-
2
-
-
50649120833
-
Metabolic gene regulation in a dynamically changing environment.
-
Bennett, M. R. et al. Metabolic gene regulation in a dynamically changing environment. Nature 454, 1119-1122 (2008).
-
(2008)
Nature
, vol.454
, pp. 1119-1122
-
-
Bennett, M.R.1
-
3
-
-
2442526837
-
Just-in-time transcription program in metabolic pathways.
-
Zaslaver, A. et al. Just-in-time transcription program in metabolic pathways. Nature Genet. 36, 486-491 (2004).
-
(2004)
Nature Genet.
, vol.36
, pp. 486-491
-
-
Zaslaver, A.1
-
4
-
-
59049106948
-
Predicting cellular growth from gene expression signatures
-
Airoldi, E. et al. Predicting cellular growth from gene expression signatures. PLoS Comp. Biol. 5, e1000257 (2009).
-
(2009)
PLoS Comp. Biol.
, vol.5
-
-
Airoldi, E.1
-
5
-
-
23144432213
-
And evolutionary tuning of the expression level of a protein.
-
Dekel, E. & Alon, U. Optimality and evolutionary tuning of the expression level of a protein. Nature 436, 588-592 (2005).
-
(2005)
Nature
, vol.436
, pp. 588-592
-
-
Dekel, E.1
Optimality, A.U.2
-
6
-
-
38049188050
-
Combinatorics of feedback in cellular uptake and metabolism of small molecules
-
Krishna, S., Semssey, S. & Sneppen, K. Combinatorics of feedback in cellular uptake and metabolism of small molecules. Proc. Natl Acad. Sci. USA 104, 20815-20819 (2007).
-
(2007)
Proc. Natl Acad. Sci. USA
, vol.104
, pp. 20815-20819
-
-
Krishna, S.1
Semssey, S.2
Sneppen, K.3
-
7
-
-
0346095291
-
Principles of transcriptional control in the metabolic network of Saccharomyces cerevisiae.
-
Ihmels, J., Levy, R. & Barkai, N. Principles of transcriptional control in the metabolic network of Saccharomyces cerevisiae. Nature Biotechnol. 22, 86-92 (2003).
-
(2003)
Nature Biotechnol.
, vol.22
, pp. 86-92
-
-
Ihmels, J.1
Levy, R.2
Barkai, N.3
-
8
-
-
0344824417
-
Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network
-
Famili, I., Forster, J., Nielsen, J. & Palsson, B. O. Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network. Proc. Natl Acad. Sci. USA 100, 13134-13139 (2003).
-
(2003)
Proc. Natl Acad. Sci. USA
, vol.100
, pp. 13134-13139
-
-
Famili, I.1
Forster, J.2
Nielsen, J.3
Palsson, B.O.4
-
9
-
-
33748049452
-
Conservation of expression and sequence of metabolic genes is reflected by activity across metabolic states
-
Bilu, Y., Shlomi, T., Barkai, N., & Ruppin, E. Conservation of expression and sequence of metabolic genes is reflected by activity across metabolic states. PLoS Comp. Biol. 2, e106.
-
PLoS Comp. Biol.
, vol.2
-
-
Bilu, Y.1
Shlomi, T.2
Barkai, N.3
Ruppin, E.4
-
10
-
-
34547177356
-
Stochastic fluctuations in metabolic pathways
-
Levine, E. & Hwa, T. Stochastic fluctuations in metabolic pathways. Proc. Natl Acad. Sci. USA 104, 9224-9229 (2007).
-
(2007)
Proc. Natl Acad. Sci. USA
, vol.104
, pp. 9224-9229
-
-
Levine, E.1
Hwa, T.2
-
13
-
-
34047097244
-
Growth-induced instability in metabolic networks
-
Goyal, S. & Wingreen, N. S. Growth-induced instability in metabolic networks. Phys. Rev. Lett. 98, 138105 (2007).
