controls the glycolytic flux depends strongly on the organism and conditions for growth
-
Koebmann BJ, Westerhoff HV, Snoep JL, Solem C, et al. 2002. The extent to which ATP demand controls the glycolytic flux depends strongly on the organism and conditions for growth. Mol Biol Rep 29: 41-5.
-
(2002)
Mol Biol Rep
, vol.29
, pp. 41-45
-
-
Koebmann, B.J.1
Westerhoff, H.V.2
Snoep, J.L.3
Solem, C.4
-
50
-
-
0036302723
-
The glycolytic flux in Escherichia coli is controlled by the demand for ATP
-
Koebmann B, Westerhoff H. 2002. The glycolytic flux in Escherichia coli is controlled by the demand for ATP. J Bacteriol 184: 3909-16.
-
(2002)
J Bacteriol
, vol.184
, pp. 3909-3916
-
-
Koebmann, B.1
Westerhoff, H.2
-
51
-
-
84883052726
-
A new regulatory principle for in vivo biochemistry: pleiotropic low affinity regulation by the adenine nucleotides--illustrated for the glycolytic enzymes of Saccharomyces cerevisiae
-
Mensonides FIC, Bakker BM, Cremazy F, Messiha HL, et al. 2013. A new regulatory principle for in vivo biochemistry: pleiotropic low affinity regulation by the adenine nucleotides--illustrated for the glycolytic enzymes of Saccharomyces cerevisiae. FEBS Lett 587: 2860-7.
-
(2013)
FEBS Lett
, vol.587
, pp. 2860-2867
-
-
Mensonides, F.I.C.1
Bakker, B.M.2
Cremazy, F.3
Messiha, H.L.4
-
52
-
-
0343457972
-
The importance of ATP as a regulator of glycolytic flux in Saccharomyces cerevisiae
-
Larsson C, Påhlman I, Gustafsson L. 2000. The importance of ATP as a regulator of glycolytic flux in Saccharomyces cerevisiae. Yeast 16: 797-809.
-
(2000)
Yeast
, vol.16
, pp. 797-809
-
-
Larsson, C.1
Påhlman, I.2
Gustafsson, L.3
-
53
-
-
0038778727
-
Mutant studies of phosphofructo-2-kinases do not reveal an essential role of fructose-2,6-bisphosphate in the regulation of carbon fluxes in yeast cells
-
Müller S, Zimmermann FK, Boles E. 1997. Mutant studies of phosphofructo-2-kinases do not reveal an essential role of fructose-2, 6-bisphosphate in the regulation of carbon fluxes in yeast cells. Microbiology 143: 3055-61.
-
(1997)
Microbiology
, vol.143
, pp. 3055-3061
-
-
Müller, S.1
Zimmermann, F.K.2
Boles, E.3
-
54
-
-
79955137362
-
An in vivo data-driven framework for classification and quantification of enzyme kinetics and determination of apparent thermodynamic data
-
Canelas AB, Ras C, ten Pierick A, van Gulik WM, et al. 2011. An in vivo data-driven framework for classification and quantification of enzyme kinetics and determination of apparent thermodynamic data. Metab Eng 13: 294-306.
-
(2011)
Metab Eng
, vol.13
, pp. 294-306
-
-
Canelas, A.B.1
Ras, C.2
ten Pierick, A.3
van Gulik, W.M.4
-
55
-
-
75149170173
-
Silencing of glycolysis in muscle: experimental observation and numerical analysis
-
Schmitz JPJ, van Riel NAW, Nicolay K, Hilbers PAJ, et al. 2010. Silencing of glycolysis in muscle: experimental observation and numerical analysis. Exp Physiol 95: 380-97.
-
(2010)
Exp Physiol
, vol.95
, pp. 380-397
-
-
Schmitz, J.P.J.1
van Riel, N.A.W.2
Nicolay, K.3
Hilbers, P.A.J.4
-
56
-
-
0742304300
-
The importance of a functional trehalose biosynthetic pathway for the life of yeasts and fungi
-
Gancedo C, Flores C. 2004. The importance of a functional trehalose biosynthetic pathway for the life of yeasts and fungi. FEMS Yeast Res 4: 351-9.
-
(2004)
FEMS Yeast Res
, vol.4
, pp. 351-359
-
-
Gancedo, C.1
Flores, C.2
-
57
-
-
49649099805
-
Glucokinase and molecular aspects of liver glycogen metabolism
-
Agius L. 2008. Glucokinase and molecular aspects of liver glycogen metabolism. Biochem J 414: 1-18.