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 138105
-
-
Goyal, S.1
Wingreen, N.S.2
-
16
-
-
34047133228
-
Simplicity in biology.
-
Alon, U. Simplicity in biology. Nature 446, 497 (2007).
-
(2007)
Nature
, vol.446
, pp. 497
-
-
Alon, U.1
-
17
-
-
64549144670
-
Programming with models: Modularity and abstraction provide powerful capabilities for systems biology
-
Mallavarapu, A., Thomson, M., Ullian, B. & Gunawardena, J. Programming with models: modularity and abstraction provide powerful capabilities for systems biology. J. R. Soc. Interface 6, 257-270 (2009).
-
(2009)
J. R. Soc. Interface
, vol.6
, pp. 257-270
-
-
Mallavarapu, A.1
Thomson, M.2
Ullian, B.3
Gunawardena, J.4
-
18
-
-
1242274644
-
Glucose sensing and signaling in Saccharomyces cerevisiae through the Rgt2 glucose sensor and casein kinase i
-
Moriya, H. & Johnston, M. Glucose sensing and signaling in Saccharomyces cerevisiae through the Rgt2 glucose sensor and casein kinase I. Proc. Natl Acad. Sci. USA 101, 1572-1577 (2004).
-
(2004)
Proc. Natl Acad. Sci. USA
, vol.101
, pp. 1572-1577
-
-
Moriya, H.1
Johnston, M.2
-
19
-
-
0030953385
-
The molecular genetics of hexose transport in yeasts
-
Boles, E. & Hollenberg, C. P. The molecular genetics of hexose transport in yeasts. FEMS Microbiol. Rev. 21, 85-111 (1997).
-
(1997)
FEMS Microbiol. Rev.
, vol.21
, pp. 85-111
-
-
Boles, E.1
Hollenberg, C.P.2
-
20
-
-
0028949280
-
Identification of novel HXT genes in Saccharomyces cerevisiae reveals the impact of individual hexose transporters on glycolytic flux
-
Reifenberger, E., Freidel, K. & Ciriacy, M. Identification of novel HXT genes in Saccharomyces cerevisiae reveals the impact of individual hexose transporters on glycolytic flux. Mol. Microbiol. 16, 157-167 (1995).
-
(1995)
Mol. Microbiol.
, vol.16
, pp. 157-167
-
-
Reifenberger, E.1
Freidel, K.2
Ciriacy, M.3
-
21
-
-
0027279510
-
Yeast sugar transporters
-
Bisson, L. F., Coons, D. M., Kruckeberg, A. L. & Lewis, D. A. Yeast sugar transporters. Crit. Rev. Biochem. Mol. Biol. 28, 259-308 (1993).
-
(1993)
Crit. Rev. Biochem. Mol. Biol.
, vol.28
, pp. 259-308
-
-
Bisson, L.F.1
Coons, D.M.2
Kruckeberg, A.L.3
Lewis, D.A.4
-
22
-
-
0032865543
-
Three different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose
-
Ozcan, S. & Johnston, M. Three different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose. Microbiol. Mol. Biol. Rev. 63, 554-569 (1999).
-
(1999)
Microbiol. Mol. Biol. Rev.
, vol.63
, pp. 554-569
-
-
Ozcan, S.1
Johnston, M.2
-
23
-
-
0031888525
-
Major facilitator superfamily
-
Pao, S. S., Paulsen, I. T. & Saier, M. H. Jr. Major facilitator superfamily. Microbiol. Mol. Biol. Rev. 62, 1-34 (1998).
-
(1998)
Microbiol. Mol. Biol. Rev.
, vol.62
, pp. 1-34
-
-
Pao, S.S.1
Paulsen, I.T.2
Saier Jr., M.H.3
-
24
-
-
0033373342
-
Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae.
-
Wieczorke, R. et al. Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett. 464, 123-128 (1999).
-
(1999)
FEBS Lett.
, vol.464
, pp. 123-128
-
-
Wieczorke, R.1
-
25
-
-
0030891998
-
Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae reveals the impact of individual hexose transporters on glycolytic flux
-
Reifenberger, E., Boles, E. & Ciriacy, M. Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae reveals the impact of individual hexose transporters on glycolytic flux. Eur. J. Biochem. 245, 324-333 (1997).
-
(1997)
Eur. J. Biochem.
, vol.245
, pp. 324-333
-
-
Reifenberger, E.1
Boles, E.2
Ciriacy, M.3
-
26
-
-
0036892455
-
Characterisation of glucose transport in Saccharomyces cerevisiae with plasma membrane vesicles (countertransport) and intact cells (initial uptake) with single Hxt1, Hxt2, Hxt3, Hxt4, Hxt6, Hxt7 or Gal2 transporters.
-
Maier, A., Volker, B., Boles, E. & Fuhrmann, G. F. Characterisation of glucose transport in Saccharomyces cerevisiae with plasma membrane vesicles (countertransport) and intact cells (initial uptake) with single Hxt1, Hxt2, Hxt3, Hxt4, Hxt6, Hxt7 or Gal2 transporters. FEMS Yeast Res. 2, 539-550 (2002).
-
(2002)
FEMS Yeast Res.
, vol.2
, pp. 539-550
-
-
Maier, A.1
Volker, B.2
Boles, E.3
Fuhrmann, G.F.4
-
27
-
-
0029911743
-
Glucose sensing and signaling properties in Saccharomyces cerevisiae require the presence of at least two members of the glucose transporter family.
-
Walsh, M. C., Scholte, M., Valkier, J., Smits, H. P. & van Dam, K. Glucose sensing and signaling properties in Saccharomyces cerevisiae require the presence of at least two members of the glucose transporter family. J. Bacteriol. 170, 2593-2597 (1996).
-
(1996)
J. Bacteriol.
, vol.170
, pp. 2593-2597
-
-
Walsh, M.C.1
Scholte, M.2
Valkier, J.3
Smits, H.P.4
Van Dam, K.5
-
28
-
-
0032404121
-
Efficient transition to growth on fermentable carbon sources in Saccharomyces cerevisiae requires signaling through the Ras pathway.
-
Jiang, Y., Davis, C. & Broach, J. Efficient transition to growth on fermentable carbon sources in Saccharomyces cerevisiae requires signaling through the Ras pathway. EMBO J. 17, 6942-6951 (1998).
-
(1998)
EMBO J.
, vol.17
, pp. 6942-6951
-
-
Jiang, Y.1
Davis, C.2
Broach, J.3
-
29
-
-
44349186331
-
Influence of genotype and nutrition on survival and metabolism of starving yeast
-
Boer, V. M., Amini, S. & Botstein, D. Influence of genotype and nutrition on survival and metabolism of starving yeast. Proc. Natl Acad. Sci. USA 105, 6930-6935 (2008).
-
(2008)
Proc. Natl Acad. Sci. USA
, vol.105
, pp. 6930-6935
-
-
Boer, V.M.1
Amini, S.2
Botstein, D.3
-
30
-
-
0012926979
-
Effects of specific growth rate on fermentative capacity of baker's yeast
-
van Hoek, P., van Dijken, J. & Pronk, J. Effects of specific growth rate on fermentative capacity of baker's yeast. Appl. Environ. Microbiol. 64, 4226-4233 (1998).
-
(1998)
Appl. Environ. Microbiol.
, vol.64
, pp. 4226-4233
-
-
Van Hoek, P.1
Van Dijken, J.2
Pronk, J.3
-
31
-
-
0035142984
-
Control of glycolytic dynamics by hexose transport in Saccharomyces cerevisiae.
-
Reijenga, K. A. et al. Control of glycolytic dynamics by hexose transport in Saccharomyces cerevisiae. Biophys. J. 80, 626-634 (2001).
-
(2001)
Biophys. J.