-
(2008)
Biochem J
, vol.414
, pp. 1-18
-
-
Agius, L.1
-
58
-
-
33748060829
-
Roles for fructose-2,6-bisphosphate in the control of fuel metabolism: beyond its allosteric effects on glycolytic and gluconeogenic enzymes
-
Wu C, Khan SA, Peng L-J, Lange AJ. 2006. Roles for fructose-2, 6-bisphosphate in the control of fuel metabolism: beyond its allosteric effects on glycolytic and gluconeogenic enzymes. Adv Enzyme Regul 46: 72-88.
-
(2006)
Adv Enzyme Regul
, vol.46
, pp. 72-88
-
-
Wu, C.1
Khan, S.A.2
Peng, L.-J.3
Lange, A.J.4
-
59
-
-
0035160371
-
A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations
-
Raamsdonk LM, Teusink B, Broadhurst D, Zhang N, et al. 2001. A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat Biotechnol 19: 45-50.
-
(2001)
Nat Biotechnol
, vol.19
, pp. 45-50
-
-
Raamsdonk, L.M.1
Teusink, B.2
Broadhurst, D.3
Zhang, N.4
-
60
-
-
0029991328
-
Cloning of a second gene encoding 6-phosphofructo-2-kinase in yeast, and characterization of mutant strains without fructose-2,6-bisphosphate
-
Boles EM, Göhlmann HWH, Zimmermann FK. 1996. Cloning of a second gene encoding 6-phosphofructo-2-kinase in yeast, and characterization of mutant strains without fructose-2, 6-bisphosphate. Mol Microbiol 20: 65-76.
-
(1996)
Mol Microbiol
, vol.20
, pp. 65-76
-
-
Boles, E.M.1
Göhlmann, H.W.H.2
Zimmermann, F.K.3
-
61
-
-
0029874904
-
The regulatory characteristics of yeast fructose-1,6-bisphosphatase confer only a small selective advantage
-
Navas MA, Gancedo JM. 1996. The regulatory characteristics of yeast fructose-1, 6-bisphosphatase confer only a small selective advantage. J Bacteriol 178: 1809-12.
-
(1996)
J Bacteriol
, vol.178
, pp. 1809-1812
-
-
Navas, M.A.1
Gancedo, J.M.2
-
62
-
-
0035850857
-
Elements from the cAMP signaling pathway are involved in the control of expression of the yeast gluconeogenic gene FBP1
-
Zaragoza O, Gancedo JM. 2001. Elements from the cAMP signaling pathway are involved in the control of expression of the yeast gluconeogenic gene FBP1. FEBS Lett 506: 262-6.
-
(2001)
FEBS Lett
, vol.506
, pp. 262-266
-
-
Zaragoza, O.1
Gancedo, J.M.2
-
63
-
-
84872389908
-
Combined in vivo and in silico investigations of activation of glycolysis in contracting skeletal muscle
-
Schmitz JPJ, Groenendaal W, Wessels B, Wiseman RW, et al. 2013. Combined in vivo and in silico investigations of activation of glycolysis in contracting skeletal muscle. Am J Physiol Cell Physiol 304: C180-93.
-
(2013)
Am J Physiol Cell Physiol
, vol.304
, pp. C180-C193
-
-
Schmitz, J.P.J.1
Groenendaal, W.2
Wessels, B.3
Wiseman, R.W.4
-
64
-
-
0029915942
-
Control of glycolysis in vertebrate skeletal muscle during exercise
-
Krause U, Wegener G. 1996. Control of glycolysis in vertebrate skeletal muscle during exercise. Am J Physiol Regul Integr Comp Physiol 270: R821-9.
-
(1996)
Am J Physiol Regul Integr Comp Physiol
, vol.270
, pp. R821-R829
-
-
Krause, U.1
Wegener, G.2
-
65
-
-
33748451150
-
Perturbation of glucose flux in the liver by decreasing F26P2 levels causes hepatic insulin resistance and hyperglycemia
-
Wu C, Khan SA, Peng L-J, Li H, et al. 2006. Perturbation of glucose flux in the liver by decreasing F26P2 levels causes hepatic insulin resistance and hyperglycemia. Am J Physiol Endocrinol Metab 291: E536-43.