, vol.80
, pp. 626-634
-
-
Reijenga, K.A.1
-
32
-
-
1242300132
-
Regulatory network connecting two glucose signal transduction pathways in Saccharomyces cerevisiae.
-
Kaniak, A., Xue, Z., Macool, D., Kim, J. H. & Johnston, M. Regulatory network connecting two glucose signal transduction pathways in Saccharomyces cerevisiae. Eukaryot. Cell 3, 221-231 (2004).
-
(2004)
Eukaryot. Cell
, vol.3
, pp. 221-231
-
-
Kaniak, A.1
Xue, Z.2
MacOol, D.3
Kim, J.H.4
Johnston, M.5
-
33
-
-
44849104320
-
The early steps of glucose signaling in yeast
-
Gancedo, J. M. The early steps of glucose signaling in yeast. FEMS Microbiol. Rev. 32, 673-704 (2008).
-
(2008)
FEMS Microbiol. Rev.
, vol.32
, pp. 673-704
-
-
Gancedo, J.M.1
-
34
-
-
33748744634
-
Two glucose-sensing pathways converge on Rgt1 to regulate expression of glucose transporter genes in Saccharomyces cerevsiae
-
Kim, J. H. & Johnston, M. Two glucose-sensing pathways converge on Rgt1 to regulate expression of glucose transporter genes in Saccharomyces cerevsiae. J. Biol. Chem. 281, 26144-26149 (2006).
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 26144-26149
-
-
Kim, J.H.1
Johnston, M.2
-
35
-
-
33645130011
-
Glucose signaling in Saccharomyces cerevisiae
-
Santangelo, G. M. Glucose signaling in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 70, 253-282 (2006).
-
(2006)
Microbiol. Mol. Biol. Rev.
, vol.70
, pp. 253-282
-
-
Santangelo, G.M.1
-
36
-
-
39749140606
-
Strategy of transcription regulation in the budding yeast.
-
Levy, S. et al. Strategy of transcription regulation in the budding yeast. PLoS One 2, e250 (2007).
-
(2007)
PLoS One
, vol.2
-
-
Levy, S.1
-
37
-
-
0038349351
-
Glucose triggers different global responses in yeast, depending on the strength of the signal, and transiently stabilizes ribosomal protein mRNAs
-
Yin, Z. et al. Glucose triggers different global responses in yeast, depending on the strength of the signal, and transiently stabilizes ribosomal protein mRNAs. Mol. Microbiol. 48, 713-724 (2003).
-
(2003)
Mol. Microbiol.
, vol.48
, pp. 713-724
-
-
Yin, Z.1
-
38
-
-
33846950348
-
Challenges in engineering microbes for biofuels production.
-
Stephanopoulos, G. Challenges in engineering microbes for biofuels production. Science 315, 801-804 (2007).
-
(2007)
Science
, vol.315
, pp. 801-804
-
-
Stephanopoulos, G.1
-
39
-
-
59049085394
-
A network biology approach to aging in yeast
-
Lorenz, D. R., Cantor, C. R. & Collins, J. J. A network biology approach to aging in yeast. Proc. Natl Acad. Sci. USA 106, 1145-1150 (2009).
-
(2009)
Proc. Natl Acad. Sci. USA
, vol.106
, pp. 1145-1150
-
-
Lorenz, D.R.1
Cantor, C.R.2
Collins, J.J.3
-
40
-
-
0034053842
-
Metabolic engineering of Saccharomyces cerevisiae
-
Ostergaard, S., Olsson, L. & Nielsen, J. Metabolic engineering of Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 64, 34-50 (2000).
-
(2000)
Microbiol. Mol. Biol. Rev.
, vol.64
, pp. 34-50
-
-
Ostergaard, S.1
Olsson, L.2
Nielsen, J.3
-
41
-
-
2942676743
-
Metabolomics and systems biology: Making sense of the soup
-
Kell, D. B. Metabolomics and systems biology: making sense of the soup. Curr. Opin. Microbiol. 7, 296-307 (2004).