-
(2006)
Am J Physiol Endocrinol Metab
, vol.291
, pp. E536-E543
-
-
Wu, C.1
Khan, S.A.2
Peng, L.-J.3
Li, H.4
-
67
-
-
84874980587
-
Functioning of a metabolic flux sensor in Escherichia coli
-
Kochanowski K, Volkmer B, Gerosa L, Haverkorn van Rijsewijk BR, et al. 2013. Functioning of a metabolic flux sensor in Escherichia coli. Proc Natl Acad Sci USA 110: 1130-5.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 1130-1135
-
-
Kochanowski, K.1
Volkmer, B.2
Gerosa, L.3
Haverkorn van Rijsewijk, B.R.4
-
68
-
-
77949385752
-
Bacterial adaptation through distributed sensing of metabolic fluxes
-
Kotte O, Zaugg JB, Heinemann M. 2010. Bacterial adaptation through distributed sensing of metabolic fluxes. Mol Syst Biol 6: 355.
-
(2010)
Mol Syst Biol
, vol.6
, pp. 355
-
-
Kotte, O.1
Zaugg, J.B.2
Heinemann, M.3
-
69
-
-
84857051751
-
A flux-sensing mechanism could regulate the switch between respiration and fermentation
-
Huberts DHEW, Niebel B, Heinemann M. 2012. A flux-sensing mechanism could regulate the switch between respiration and fermentation. FEMS Yeast Res 12: 118-28.
-
(2012)
FEMS Yeast Res
, vol.12
, pp. 118-128
-
-
Huberts, D.H.E.W.1
Niebel, B.2
Heinemann, M.3
-
70
-
-
84919412891
-
Quantitative determinants of aerobic glycolysis identify flux through the enzyme GAPDH as a limiting step
-
Shestov AA, Liu X, Ser Z, Cluntun AA, et al. 2014. Quantitative determinants of aerobic glycolysis identify flux through the enzyme GAPDH as a limiting step. elife 3: e03342.
-
(2014)
elife
, vol.3
, pp. e03342
-
-
Shestov, A.A.1
Liu, X.2
Ser, Z.3
Cluntun, A.A.4
-
71
-
-
55249118618
-
Mitochondrial oxidative phosphorylation is regulated by fructose 1,6-bisphosphate. A possible role in Crabtree effect induction
-
Díaz-Ruiz R, Avéret N, Araiza D, Pinson B, et al. 2008. Mitochondrial oxidative phosphorylation is regulated by fructose 1, 6-bisphosphate. A possible role in Crabtree effect induction? J Biol Chem 283: 26948-55.
-
(2008)
J Biol Chem
, vol.283
, pp. 26948-26955
-
-
Díaz-Ruiz, R.1
Avéret, N.2
Araiza, D.3
Pinson, B.4
-
72
-
-
0027444619
-
In vitro binding of the pleiotropic transcriptional regulatory protein, FruR, to the fru, pps, ace, pts and icd operons of Escherichia coli and Salmonella typhimurium
-
Ramseier TM, Nègre D, Cortay JC, Scarabel M, et al. 1993. In vitro binding of the pleiotropic transcriptional regulatory protein, FruR, to the fru, pps, ace, pts and icd operons of Escherichia coli and Salmonella typhimurium. J Mol Biol 234: 28-44.
-
(1993)
J Mol Biol
, vol.234
, pp. 28-44
-
-
Ramseier, T.M.1
Nègre, D.2
Cortay, J.C.3
Scarabel, M.4
-
73
-
-
0029835391
-
Cra and the control of carbon flux via metabolic pathways
-
Ramseier TM. 1996. Cra and the control of carbon flux via metabolic pathways. Res Microbiol 147: 489-93.
-
(1996)
Res Microbiol
, vol.147
, pp. 489-493
-
-
Ramseier, T.M.1
-
74
-
-
0032508638
-
Glucose repression in Saccharomyces cerevisiae is related to the glucose concentration rather than the glucose flux
-
Meijer MM, Boonstra J, Verkleij AJ, Verrips CT. 1998. Glucose repression in Saccharomyces cerevisiae is related to the glucose concentration rather than the glucose flux. J Biol Chem 273: 24102-7.
-
(1998)
J Biol Chem
, vol.273
, pp. 24102-24107
-
-
Meijer, M.M.1
Boonstra, J.2
Verkleij, A.J.3
Verrips, C.T.4
-
75
-
-
84881493970
-
Metabolic phenotypes of Saccharomyces cerevisiae mutants with altered trehalose 6-phosphate dynamics
-
Walther T, Mtimet N, Alkim C, Vax A, et al. 2013. Metabolic phenotypes of Saccharomyces cerevisiae mutants with altered trehalose 6-phosphate dynamics. Biochem J 454: 227-37.