-
(2004)
Curr. Opin. Microbiol.
, vol.7
, pp. 296-307
-
-
Kell, D.B.1
-
42
-
-
66149108427
-
And tolerances in the design space of biochemical systems
-
Savageau, M. A., Coelho, P., Fasani, R., Tolla, D. & Salvador, A. Phenotypes and tolerances in the design space of biochemical systems. Proc. Natl Acad. Sci. USA 106, 6435-6440 (2009).
-
(2009)
Proc. Natl Acad. Sci. USA
, vol.106
, pp. 6435-6440
-
-
Savageau, M.A.1
Coelho, P.2
Fasani, R.3
Tolla, D.4
Phenotypes, S.A.5
-
43
-
-
23244467882
-
Rewiring of the yeast transcriptional network through the evolution of motif usage.
-
Ihmels, J. et al. Rewiring of the yeast transcriptional network through the evolution of motif usage. Science 309, 938-940 (2005).
-
(2005)
Science
, vol.309
, pp. 938-940
-
-
Ihmels, J.1
-
44
-
-
58149527756
-
Growth-rate-dependent partitioning of RNA polymerases in bacteria
-
Klumpp, S. & Hwa, T. Growth-rate-dependent partitioning of RNA polymerases in bacteria. Proc. Natl Acad. Sci. USA 105, 20245-20250 (2008).
-
(2008)
Proc. Natl Acad. Sci. USA
, vol.105
, pp. 20245-20250
-
-
Klumpp, S.1
Hwa, T.2
-
45
-
-
9144252197
-
Integrated analysis of metabolic phenotypes in Saccharomyces cerevisiae
-
Duarte, N. C., Palsson, B., Ø. & Fu, P. Integrated analysis of metabolic phenotypes in Saccharomyces cerevisiae. BMC Genomics 5, 63 (2004).
-
(2004)
BMC Genomics
, vol.5
, pp. 63
-
-
Duarte, N.C.1
Palsson B.Ø2
Fu, P.3
-
46
-
-
35648972123
-
The fluxes through glycolytic enzymes in Saccharomyces cereivisiae are predominantly regulated at posttranscriptional levels
-
Daran-Lapujade, P. et al. The fluxes through glycolytic enzymes in Saccharomyces cereivisiae are predominantly regulated at posttranscriptional levels. Proc. Natl Acad. Sci. USA 104, 15753-15758 (2007).
-
(2007)
Proc. Natl Acad. Sci. USA
, vol.104
, pp. 15753-15758
-
-
Daran-Lapujade, P.1
-
47
-
-
34247630099
-
Growth control of the eukaryote cell: A systems biology study in yeast.
-
Castrillo, J. I. et al. Growth control of the eukaryote cell: a systems biology study in yeast. J. Biol. 6, 4 (2007).
-
(2007)
J. Biol.
, vol.6
, pp. 4
-
-
Castrillo, J.I.1
-
48
-
-
4644268555
-
Mathematical models in microbial systems biology
-
Stelling, J. Mathematical models in microbial systems biology. Curr. Opin. Microbiol. 7, 513-518 (2004).
-
(2004)
Curr. Opin. Microbiol.
, vol.7
, pp. 513-518
-
-
Stelling, J.1
-
49
-
-
3042722112
-
Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae.
-
Sheff, M. & Thorn, K. Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast 21, 661-670 (2004).
-
(2004)
Yeast
, vol.21
, pp. 661-670
-
-
Sheff, M.1
Thorn, K.2
-
50
-
-
0042592912
-
Specificity and regulation of DNA binding by the yeast glucose transporter gene repressor Rgt1
-
Kim, J. H., Polish, J. & Johnston, M. Specificity and regulation of DNA binding by the yeast glucose transporter gene repressor Rgt1. Mol. Cell. Biol. 23, 5208-5216 (2003).
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 5208-5216
-
-
Kim, J.H.1
Polish, J.2
Johnston, M.3
|