-
(2013)
Biochem J
, vol.454
, pp. 227-237
-
-
Walther, T.1
Mtimet, N.2
Alkim, C.3
Vax, A.4
-
76
-
-
84881663369
-
Coordination of bacterial proteome with metabolism by cyclic AMP signalling
-
You C, Okano H, Hui S, Zhang Z, et al. 2013. Coordination of bacterial proteome with metabolism by cyclic AMP signalling. Nature 500: 301-6.
-
(2013)
Nature
, vol.500
, pp. 301-306
-
-
You, C.1
Okano, H.2
Hui, S.3
Zhang, Z.4
-
77
-
-
84872824182
-
Pyruvate kinase is a dosage-dependent regulator of cellular amino acid homeostasis
-
Bluemlein K, Glückmann M, Grüning N-M, Feichtinger R, et al. 2012. Pyruvate kinase is a dosage-dependent regulator of cellular amino acid homeostasis. Oncotarget 3: 1356-69.
-
(2012)
Oncotarget
, vol.3
, pp. 1356-1369
-
-
Bluemlein, K.1
Glückmann, M.2
Grüning, N.-M.3
Feichtinger, R.4
-
78
-
-
0028825385
-
Adenovirus-mediated overexpression of liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase in gluconeogenic rat hepatoma cells. Paradoxical effect on Fru-2,6-P2 levels
-
Argaud D, Lange AJ, Becker TC, Okar DA, et al. 1995. Adenovirus-mediated overexpression of liver 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase in gluconeogenic rat hepatoma cells. Paradoxical effect on Fru-2, 6-P2 levels. J Biol Chem 270: 24229-36.
-
(1995)
J Biol Chem
, vol.270
, pp. 24229-24236
-
-
Argaud, D.1
Lange, A.J.2
Becker, T.C.3
Okar, D.A.4
-
79
-
-
84905453325
-
6-Phosphofructo-2-kinase (PFKFB3) promotes cell cycle progression and suppresses apoptosis via Cdk1-mediated phosphorylation of p27
-
Yalcin A, Clem BF, Imbert-Fernandez Y, Ozcan SC, et al. 2014. 6-Phosphofructo-2-kinase (PFKFB3) promotes cell cycle progression and suppresses apoptosis via Cdk1-mediated phosphorylation of p27. Cell Death Dis 5: e1337.
-
(2014)
Cell Death Dis
, vol.5
, pp. e1337
-
-
Yalcin, A.1
Clem, B.F.2
Imbert-Fernandez, Y.3
Ozcan, S.C.4
-
80
-
-
84870598190
-
ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect
-
Yang W, Zheng Y, Xia Y, Ji H, et al. 2012. ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat Cell Biol 14: 1295-304.
-
(2012)
Nat Cell Biol
, vol.14
, pp. 1295-1304
-
-
Yang, W.1
Zheng, Y.2
Xia, Y.3
Ji, H.4
-
81
-
-
0029043852
-
6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase: a metabolic signaling enzyme
-
Pilkis SJ, Claus TH, Kurland IJ, Lange AJ. 1995. 6-Phosphofructo-2-kinase/fructose-2, 6-bisphosphatase: a metabolic signaling enzyme. Annu Rev Biochem 64: 799-835.
-
(1995)
Annu Rev Biochem
, vol.64
, pp. 799-835
-
-
Pilkis, S.J.1
Claus, T.H.2
Kurland, I.J.3
Lange, A.J.4
-
82
-
-
0037376655
-
Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell
-
Tyson JJ, Chen KC, Novak B. 2003. Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 15: 221-31.
-
(2003)
Curr Opin Cell Biol
, vol.15
, pp. 221-231
-
-
Tyson, J.J.1
Chen, K.C.2
Novak, B.3
-
84
-
-
84869430619
-
Regulation of yeast central metabolism by enzyme phosphorylation
-
Oliveira AP, Ludwig C, Picotti P, Kogadeeva M, et al. 2012. Regulation of yeast central metabolism by enzyme phosphorylation. Mol Syst Biol 8: 623.
-
(2012)
Mol Syst Biol
, vol.8
, pp. 623
-
-
Oliveira, A.P.1
Ludwig, C.2
Picotti, P.3
Kogadeeva, M.4
-
85
-
-
84903748346
-
Acetylation control of cancer cell metabolism
-
Lin R, Zhou X, Huang W, Zhao D, et al. 2014. Acetylation control of cancer cell metabolism. Curr Pharm Des 20: 2627-33.
-
(2014)
Curr Pharm Des
, vol.20
, pp. 2627-2633
-
-
Lin, R.1
Zhou, X.2
Huang, W.3
Zhao, D.4
|